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Drug–disease treatment relationships, i.e., which drug(s) are indicated to treat which disease(s), are among
the most frequently sought information in PubMed�. Such information is useful for feeding the Google
Knowledge Graph, designing computational methods to predict novel drug indications, and validating
clinical information in EMRs. Given the importance and utility of this information, there have been
several efforts to create repositories of drugs and their indications. However, existing resources are
incomplete. Furthermore, they neither label indications in a structured way nor differentiate them by
drug-specific properties such as dosage form, and thus do not support computer processing or semantic
interoperability. More recently, several studies have proposed automatic methods to extract structured
indications from drug descriptions; however, their performance is limited by natural language challenges
in disease named entity recognition and indication selection.

In response, we report LabeledIn: a human-reviewed, machine-readable and source-linked catalog of
labeled indications for human drugs. More specifically, we describe our semi-automatic approach to
derive LabeledIn from drug descriptions through human annotations with aids from automatic methods.
As the data source, we use the drug labels (or package inserts) submitted to the FDA by drug manufac-
turers and made available in DailyMed. Our machine-assisted human annotation workflow comprises: (i)
a grouping method to remove redundancy and identify representative drug labels to be used for human
annotation, (ii) an automatic method to recognize and normalize mentions of diseases in drug labels as
candidate indications, and (iii) a two-round annotation workflow for human experts to judge the pre-
computed candidates and deliver the final gold standard.

In this study, we focused on 250 highly accessed drugs in PubMed Health, a newly developed public
web resource for consumers and clinicians on prevention and treatment of diseases. These 250 drugs
corresponded to more than 8000 drug labels (500 unique) in DailyMed in which 2950 candidate
indications were pre-tagged by an automatic tool. After being reviewed independently by two experts,
1618 indications were selected, and additional 97 (missed by computer) were manually added, with
an inter-annotator agreement of 88.35% as measured by the Kappa coefficient. Our final annotation
results in LabeledIn consist of 7805 drug–disease treatment relationships where drugs are represented
as a triplet of ingredient, dose form, and strength.

A systematic comparison of LabeledIn with an existing computer-derived resource revealed significant
discrepancies, confirming the need to involve humans in the creation of such a resource. In addition,
LabeledIn is unique in that it contains detailed textual context of the selected indications in drug labels,
making it suitable for the development of advanced computational methods for the automatic extraction
of indications from free text. Finally, motivated by the studies on drug nomenclature and medication
errors in EMRs, we adopted a fine-grained drug representation scheme, which enables the automatic
identification of drugs with indications specific to certain dose forms or strengths. Future work includes
expanding our coverage to more drugs and integration with other resources.

The LabeledIn dataset and the annotation guidelines are available at http://ftp.ncbi.nlm.nih.gov/pub/lu/
LabeledIn/.
Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA license (http://creative-

commons.org/licenses/by-nc-sa/3.0/).
1. Introduction
Drug–disease treatment relationships are among the top
searched topics in PubMed� [1,2]. Such relationships are
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established during the drug discovery and development process,
which establishes the therapeutic intent of a given drug based on
its properties and target patient characteristics. The primary appli-
cation of such information is to inform healthcare professionals
and patients for questions like ‘‘what drugs may be prescribed
for hypertension’’ or ‘‘what are the indications of Fluoxetine’’ [3].
These relationships are also used for feeding the Google Knowledge
Graph, developing computational methods for predicting and vali-
dating results of novel drug indications [4–6] and drug side effects
[7], assisting PubMed Health� (http://www.ncbi.nlm.nih.gov/
pubmedhealth/) editors to cross-link drug and disease monographs
[8]. More recently, such information is found to be critical in vali-
dating patient notes and medication-problem links in electronic
medical records (EMRs) [9–11]. Given this variety of applications,
it is important to have a comprehensive gold standard of drug–
disease treatment relationships, that is (i) accurate and derived
from a credible source, and (ii) structured to support computer
processing, and (iii) normalized to precise concepts in standard
vocabularies, such as UMLS [12] and RxNorm [13], to facilitate
semantic understanding and interoperability. The third desired
property deserves further explanation. To precisely represent the
treatment relationship, it is necessary that diseases and drugs are
normalized to the most appropriate abstraction levels:

� Disease Normalization: The diseases should be normalized to
the most specific concepts. For instance, if a drug is used for
treating ‘‘respiratory tract infections,’’ mapping to the generic
concept ‘‘infections’’ would not only be imprecise but also inac-
curate since the drug may not treat all kinds of infections.
� Drug Normalization: A drug can be represented at several levels

of granularity based on its properties. While the therapeutic
intent of a drug is largely determined by its active ingredient
(IN), there is evidence showing that it may also be dictated by
its dose form (DF) and strength (ST) [10,14,15]. For example,
the indications of Ketorolac oral tablet are different from those
of the ophthalmic solution (see Table 1).

Several existing knowledge bases such as DrugBank [16] and
MedicineNet [17] already contain drug–disease relationships.
However, they are unstructured (i.e. described in free text), and
thus, do not allow automatic computer analysis. Google’s Freebase
[18] is a structured resource, but the drugs are coarsely repre-
sented as ingredients, and the diseases are not normalized. The
NDF-RT [19] provides structured and normalized information.
However, it is found incomplete with respect to the list of drug
indications [20,21], and the drug–disease relationships are not sep-
arately labeled according to different dose forms or strengths. For
instance, the Ketorolac drug is manufactured in multiple dose
forms, each serving a different purpose, e.g. injectable solution is
used for pain, and ophthalmic solution for conjunctivitis. Despite
this, the NDF-RT links all the different forms of this drug to the
Table 1
Drug with multiple dose forms: Computer Pre-annotations and expert judgments.

Drug label Drug concept Indications (identified auto

dl1 Ketorolac Ophthalmic Solution ACULAR ophthalmic soluti
temporary relief of ocular
allergic conjunctivitis

(RxNorm CUI: 377446) ACULAR ophthalmic soluti
the treatment of postopera
patients who have underg

dl2 Ketorolac Oral Tablet Ketorolac tromethamine ta
short term (5 days) manag
severe pain that requires an

(RxNorm CUI: 372547)
same set of diseases: inflammation, allergic conjunctivitis, photo-
phobia, and pain.

In addition, there have been multiple attempts to use auto-
mated methods for extracting computable (i.e. structured and nor-
malized) indication information from existing textual resources
(e.g. the DailyMed website [22]) using knowledge-based
approaches. SIDER 2 [23] is a public resource focused on identify-
ing adverse drug reactions and indications from the FDA drug
labels and public documents. The method used to extract indica-
tions is based on a UMLS-based lexicon lookup technique followed
by side effects filtering. The October 2012 version of SIDER 2 con-
tains indications for 10319 drugs labels. Neveol and Lu [24] used
text mining techniques to extract indications from FDA drug labels,
and automatically extract 2200 relationships between 1263 ingre-
dients and 581 diseases using SemRep [25] with precision of 73%.
Wei and colleagues [26] created an ensemble indication resource
called MEDI by integrating information from four resources: SIDER
2, NDF-RT, MedlinePlus, and Wikipedia. A subset of MEDI was sam-
pled and reviewed by two physicians in two rounds to further
determine the automatic inclusion strategy for a high precision
dataset. The final computer-generated dataset (MEDI-HPS) con-
tains 13304 ingredient-indication pairs corresponding to 2136
ingredients with an estimated 0.92 precision and 0.30 recall. Fung
et al. [21] designed a DailyMed-based indication extraction system
(SPL-X) for decision support in electronic medical records. SPL-X
uses MetaMap [27], negation removal, and semantic reclassifica-
tion techniques [28,29] for disease concept identification. SPL-X
was applied to 2105 unique drug labels, a subset of which was
evaluated by seven physicians showing 0.77 in precision and
0.95 in recall.

As found in the abovementioned studies [21,24,26], automatic
methods alone are not yet sufficient to deliver a gold standard
due to the challenges in natural language processing (NLP), includ-
ing: (a) the difficulties with automatic disease recognition and nor-
malization [30–32], and (b) the presence of disease mentions other
than indications in drug labels. To illustrate these, Table 1 contains
the indication fields of two sample drug labels (dl1 and dl2: same
ingredient but different dose forms) in DailyMed [22], which
houses the most up-to-date drug labels submitted to the FDA by
drug manufacturers. Table 1 also shows the disease names found
by a state-of-the-art NLP tool (column 3, in italics) and the final
indications after human revision (column 4, in italics). As can be
seen, recognition of disease mentions is not trivial (‘‘ocular itching’’
vs. ‘‘itching’’ in dl1; ‘‘severe pain’’ vs. ‘‘moderate to severe pain’’ in
dl2). In addition, drug labels could contain negative and irrelevant
(‘‘cataract’’ mention in dl1; ‘‘analgesia’’ mention in dl2) disease
mentions.

Unlike previous studies [22,24,25], in this work we resort to
human annotation to create a gold standard of drug indications
with the aids from automatic text-mining tools, as they have been
shown to be useful for assisting manual curation [33,34]. This
matically) Indications (improved using expert judgments)

on is indicated for the
itching due to seasonal

ACULAR ophthalmic solution is indicated for
the temporary relief of ocular itching due
to seasonal allergic conjunctivitis

on is also indicated for
tive inflammation in

one cataract extraction

ACULAR ophthalmic solution is also indicated
for the treatment of postoperative
inflammation in patients who have undergone
cataract extraction

blets are indicated for
ement of moderate to
algesia at the opioid level

Ketorolac tromethamine tablets are indicated
for short term (5 days) management of
moderate to severe pain that requires analgesia
at the opioid level
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study is built on a pilot study [35] in which we evaluated the fea-
sibility of our semi-automated annotation framework on a small
set of 100 drug labels with two human annotators. Based on the
error analysis of the previous study, we have significantly
improved the annotation framework, revised the annotation guide-
lines, and produced a resource covering 8151 DailyMed drug labels
in the current study. Another unique aspect of the current work is
that each indication is linked to a specific textual location in the
source drug label(s). Not only does this provide evidence and con-
text of selected indications, such as linked textual information, but
also can serve as training data for the development of supervised
machine-learning methods for automatic indication extraction.
Finally, this study uses a finer-grained scheme where each drug
is represented as a 3-tuple <Active Ingredient (IN), Dose Form
(DF), Drug Strength (ST)> when linking to its labeled indications.

2. Materials and methods

2.1. Overall workflow for annotating drug indications

Fig. 1 shows an outline of our semi-automated approach con-
sisting of three distinct steps: (i) drug label selection; (ii) automatic
disease recognition; and (iii) manual indication annotation. Each
step is detailed in Sections 2.3–2.5.

2.2. DailyMed: The source of FDA drug labels

DailyMed is a drug database maintained by the National Library
of Medicine (NLM) [22]. DailyMed is considered to be the largest
resource on marketed drugs containing high-quality information
about human and animal drugs including both over-the-counter
and prescription drugs. All drug labels are available in HTML and
XML formats. Fig. 2 shows the Web version for a drug label. Each
label is organized into multiple sections; the ‘‘INDICATIONS AND
USAGE’’ section provides information on drug indications in a nar-
rative format. The NLM editors assign normalized drug concepts to
the drug labels (see ‘‘RxNorm Names’’ box in Fig. 2), and hence the
DailyMed is structured and normalized in terms of drug informa-
tion. To create the gold standard of drug–disease treatment rela-
tionships, the key is to identify the most specific drug indications
mentioned in the textual description, normalize them to corre-
sponding UMLS concepts, and link to the associated drug concepts.

2.3. Drug label selection

We accessed DailyMed on September 1 2012, and downloaded
its August 24 2012 version, which contained 18324 human pre-
scription drug labels. For each label, we extracted its indication
Fig. 1. The overall framework of our
field from the XML file, and the assigned RxNorm concepts from
the respective web page. We then applied a set of filters to ensure
that a drug label is linked to RxNorm CUIs and its associated indi-
cation field is not empty. In this study, we focused on the 250
human prescription ingredients frequently found in access logs of
PubMed Health. These 250 drugs correspond to 8151 drug labels.
From here, our goal was to minimize annotation efforts without
any loss of information downstream. We observed that a drug
ingredient can have multiple drug labels in DailyMed (submitted
by different manufacturers) with same or different textual descrip-
tions in the indication field. To minimize annotation efforts, we
only selected unique drug labels (in terms of indication texts) for
annotation study. We grouped similar drug labels and chose a rep-
resentative drug label from each group. To minimize loss of infor-
mation, we only grouped highly similar (with text that is almost
identical) drug labels together.

First, all 8151 drug labels were grouped based on the linked
drug ingredients resulting into 250 groups. Then, each group was
further sub-grouped such that all the drug labels in a sub-group
are highly similar (i.e. identical) to each other in terms of their
indications. We used the Dice co-efficient [36] to measure similar-
ity between drug labels. In particular, we considered two drug
labels to be identical if their Dice co-efficient lied above the thresh-
old of 0.87. This threshold was empirically determined using our
analysis of 100 drug labels. In this way, we derived 542 sub-groups
wherein each sub-group contained drug labels linked to the same
ingredient and having highly similar indication descriptions. As
shown in Fig. 3, the size of sub-groups (i.e. the number of similar
drug labels in sub-groups) ranges from 1 through 131.

We further observed, especially in case of drug labels with
shorter lengths, that certain drug labels were identical to each
other and were still assigned to different sub-groups. We manually
merged these sub-groups resulting into 500 indication based sub-
groups. For each sub-group, we randomly chose a drug label to be
annotated and used as a representative of the group. In this way,
we minimized the annotation effort by 93%, i.e. from 8151 drug
labels to 500 drug labels. These 500 drug labels represent 250
INs, 611 < IN, DF > pairs, and 1531 < IN, DF, ST > triplets. The indi-
cation descriptions are varied in length ranging from 10 to more
than 1000 words, with average of 130 words (±149 words).
2.4. Automatic disease recognition

The goal of this module was to identify all disease mentions as
indication candidates from the textual descriptions of a given drug
label. For this study, we prepared a disease lexicon using two seed
ontologies, MeSH and SNOMED-CT, respectively useful for annotat-
ing scientific articles [30,32,37] and clinical documents [31,38,39].
study for annotating drug labels.



Fig. 2. A snapshot of DailyMed drug label by Allergan Inc. The indication information is provided by manufacturers, and normalized (RxNorm) drug concepts are assigned by
NLM curators and editors.

Fig. 3. An insight into the indication based sub-grouping for 8151 drug labels.
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The lexicon consists of 77464 concepts taken from: (i) the disease
branch in MeSH, and (ii) the 11 disorder semantic types (UMLS dis-
order semantic types excluding ‘Finding’) in SNOMED-CT as recom-
mended in a recent shared task [30].

As for the automatic tool, we applied MetaMap [27], a highly
configurable program used for mapping biomedical texts to the
UMLS identifying the mentions, offsets, and associated CUIs. We
used the 2012 MetaMap Java API release that uses the 2012AB ver-
sion of the UMLS Metathesaurus. We experimented with multiple
settings of MetaMap, and the optimal setting method for this study
is illustrated in Fig. 4.

The drug descriptions may contain overlapping disease men-
tions, e.g. the phrase ‘‘skin and soft tissue infections’’ denotes
two specific diseases, ‘‘skin infections’’ and ‘‘soft tissue infections.’’
While the final results by MetaMap do not return such overlapping
mentions, these are captured in the intermediate results of Meta-
Map, known as the Metathesaurus candidates. Hence, we utilized
these candidate concepts, as opposed to the final results, in our
disease recognition method. MetaMap provides two types of candi-
dates, contiguous and dis-contiguous, e.g. in the phrase ‘‘skin and
soft tissue infections’’, ‘‘soft tissue infections’’ is a contiguous can-
didate, and ‘‘skin + infections’’ is a dis-contiguous candidate. We
found that MetaMap returns different sets of dis-contiguous candi-
dates with and without the term processing feature. Hence, we con-
ducted two runs of MetaMap for comprehensive results. Also, the
word sense disambiguation feature was turned on to disambiguate
mentions that may map to multiple CUIs, e.g. ‘‘depression.’’

In order to restrict the returned candidates to specific semantic
types from two vocabularies as mentioned above, we used a
lookup against our custom disease lexicon as opposed to running
multiple rounds of MetaMap for the two vocabularies. Finally, can-
didates with overlapping spans were resolved in the following
manner: (i) when both candidates were contiguous, the longer
candidate was selected, (ii) when one candidate was dis-contigu-
ous - (a) if the merged span contained conjunctions (e.g. ‘‘or,’’
‘‘and’’) or prepositions (e.g. ‘‘to’’), then the merged span was



Fig. 4. Disease concept recognition method.
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pre-annotated and both CUIs were retained, e.g. the elliptical coor-
dination in ‘‘skin and soft tissue infections,’’ (b) if the two mentions
were related by a parent–child UMLS relationship (e.g., the phrase
‘‘acute bacterial otitis media’’ maps to hierarchically related con-
cepts ‘‘acute + otitis media’’ and ‘‘otitis’’), then the longer mention
was retained, else, the shorter mention was retained (e.g. the
phrase ‘‘drug hypersensitivity reactions’’ maps to non-hierarchi-
cally related concepts ‘‘drug + reactions’’ and ‘‘hypersensitivity
reactions’’).

2.5. Manual indication annotation

The annotation study was conducted with two professional bio-
medical annotators with more than five years of experience work-
ing in an academic medical research institution. The annotators
have an educational background in pharmacology and medicine,
and have been trained in biomedical literature indexing. The indi-
cation section of the drug labels was presented to the two human
annotators by highlighting the disease mentions (i.e., computer
pre-annotations) identified in the previous automatic step. All
mentions (including dis-contiguous) were presented as contiguous
Fig. 5. Annotatio
by expanding the spans. At the backend, we maintained a mapping
between the mentions and the associated CUIs. We used a crowd-
sourcing platform (www.crowdflower.com) to build the annota-
tion interface [35]. The system presented the pre-annotated drug
labels on the annotation interface illustrated in Fig. 5. To facilitate
quick and correct annotation, we leveraged the styling information
available from the XML file and presented the drug label exactly as
it would appear on the Web. The drug labels were presented one at
a time. The human annotation was conducted in two rounds.
During round-1, the annotators were asked to independently anno-
tate the drug labels (Fig. 5a). During round-2, the annotators were
asked to independently update their previous annotations based
on previous disagreements (Fig. 5b).

We conducted the study with 50 drug labels at a time compris-
ing 10 sets for 500 representative labels. The first two sets were
annotated in our pilot study where a ground truth was curated
and annotators’ judgments were assessed against it [35]. The
evolved guidelines from that study were used for conducting the
annotation study for the remaining sets. After round-1, the annota-
tors disagreed on average 20 (±4) labels, indicating the size of
workload in round-2. The average human effort spent in double
n interface.

http://www.crowdflower.com


Table 2
Description of the final annotation results (LabeledIn).

Drug specificity
(size in LabeledIn)

Total annotated
drug–disease
pairs

Example

Drug Indication(s)

Ingredient (249) 1318 Diclofenac Osteoarthritis
Rheuomatoid
arthritis
Ankylosing
Spondylitis
Osteoarthritis
of the knee(s)
Acute pain
Strains
Sprains
Contusions
Pain
Actinic
keratoses
Migraine
Aura
Inflammation

Ingredient + dose
form (611)

2997 Diclofenac
Topical Gel

Osteoarthritis
Pain
Actinic
keratosis

Ingredient + dose
form + strength
(1513)

7805 Diclofenac
0.03MG/MG
Topical Gel

Actinic
keratosis

Fig. 6. Overlap between computer pre-annotations (#2950) and Gold Standard or
LabeledIn (#1715).

R. Khare et al. / Journal of Biomedical Informatics 52 (2014) 448–456 453
annotating a drug label in round-1 and round-2 was 3.47 min and
3.98 min, respectively. After each set annotation, we studied the
comments provided by annotators and improved the guidelines
accordingly. Furthermore, we consulted with a domain expert with
a doctoral degree in pharmacy to validate and refine the annota-
tion guidelines. The final version of guidelines is described thor-
oughly in the supplemental materials. The consensus judged by
both annotators was used for deriving the gold standard.

2.6. Evaluation

We evaluated our annotated corpus in several ways. We first
computed the size of the gold standard, i.e., the total number of
drugs and drug–disease relationships at different levels of granu-
larity. Then we empirically studied the effect of dose form and
strength on indications in our annotation results. Next, we com-
puted the Jaccard agreement (PðAÞ ¼ jA1\A2 j

jA1[A2 j
, Ai = judgments by ith

annotator) and kappa agreement (PðAÞ�PðeÞ
1�PðeÞ , P(e) = probability of

chance agreement) to assess the consistency of our annotation
results. Then, we measured the precision and recall of the auto-
matic concept recognition method with respect to the gold stan-
dard generated by the annotators. Finally, we compared our
results with a similar resource by computing the Jaccard inter-

source agreement jS1\S2 j
jS1[S2 j

; Si ¼ indications in ith source
� �

.

3. Results

3.1. Description of final annotation results

We name our final annotation results as ‘‘LabeledIn’’ since it
was created from the labeled indications in the DailyMed. Label-
edIn contains the relationships between drugs and indications,
and is organized at three levels of granularity as shown in Table 2.
It should be noted that out of the 250 ingredients, one ingredient
(Varenicline) was not included in the final results because this drug
is used for smoking cessation and its corresponding labels did not
have any mentions that mapped to a disease concept. On average,
each drug label contained 3.43 indications.

We noticed that 136 ingredients in our results were associated
with multiple drug labels in DailyMed. Using automatic analysis of
<IN, DF, ST> and indication combinations, we found that 68% of these
ingredients had indications that were DF-specific (same IN but dif-
ferent DF had different indications). For instance, the Fluticasone
topical cream is indicated for ‘‘Atopic Dermatitis’’ whereas the Flu-
ticasone nasal inhaler is indicated for ‘‘Seasonal and Allergic Rhini-
tis.’’ About 11% of the ingredients had indications that were ST-
specific (same <IN, DF> but different ST had different indications),
e.g. the Finasteride 5 mg oral tablet is indicated for ‘‘Benign Prostatic
Hypertrophy’’ whereas its 1 mg counterpart is indicated for ‘‘Andro-
genetic Alopecia’’ (a.k.a. male pattern baldness).
3.2. Inter-annotator agreement and comparison of computer pre-
annotations vs. human annotation results

Our annotated text corpus contains 500 drug labels double-
annotated in two rounds. The average Jaccard agreements between
annotators for round-1 and round-2 were 88.77% and 94.18%,
respectively. The average Kappa agreements for round-1 and
round-2 were 77.48% and 88.35%, respectively. After round-2, the
main cause for remaining differences is that in addition to the main
indication, one of the two annotators also selected its generic or
related form. Some examples include:

(i) ‘‘Primary Prevention of Cardiovascular Disease. CRESTOR is
indicated to reduce the risk of stroke and myocardial infarc-
tion’’: one annotator selected ‘‘Cardiovascular Disease’’ in
addition to ‘‘stroke’’ and ‘‘myocardial infarction’’

(ii) ‘‘PROVIGIL is indicated to improve wakefulness in adult patients
with excessive sleepiness associated with Narcolepsy, obstruc-
tive sleep apnea, and shift work disorder. In all cases, careful
attention to the diagnosis and treatment of the underlying sleep
disorder(s) is of utmost importance’’: one annotator selected
‘‘sleep disorder(s)’’ in addition to ‘‘excessive sleepiness’’

On average, the automatic disease recognition module identi-
fied 5.9 pre-annotations per drug label. Compared to the final
human annotation results, the automatic method delivered a
micro-averaged precision, recall, and F1-measure of 0.55, 0.94,
and 0.69 (and macro-averaged 0.67, 0.95, and 0.74), respectively.
Fig. 6 shows the overlap between the pre-annotations and the final
annotation results, the precision denotes that about 55% of the
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9%

14%

21%

Unique Pairs in LabeledIn

More Specific

CUI Different

Discon�guous
Men�on
Missed by
SIDER

23%

49%

12%

10%

3% 3%
Unique Pairs in SIDER 

Other Context

Generic Overlapping

Less Specific

Non-Disease

CUI Different

Caused/Contraindica�ons

Total pairs
<DrugLabellD,DiseaseCUl>

Fig. 7. Comparison of SIDER 2 indications and LabeledIn for 50 randomly selected drug labels.
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computer recommended pre-annotations were accepted by the
annotators (overlapping region); and the recall denotes that about
6% of the final results was created using the indications not cap-
tured by automated methods but added by the human annotators
(yellow region).

3.3. Comparison results with SIDER 2

Among several similar datasets, SIDER 2 is the only one that
contains indications extracted from drug labels and provides iden-
tifiers of specific drug labels. Therefore, we systematically com-
pared LabeledIn with SIDER 2. Between LabeledIn and SIDER 2
(October 2012 version), there was an overlap of 3877 drug labels,
which were reduced to 459 representative drug labels through
our grouping method (Section 2.3). We compared the indications
concepts for all 459 drug labels and observed micro- and macro-
averaged agreements of 0.30 and 0.37, respectively.

The discrepancies in indications were found in 417 drug labels,
out of which we randomly selected 50 drug labels to manually
study the discrepant (unique) CUIs in both resources and identify
the reasons for discrepancies as shown in Fig. 7. Table 3 illustrates
the examples from different categories of discrepancies in SIDER 2.
Table 3
Examples of discrepant concepts in SIDER 2.

Discrepancy category Description Example st

Generic – overlapping Includes cases when SIDER 2 annotated
both the generic as well as specific
indication

‘‘myocardia

Other context Refers to cases when the disease is
mentioned in some other context, e.g.
risk factor, characteristics, indicated
usages of other drugs, etc.

‘‘Amantadi
indicated i
parkinsonis
nervous sy

Less specific Refers to scenarios when SIDER 2
annotated a less specific disease as
compared to the annotation in our
results

‘‘Levetirace
in the treat
adults’’

Non-disease Includes concepts that were not included
in our disease lexicon such as organism
names, medical procedures, etc.

‘‘Aspirin m
including s
(see PRECA

CUI different Includes mentions that had same spans
but were disambiguated differently by
the two resources

‘‘Trazodone
for the trea

Caused/contraindications Includes contra-indications of the drug
and the diseases that are induced or
caused, rather than treated or prevented,
by the drug

‘‘Phenterm
short-term
of weight r
modificatio
manageme
Similarly, the unique CUIs in LabeledIn could be classified as: (i)
More Specific and (ii) CUI Different, the counterparts of the Less Spe-
cific and CUI Different categories in SIDER 2, respectively, (iii) Dis-
contiguous Mentions, detected due to the use of term processing in
MetaMap, e.g. from the phrase ‘‘biliary and renal colic,’’ LabeledIn
included ‘‘biliary + colic’’ (a dis-contiguous mention), and (iv)
Missed by SIDER, possibly due to their choice of lexicon, e.g. ‘‘Zollin-
ger-Ellison syndrome,’’ ‘‘Loeffler’s syndrome,’’ etc. The two former
categories (65%) in LabeledIn could be considered as partial
matches with SIDER 2 since they include cases where SIDER 2
results contain a corresponding related disease.

4. Discussion and conclusions

We have conducted a study of annotating FDA drug labels using
a semi-automatic method. Deleger et al. [40] previously annotated
disease mentions from FDA drug labels. Our study produced a com-
parable inter-annotator agreement (88%) but differs in that we
yielded drug indications as opposed to all the diseases mentioned
in a drug label. Distinguishing indications from other disease men-
tions is a non-trivial problem requiring human judgment as we
observed that approximately 45% of automatically identified
atement SIDER 2 Discrepant Annotations

l infarction’’ ‘‘infarction’’ (in addition to
‘‘myocardial infarction’’)

ne hydrochloride capsules are
n the treatment of symptomatic
m which may follow injury to the

stem by carbon monoxide intoxication’’

‘‘intoxication’’

tam is indicated as adjunctive therapy
ment of partial onset seizures in

‘‘seizures’’(LabeledIn annotated
‘‘partial onset seizures’’

ay be continued, . . .use of NSAIDs
alicylates has not been fully explored
UTIONS , Drug Interactions)’’

‘‘Drug Interactions’’

hydrochloride tablets are indicated
tment of depression’’

‘‘depression’’ (SIDER identified as
C0011581 – depressive disorder,
whereas LabeledIn identified as
C0011570 –mental depression)

ine hydrochloride is indicated as a
(a few weeks) adjunct in a regimen

eduction based on exercise, behavioral
n and caloric restriction in the
nt of exogenous obesity for patients’’

‘‘weight reduction’’
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disease mentions are not indications and include other concepts
such as contraindications, side effects, risk factors, etc. Moreover,
we observed only 30% agreement between our annotation results
and an automatically generated resource, SIDER 2, due to the pres-
ence of many non-indications in SIDER 2. This further demon-
strates the significance of human involvement in the creation of
an accurate drug indication gold standard.

In addition to supporting computer processing, LabeledIn is
linked to the source drug labels such that it captures the rich
context in which a disease is judged as an indication. This enables
systematic comparison with existing sources and enhancing
automatically generated resources (e.g. SIDER 2 in Section 3.3).
Also, because drug indications in LabeledIn are linked to the source
text, they enable the development of supervised machine-learning
methods for automatic drug indication extraction [24] from free
text. Furthermore, an immediate application of the human-
validated treatment relationships in LabeledIn is to improve
accessibility in online health resources (e.g. PubMed Health) by
enriching hyperlinks between drug and disease monographs.

While most existing studies represent a drug by its active ingre-
dient, the theoretical definition of ‘‘therapeutic equivalence’’ sug-
gests that the information about dose form and drug strength is
also critical in ensuring effective and correct treatment [15]. Such
information is also important in controlling documentation mal-
practices, including prescription, medication, drug nomenclature
errors [9,10,14], and medication-problem linking errors [11], in
the EMRs. Hence, this study regards indications as a function of
all the key properties of a drug, and represents a drug as a 3-tuple
<Active Ingredient (IN), Dose Form (DF), Drug Strength (ST)>.
Furthermore, the automatic analysis of our annotation results
helped identify the candidate drugs in DailyMed for which the
indications may in practice be dictated by dose forms and/or
strengths. The validation of such advanced information about the
candidate drugs, however, requires further analysis by domain
experts in medicine and pharmacy.

There are several limitations of the current work. First, LabeledIn
currently contains information about 250 highly accessed drugs and
covers nearly 50% of the human prescription FDA drug labels accord-
ingly. For future work, we would like to expand to more ingredients
and keep LabeledIn current with new releases of DailyMed. As an
estimate, we studied the effective differences between the existing
version of LabeledIn (August 2012) and the current version of Daily-
Med (April 2014) for our 250 drugs. We found that only about 53
new drug labels need to be annotated for a period of 20 months. Sec-
ond, LabeledIn only contains labeled/marketed indications. On the
other hand, an existing resource MEDI [26] provides computable
information regarding off-label indications from Wikipedia and
MedlinePlus, in addition to labeled indications from SIDER 2 and
NDF-RT. Hence, in the future we plan to investigate ways to inte-
grate our results with existing resources such as MEDI. Lastly, cer-
tain annotated drug indications (e.g. ‘‘inflammation’’ in Table 1)
are specific to certain procedures/conditions which are not cur-
rently captured. Given LabeledIn is linked to the source drug labels,
in future work we plan to extract and organize such information in
structured and computable format in order to further enrich our
resource. In summary, we have produced LabeledIn, a resource con-
taining the labeled indication information for 250 frequently
accessed human drugs. We believe our human annotation results
are useful in a wide variety of applications, and are complementary
to existing resources.
Data Availability

The LabeledIn dataset and the annotation guidelines are pub-
licly available at http://ftp.ncbi.nlm.nih.gov/pub/lu/LabeledIn.
Funding

This research was supported by the Intramural Research
Program of the NIH – National Library of Medicine, the National
Key Technology R&D Program of China (Grant No. 2013BAI06B01),
and the Fundamental Research Funds for the Central Universities
(No. 13R0101).
Acknowledgment

The authors would like to thank the three human annotators for
their time and expertise, Chih-Hsuan Wei for his help with testing
the annotation interface and the results, and Robert Leaman for his
feedback on the annotation interface and for proofreading the
manuscript.
References

[1] Islamaj Dogan R, Murray GC, Neveol A, Lu Z. Understanding PubMed user
search behavior through log analysis. Database: J Biol Databases Curation
2009. 2009:bap018. Epub 2010/02/17.

[2] Neveol A, Islamaj Dogan R, Lu Z. Semi-automatic semantic annotation of
PubMed queries: a study on quality, efficiency, satisfaction. J Biomed Infor
2011;44(2):310–8. Epub 2010/11/26.

[3] Ely JW, Osheroff JA, Gorman PN, Ebell MH, Chambliss ML, Pifer EA, et al. A
taxonomy of generic clinical questions: classification study. BMJ
2000;321(7258):429–32. Epub 2000/08/11.

[4] Lu Z, Agarwal P, Butte AJ. Computational Drug Repositioning – Session
Introduction. Pacific Symposium on Biocomputing; 2013. p. 1–4.

[5] Li J, Lu Z. A new method for computational drug repositioning using drug
pairwise similarity. IEEE Int Conf Bioinfor Biomed 2012:1–4.

[6] Li J, Lu Z. Pathway-based drug repositioning using causal inference. BMC
Bioinfor 2013;14((Suppl 16):S3).

[7] Chang RL, Xie L, Bourne PE, Palsson BO. Drug off-target effects predicted using
structural analysis in the context of a metabolic network model. PLoS Comput
Biol 2010;6(9):e1000938. Epub 2010/10/20.

[8] Li J, Khare R, Lu Z. Improving online access to drug-related information. In: IEEE
second international conference on healthcare informatics, imaging and
systems biology, La Jolla, CA; 2012.

[9] Khare R, An Y, Wolf S, Nyirjesy P, Liu L, Chou E. Understanding the EMR error
control practices among gynecologic physicians. In: iConference 2013 fort
worth, Texas; 2013. p. 289–301.

[10] Lesar TS. Prescribing errors involving medication dosage forms. J Gen Int Med
2002;17(8):579–87. Epub 2002/09/06.

[11] McCoy AB, Wright A, Laxmisan A, Ottosen MJ, McCoy JA, Butten D, et al.
Development and evaluation of a crowdsourcing methodology for knowledge
base construction: identifying relationships between clinical problems and
medications. J Am Med Infor Assoc: JAMIA 2012;19(5):713–8. Epub 2012/05/
15.

[12] Unified Medical Language System (UMLS). U.S. National Library of Medicine,
<http://www.nlm.nih.gov/research/umls/>.

[13] RxNorm. U.S. National Library of Medicine, <http://www.nlm.nih.gov/
research/umls/rxnorm/>.

[14] Lesar TS, Briceland L, Stein DS. Factors related to errors in medication
prescribing. JAMA: J Am Med Assoc 1997;277(4):312–7. Epub 1997/01/22.

[15] Administration USFaD. Drug Approvals and Databases > Drugs@FDA Glossary
of Terms. <http://www.fda.gov/drugs/informationondrugs/ucm079436.htm>.

[16] Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, et al. DrugBank 3.0: a
comprehensive resource for ‘omics’ research on drug. Nucl Acids Res
2011;38(Database Issue). D1035-41.

[17] MedicineNet: We Bring Doctor’s Knowledge to You. <http://
www.medicinenet.com/script/main/hp.asp>.

[18] Freebase: A Community-curated database of well-known people, places, and
things. <http://www.freebase.com/>.

[19] 2012AA National drug file – reference terminology source information.
<http://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/NDFRT/>.

[20] Barriere C, Gagnon M. Drugs and disorders: from specialized resources to Web
Data. In: The 10th international semantic web conference; October 23–27;
Bonn, Germany; 2011.

[21] Fung KW, Jao CS, Demner-Fushman D. Extracting drug indication information
from structured product labels using natural language processing. J Am Med
Infor Assoc: JAMIA 2013;20(3):482–8. Epub 2013/03/12.

[22] DailyMed: Current Medication Information. <http://dailymed.nlm.nih.gov>.
[23] SIDER 2 Side Effect Resource. <http://sideeffects.embl.de/>.
[24] Neveol A, Lu Z. Automatic integration of drug indications from multiple health

resources. ACM International Health Informatics Symposium; Arlington,
VA2010. p. 666–73.

[25] Rindflesch TC, Fiszman M. The interaction of domain knowledge and linguistic
structure in natural language processing: interpreting hypernymic

http://ftp.ncbi.nlm.nih.gov/pub/lu/LabeledIn
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0005
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0005
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0005
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0010
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0010
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0010
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0015
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0015
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0015
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0025
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0025
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0030
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0030
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0035
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0035
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0035
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0050
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0050
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0055
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0055
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0055
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0055
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0055
http://www.nlm.nih.gov/research/umls/
http://www.nlm.nih.gov/research/umls/rxnorm/
http://www.nlm.nih.gov/research/umls/rxnorm/
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0070
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0070
http://www.fda.gov/drugs/informationondrugs/ucm079436.htm
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0080
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0080
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0080
http://www.medicinenet.com/script/main/hp.asp
http://www.medicinenet.com/script/main/hp.asp
http://www.freebase.com/
http://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/NDFRT/
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0105
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0105
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0105
http://dailymed.nlm.nih.gov
http://sideeffects.embl.de/
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0125
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0125


456 R. Khare et al. / Journal of Biomedical Informatics 52 (2014) 448–456
propositions in biomedical text. J Biomed Infor 2003;36(6):462–77. Epub
2004/02/05.

[26] Wei WQ, Cronin RM, Xu H, Lasko TA, Bastarache L, Denny JC. Development and
evaluation of an ensemble resource linking medications to their indications. J
Am Med Infor Assoc: JAMIA 2013;20(5):954–61. Epub 2013/04/12.

[27] Aronson AR. Effective mapping of biomedical text to the UMLS Metathesaurus:
the MetaMap program. In: Proceedings/AMIA annual symposium AMIA
symposium; 2001. p. 17–21. Epub 2002/02/05.

[28] Fan JW, Friedman C. Semantic reclassification of the UMLS concepts.
Bioinformatics 2008;24(17):1971–3. Epub 2008/07/16.

[29] Fan JW, Friedman C. Semantic classification of biomedical concepts using
distributional similarity. J Am Med Infor Assoc: JAMIA 2007;14(4):467–77.
Epub 2007/04/27.

[30] Dogan RI, Lu Z. An improved corpus of disease mentions in PubMed citations.
Workshop on Biomedical Natural Language Processing; 2012. p. 91–9.

[31] Leaman R, Khare R, Lu Z. NCBI at 2013 ShARe/CLEF eHealth shared task:
disorder normalization in clinical notes with DNorm. In: Conference and labs
of the evaluation forum 2013 Working Notes; 2013.

[32] Leaman R, Islamaj Dogan R, Lu Z. DNorm: disease name normalization with
pairwise learning to rank. Bioinformatics 2013. Epub 2013/08/24.

[33] Wei CH, Kao HY, Lu Z. PubTator: a web-based text mining tool for assisting
biocuration. Nucl Acids Res 2013;41(Web Server issue). W518-22. Epub 2013/
05/25.
[34] Wei CH, Harris BR, Li D, Berardini TZ, Huala E, Kao HY, et al. Accelerating
literature curation with text-mining tools: a case study of using PubTator to
curate genes in PubMed abstracts. Database: J Biol Databases Curation 2012.
2012:bas041. Epub 2012/11/20.

[35] Khare R, Li J, Lu Z. Toward creating a gold standard of drug indications from
FDA Drug Labels. In: IEEE international conference on health informatics;
September 09–11, 2013; Philadelphia, PA; 2013.

[36] Smadja F, Hatzivassiloglou V, McKeown KR. Translating collocations for
bilingual lexicons: a statistical approach. Comput Linguistics 1996.

[37] Huang M, Neveol A, Lu Z. Recommending MeSH terms for annotating
biomedical articles. J Am Med Infor Assoc: JAMIA 2011;18(5):660–7. Epub
2011/05/27.

[38] Khare R, An Y, Li J, Song I-Y, Hu X. Exploiting semantic structure for mapping
user-specified form terms to SNOMED CT concepts. In: ACM SIGHIT
international health informatics symposium; Miami, FL; 2012. p. 285–94.

[39] An Y, Khare R, Hu X, Song I-Y. Bridging encounter forms and electronic medical
record databases: Annotation, mapping, and integration. In: IEEE international
conference on bioinformatics and biomedicine (BIBM 2012); October 04–07,
2012; Philadelphia, PA; 2012.

[40] Deleger L, Li Q, Lingren T, Kaiser M, Molnar KDU, Stoutenborough L, et al.
Building gold standard corpora for medical natural language processing tasks.
AMIA Annu Symp Proc 2012:144–53.

http://refhub.elsevier.com/S1532-0464(14)00185-3/h0125
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0125
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0130
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0130
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0130
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0140
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0140
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0145
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0145
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0145
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0160
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0160
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0165
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0165
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0165
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0170
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0170
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0170
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0170
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0180
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0180
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0185
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0185
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0185
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0200
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0200
http://refhub.elsevier.com/S1532-0464(14)00185-3/h0200

	LabeledIn: Cataloging labeled indications for human drugs
	1 Introduction
	2 Materials and methods
	2.1 Overall workflow for annotating drug indications
	2.2 DailyMed: The source of FDA drug labels
	2.3 Drug label selection
	2.4 Automatic disease recognition
	2.5 Manual indication annotation
	2.6 Evaluation

	3 Results
	3.1 Description of final annotation results
	3.2 Inter-annotator agreement and comparison of computer pre-annotations vs. human annotation results
	3.3 Comparison results with SIDER 2

	4 Discussion and conclusions
	Data Availability
	Funding
	Acknowledgment
	References


