
Available online at www.sciencedirect.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
ScienceDirect

Nuclear Physics B 896 (2015) 470–492

www.elsevier.com/locate/nuclphysb

A mixed action analysis of η and η′ mesons

Konstantin Ottnad ∗, Carsten Urbach, Falk Zimmermann

Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn,
D-53115 Bonn, Germany

Received 3 February 2015; received in revised form 10 April 2015; accepted 1 May 2015

Available online 5 May 2015

Editor: Stephan Stieberger

Abstract

We study η and η′ mesons and their mixing angle in a mixed action approach with so-called Osterwalder–
Seiler valence quarks on a Wilson twisted mass sea. The gauge configurations have been generated by 
ETMC for Nf = 2 + 1 + 1 dynamical quark flavours and for three values of the lattice spacing. The main 
results are that differences in between the mixed action and the unitary approach vanish towards the con-
tinuum limit with the expected rate of O(a2). The individual size of the lattice artifacts depends, however, 
strongly on the observable used to match unitary and valence actions. Moreover, we show that for the η mass 
valence and valence plus sea quark mass dependence differ significantly. Hence, in this case a re-tuning of 
the simulation parameters in the valence sector only is not sufficient to compensate for mismatches in the 
original quark masses.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Mixed action approaches, where valence and sea fermion actions are chosen differently, are 
used frequently in lattice QCD. They possess a number of important advantages compared to 
the so-called unitary case, where valence and sea quark actions are identical. In particular, it 
might be possible to use a valence action obeying more symmetries than the sea action in cases 
where the valence action cannot be used in the sea for theoretical reasons or because of too high 
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computational costs [1]. Prominent examples are overlap [2–4] or domain wall [5] valence quarks 
on a Wilson-like or staggered sea. Concrete examples can be found for instance in Refs. [6–8].

When working in a mixed action approach, valence and sea actions need to be matched ap-
propriately, for instance by tuning the valence quark masses such that a choice of meson masses 
agrees between unitary and mixed approaches. People even go one step further and try to correct 
for small mismatches in bare parameters used in the sea by using a partially quenched mixed ac-
tion approach. The most extreme example for this approach is to use valence strange and charm 
on gauge configurations with only Nf = 2 light dynamical quark flavours. In this case sea and 
valence actions are not matched, but the valence parameters are tuned such as to reproduce a 
choice of physical observables.

This ansatz has the big advantage that the gauge configurations do not need to be re-generated. 
However, while apparently quite successful, it is questionable whether this procedure works for 
observables with a strong sea quark dependence. Due to OZI suppression there are not many 
examples of such observables. But their very existence makes a clear distinction between QCD 
and the naive quark model.

Of course, a mixed action approach has also disadvantages, most prominently the breaking of 
unitarity, which might for instance drive certain correlators negative [9,10]. Also, it is not clear a 
priori how big lattice artifacts one encounters in mixed formulations.

In this paper we will present results on a particular mixed action approach with so-called
Osterwalder–Seiler [11] valence quarks on an Nf = 2 + 1 + 1 flavour Wilson twisted mass 
sea [12]. This particular action combination has the advantage that exact valence quark flavour 
symmetry is preserved. Moreover, the respective zero modes of sea and valence quarks coincide 
in the chiral limit. However, O(a2) violations of flavour (and parity) stemming from the sea 
quarks are still reflected in the magnitude of lattice artifacts on various physical observables.

As physical example we study the η and η′ system. The large mass splitting observed among 
Mπ0 � Mη � Mη′ is thought to be due to the UA(1) anomaly, a relation established via 
the Witten–Veneziano formula [13–15]. This lets one expect a significant dependence on the 
sea quark degrees of freedom. Speaking more technically, the corresponding correlation func-
tions obtain significant contributions from fermionic disconnected diagrams and are, therefore, 
uniquely sensitive to differences between valence and sea formulations. Note that this was also 
discussed in the context of the validity of the fourth root trick in staggered simulations, see 
Refs. [16,17] and references therein.

After matching valence and sea actions, we compare observables extracted from unitary and 
valence operators. The unitary observables have been computed in Refs. [18,19]. We study the 
continuum limit with different matching conditions and find remarkably good agreement to the 
unitary case. However, when comparing the valence with valence plus sea strange quark mass 
dependence of Mη we find significant differences.

These findings are important for future lattice QCD investigations: there are many phe-
nomenologically interesting quantities involving flavour singlet pseudo-scalar mesons, for in-
stance form factors of B or Ds decays to η�ν. And maybe most prominently, there are anomaly 
related form factors of η → γ γ , which can be used to estimate the light-by-light contribution 
to the hadronic part in the anomalous magnetic moment of the muon, in which we currently ob-
serve a deviation between theory and experiment at the few σ level [20–23]. The usage of Wilson 
twisted mass fermions described in this paper has significant advantages compared to other lat-
tice actions due to a powerful variance reduction. And the possibility to use a mixed action will 
further ease those computations.
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Table 1
The gauge ensembles used in this study. For the labelling of the ensembles we adopted the notation in Ref. [30]. In 
addition to the relevant input parameters we give the lattice volume, the number of evaluated configurations Nconf and 
the block length Nb used for bootstrapping. Nb was chosen such that blocks cover at least 20 HMC trajectories of length 
one.

Ensemble β aμ� aμσ aμδ V Nconf Nb

A40.24 1.90 0.0040 0.150 0.190 243 × 48 1117 5
A60.24 1.90 0.0060 0.150 0.190 243 × 48 1249 5
A80.24 1.90 0.0080 0.150 0.190 243 × 48 2441 10
A100.24 1.90 0.0100 0.150 0.190 243 × 48 968 5

A80.24s 1.90 0.0080 0.150 0.197 243 × 48 2420 10
A100.24s 1.90 0.0100 0.150 0.197 243 × 48 1196 5

B55.32 1.95 0.0055 0.135 0.170 323 × 64 4450 5
D45.32sc 2.10 0.0045 0.0937 0.1077 323 × 64 2220 10

More generally, the findings here show that with a mixed action approach one can deal 
with fermionic disconnected diagrams, provided one applies an appropriate matching procedure. 
These disconnected diagrams become more and more important as they need to be treated ap-
propriately for instance in investigations of hadron–hadron interactions. Since we show here that 
a mixed action approach works in the case of η, η′ mesons, where the fermionic disconnected 
diagrams contribute significantly, we are confident that the same approach can be used for other 
physical observables. First accounts of this work can be found in Ref. [24]. Other studies of η
and η′ mesons from lattice QCD can be found in Refs. [17,25–29].

2. Lattice actions

The results we will present here are obtained by evaluating correlation functions on gauge 
configurations provided by the European Twisted Mass Collaboration (ETMC) [30]. We use the 
ensembles specified in Table 1 adopting the notation from Ref. [30]. More details can be found 
in this reference.

The sea quark formulation is the Wilson twisted mass formulation with Nf = 2 + 1 + 1
dynamical quark flavours. The Dirac operator for the light quark doublet reads [12]

D� = DW + m0 + iμ�γ5τ
3 , (1)

where DW denotes the standard Wilson Dirac operator and μ� the bare light twisted mass pa-
rameter. τ 3 and in general τ i, i = 1, 2, 3 represent the Pauli matrices acting in flavour space. D�

acts on a spinor χ� = (u, d)T and, hence, the u (d) quark has twisted mass +μ� (−μ�).
For the heavy unitary doublet of c and s quarks [31] the Dirac operator is given by

Dh = DW + m0 + iμσ γ5τ
1 + μδτ

3 . (2)

The bare Wilson quark mass m0 has been tuned to its critical value [32,30]. This guarantees 
automatic order O (a) improvement [33], which is one of the main advantages of the Wilson 
twisted mass formulation of lattice QCD.

η and η′ masses have been computed in this framework in Refs. [18,19,34] on the same set 
of gauge configurations used here (and more) – we will refer to this framework as the unitary 
approach. However, in order to account for – and possibly benefit from – correlations we have 



K. Ottnad et al. / Nuclear Physics B 896 (2015) 470–492 473
re-evaluated the unitary η and η′ masses on exactly the same gauge configurations as used in the 
present study.

The splitting term in the heavy doublet (2) introduces flavour mixing between strange and 
charm quarks which needs to be accounted for in the analysis. However, this complication can 
be avoided by using a mixed action approach for the valence strange and charm quarks. Formally, 
we introduce so-called Osterwalder–Seiler (OS) twisted valence strange and charm quarks [11,
35]. The Dirac operator for a single valence quark flavour q reads

Dq = DW + m0 + iμqγ5 . (3)

Adapting the ideas of Ref. [11] to the η, η′ system, we introduce two strange and two charm 
quark flavours, s, s′ and c, c′, respectively. Flavours s and s′ will have quark mass with equal 
modulus, but opposite sign: μs = |μs | = −μs′ , and the same for c and c′. Formally, the lattice 
action is extended to include a fermionic action corresponding to the Dirac operators (3) for all 
valence strange and charm quark flavours, accompanied by a ghost action to exactly cancel the 
contributions of the additional valence quarks to the fermionic determinant. For details we refer 
to Ref. [11]. In this reference it was also shown that automatic O(a)-improvement stays valid in 
this framework and unitarity is restored in the continuum limit. In particular, flavours s and s ′ (c
and c′) become identical.

It is important to notice that at finite lattice spacing values correlation functions involving s
and s′ (μs = −μs′ ) differ by lattice artifacts. For instance, the masses extracted from the corre-
lation function of the operator

OOS
K = ψ̄siγ5ψd (4)

where the fields ψq , ψ̄q denote single quark fields in the so-called physical basis, differ from the 
one extracted from the operator

OOS
K0 = ψ̄s′ iγ5ψd (5)

by O(a2) (we denote it with K0 in remedy of the neutral pion in the light sector). Only in the 
continuum limit these two masses will agree again.

Valence and unitary actions need to be matched appropriately. As shown in Ref. [11], in our 
case the matching can be performed in principle using the relation

μc/s = μσ ± ZP /ZS μδ . (6)

However, for the strange quark mass uncertainties in ZP /ZS are magnified in aμs , and thus we 
decided not to rely on Eq. (6). Instead, meson masses are used: in previous studies it was found 
that matching kaon masses determined from the operator (4) to the unitary kaon masses is best 
in the sense that the residual lattice artifacts in the results computed in a mixed action approach 
are small [36]. We will call this procedure kaon matching.

For details on how to compute the kaon mass in the unitary case we refer to Ref. [37]. We 
note in passing that there is no kaon mass splitting introduced by the twisted mass formalism in 
the unitary case for the choice of a degenerate light quark doublet |μu| = |μd | = μ� [32].

As a second matching observable for the strange quark mass we use the mass of the so-called 
ηs meson Mηs . The ηs is an artificial meson corresponding to the following interpolating operator

OOS
ηs

= ψ̄siγ5ψs′′ , (7)

for which we assume μs = μs′′ , unlike the s′ quark considered above, which had opposite sign. 
A benefit of this particular choice is the absence of disconnected diagrams in the corresponding 
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Table 2
Values of the unitary kaon and ηs masses MK and Mηs in lattice units, which have been used to match mixed and unitary 
actions. In addition, we give the mass values M

π0
conn

of the connected neutral pion which becomes identical to ηs for 
mass degenerate light and strange quarks. This SU(3) symmetric situation is realised approximately for the A80.24s and 
A100.24s ensembles. The kaon mass data shown in this table has first been published in Ref. [18].

Ensemble aMK aMηs aM
π0

conn

A40.24 0.25884(43) 0.30708(60) 0.2375(25)

A60.24 0.26695(52) 0.31010(65) 0.2544(26)

A80.24 0.27706(61) 0.31406(46) 0.2659(25)

A100.24 0.28807(34) 0.31575(45) 0.2883(14)

A80.24s 0.25503(33) 0.27168(49) 0.2649(16)

A100.24s 0.26490(74) 0.27455(73) 0.2841(16)

B55.32 0.22799(34) 0.26087(33) 0.2177(10)

D45.32sc 0.17570(84) 0.21126(34) 0.1494(15)

Table 3
Matching values of the OS valence strange quark masses μs for kaon and Mηs matching. The OS valence charm quark 
masses μK

c have been determined using Eq. (8) for kaon matching only.

Ensemble aμ� aμK
s aμ

ηs
s aμK

c

A40.24 0.0040 0.02300(25) 0.01239(25) 0.27700(25)

A60.24 0.0060 0.02322(22) 0.01303(22) 0.27678(22)

A80.24 0.0080 0.02328(20) 0.01338(20) 0.27672(20)

A100.24 0.0100 0.02381(21) 0.01380(22) 0.27619(21)

A80.24s 0.0080 0.01884(16) 0.00883(21) 0.28116(16)

A100.24s 0.0100 0.01877(22) 0.00922(23) 0.28123(22)

B55.32 0.0055 0.01858(12) 0.01100(10) 0.25142(12)

D45.32sc 0.0045 0.01488(30) 0.01180(12) 0.17252(30)

two-point function. This procedure will be called ηs matching. For technical details, e.g. further 
interpolating fields and correlation functions we refer to Section 3.

For both matching procedures on each gauge ensemble one tunes the value of aμs such that 
the kaon or the ηs mass agrees within errors between the mixed and the unitary formulation. The 
unitary values of the masses we matched to are compiled in Table 2. In order to compute the 
matching values for aμs we performed inversions on a subset of the available configurations in a 
range of aμs values and interpolated the squared OS meson masses linearly in aμs . The matching 
values for aμs for the two matching observables and all ensembles can be found in Table 3. The 
values for MOS

K and MOS
ηs

at the matching points are compiled in the appendix in Table A.12. 
Note that in case of matching Mηs we do not reach exact agreement for all ensembles within 
errors when recomputing MOS

ηs
from full statistics. These numerically small differences become 

irrelevant for the η and η′ masses themselves due to the much larger statistical uncertainties 
introduced by the quark disconnected diagrams.

In the following we indicate quantities determined in the OS framework with the superscript 
OS, while quantities determined in the unitary case have no superscript. To distinguish the two 
matching procedures we use the superscripts K and ηs .

As an example for the matching procedure we show in Fig. 1 (aMOS
K )2, (aMOS

ηs
)2 and 

(aMOS
0 )

2 as a function of the bare OS strange quark mass aμs for the D45.32sc ensemble. In 

K
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Fig. 1. (aMOS
K

)2, (aMOS
ηs

)2 and (aMOS
K0 )2 as a function of the bare OS strange quark mass aμs for the D45.32sc

ensemble. Horizontal lines indicate the unitary mass values that have been used for the matching.

Fig. 1 the aforementioned OS kaon mass splitting can be observed. In the limit μs = μ� this split-
ting corresponds to the difference between the charged pion mass and the connected only neutral 
pion mass. The splitting is almost independent of μs , decreasing slightly with increasing μs .

As expected, Mηs is larger than the two kaon masses and agrees with MOS
K0 in the limit

μs = μ�. All three squared masses show a linear dependence on μs . The horizontal lines in-
dicate the corresponding unitary values that have been used for computing aμK

s and aμ
ηs
s .

For the charm quark mass the estimate from Eq. (6) is less affected by uncertainties. In order 
to circumvent the need for ZP /Zs , one can re-arrange Eq. (6) to

μc = 2μσ − μs . (8)

Because μs � μc and η, η′ do not depend on μc, we restrict ourselves to kaon matching for the 
μs value entering the charm quark mass. The corresponding values for μc ≡ μK

c extracted in this 
way can be found in Table 3.

All errors are computed using a blocked bootstrap procedure to account for autocorrelation 
as well as all other statistical correlations in the data. The number of bootstrap samples was 
taken to be 1000 and the number of configurations per block Nb is given for every ensemble in 
Table 1. Nb itself was chosen such that the length of a block corresponds to at least 20 HMC 
trajectories of length one. This value turned out sufficient to compensate for autocorrelation in 
the observables considered in this study.

3. Pseudo-scalar flavour-singlet mesons

In order to extract η and η′ states we need a set of appropriate interpolating operators. As we 
are going to work in the quark flavour basis our choice is

Op

� (t) = 1√
2

∑
x

(ψ̄uiγ5ψu(x, t) + ψ̄d iγ5ψd(x, t)) ,

Op
s (t) =

∑
x

ψ̄s iγ5 ψs(x, t) ,

Op
c (t) =

∑
ψ̄c iγ5 ψc(x, t)
x
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in the physical basis, again denoted as ψ̄q , ψq . With Osterwalder–Seiler valence fermions we 
have to rotate the bilinears into the so-called twisted basis denoted as q̄, q , see e.g. Ref. [38], 
in which also the Dirac operators in the previous section were written. Performing this axial 
rotation [12,11], one obtains the following operators in the so-called twisted basis

O�(t) = 1√
2

∑
x

(d̄d(x, t) − ūu(x, t)) ,

Os(t) = −
∑

x

s̄s(x, t) ,

Oc(t) = −
∑

x

c̄c(x, t) .

From these operators we build a correlation function matrix

C(t)qq ′ = 〈Oq(t ′ + t) O†
q ′(t ′)〉 , q, q ′ ∈ {�, s, c} , (9)

which allows us to obtain results for masses and amplitudes; cf. Section 3.2.
The corresponding correlation functions have fermionic connected and disconnected contri-

butions. The case for up and down quarks is like in the unitary approach and discussed in detail 
in Refs. [39,18,19]. Therefore, we concentrate on the disconnected contributions for strange and 
charm quarks. The correlation function of Os(t), for instance, has the following contributions

〈Os(t)O†
s (0)〉F = −Tr{G0t

s Gt0
s } + Tr{Gtt

s } · Tr{G00
s } , (10)

where 〈.〉F denotes the average of fermions only and

G
xy
s = (D−1

s )(x, y) (11)

denotes the strange OS propagator. The first term in Eq. (10) is the connected contribution and 
the second the disconnected one. Note that mixed flavour correlation functions have only dis-
connected contributions by definition. The ground state mass extracted only from the connected 
piece on the r.h.s. of Eq. (10) is the mass of the artificial ηs meson, which is employed for ηs

matching.
We evaluate the connected only contribution to Eq. (10) using the one-end-trick [40]. In con-

trast to the Wilson case, Tr{G0t
s Gt0

s } is in general complex valued. However, the imaginary part 
of the corresponding trace is a pure lattice artifact. This can be shown by considering a suitable 
combination of connected correlation functions involving OS quarks s and s′

〈ψ̄siγ5ψs(x)ψ̄siγ5ψs(0) − {s → s′}〉F = 〈s̄s(x)s̄s(0) − s̄′s′(x)s̄′s′(0)〉F
= −Tr{G0x

s Gx0
s } + Tr{G0x

s′ Gx0
s′ }

= −Tr{G0x
s γ5(G

0x
s′ )†γ5} + Tr{G0x

s′ γ5(G
0x
s )†γ5}

= −Tr{G0x
s γ5(G

0x
s′ )†γ5} + Tr{G0x

s γ5(G
0x
s′ )†γ5}†

= −2i ImTr{G0x
s γ5(G

0x
s′ )†γ5}

= −2i ImTr{G0x
s Gx0

s } ,

where we have used the relation Ds = γ5D
†
s′γ5 together with the cyclic property of the trace. 

Since the l.h.s. of the above relation vanishes in the continuum limit, we will drop the imaginary 
part in our calculations.
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For the disconnected contribution to Eq. (10) we need to estimate Tr{Gtt
s } on every gauge 

configuration and all t -values. Tr{Gtt
s } is again in general complex valued. And again, one can 

show that the real part is a pure lattice artifact. Similar to the case of the connected contribution 
this can be inferred from the following equality

〈−ψ̄s iγ5ψs(x) + ψ̄s′ iγ5ψs′(x)〉F = 〈s̄s(x) + s̄′s′(x)〉F
= −Tr{Gxx

s } − Tr{Gxx
s′ }

= −Tr{Gxx
s } − Tr{Gxx

s }†

= −2 Re Tr{Gxx
s } ,

which is zero in the continuum limit. Therefore, we will also drop the real part of the disconnected 
loops in the calculation. Similarly one can show that

〈s̄s(x) − s̄′s′(x)〉F = −2i Im Tr{Gxx
s } . (12)

We remark that all of the above results hold for any further valence quark as well (e.g. the charm 
quark).

The full strange correlation function after subtraction of lattice artifacts is then given as

〈Os(t)O†
s (0)〉F = −ReTr{G0t

s Gt0
s } − Im Tr{Gtt

s } · Im Tr{G00
s } , (13)

and analogously for the charm. Cross flavour terms involve only disconnected diagrams and are 
for instance given as

〈Os(t)O†
c (0)〉F = −Im Tr{Gtt

s } · ImTr{G00
c } . (14)

3.1. Variance reduction

The relation (12) enables us to use a very powerful variance reduction method developed 
originally for the disconnected contributions of the light doublet [39] also for strange and charm 
flavours (see also Ref. [41]). It is based on the identity (recall μs = −μs′ )

D−1
s − D−1

s′ = −2iμsD
−1
s′ γ5 D−1

s .

Therefore, using Eq. (12) we can estimate

Im Tr{Gxx
s } = −μsTr{Gxy

s′ γ5 G
yx
s } , (15)

and correspondingly for the charm quark. Following Ref. [39], we apply this variance reduction 
method also to the light doublet.

3.2. Matrix of correlation functions

By applying these results, we compute the matrix of Euclidean correlation functions in Eq. (9)
and solve the generalised eigenvalue problem (GEVP) [42–44]

C(t) v(n)(t, t0) = λ(n)(t, t0) C(t0) v(n)(t, t0) , (16)

for determining the meson masses Mη, Mη′ (and possibly Mηc ) from the principal correlators 
λ(n)(t, t0), n ∈ η, η′. The effective masses are then computed by numerically solving
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λ(n)(t, t0)

λ(n)(t + 1, t0)
= exp−M

(n)
eff t + exp−M

(n)
eff (T −t)

exp−M
(n)
eff (t+1) + exp−M

(n)
eff (T −(t+1))

for aM
(n)
eff . The matrix C is enlarged to a 6 × 6 matrix by using in addition fuzzed [45,40] opera-

tors.
At this point we recall that in the unitary case also the mass of the ηs is not obtained from 

a single correlation function but rather from the ground state of a correlation function matrix 
involving connected correlation functions for strange and charm quarks. This minor complica-
tion arises due to the violation of flavour symmetry in the Wilson twisted mass formulation and 
the fact that the action can no longer be chosen flavour-diagonal for a non-degenerate doublet. 
Therefore, one has to consider off-diagonal connected correlation functions in addition to the 
ones consisting only of strange and charm quarks. However, the off-diagonal connected contri-
butions are a pure lattice artifact and in the continuum limit the expected behaviour is restored, 
i.e. strange and charm sector decouple regarding the connected pieces.

Apart from meson masses also matrix elements can be extracted from the GEVP, which are 
needed to obtain η and η′ mixing angles. We define the mixing angles φ�, φs in the quark flavour 
basis using the pseudoscalar density matrix elements Aq,n = 〈0|Oq |n〉 with n ∈ {η, η′} and 
q ∈ {l, s} as(

A�,η As,η

A�,η′ As,η′

)
=

(
c� cosφ� −cs sinφs

c� sinφ� cs cosφs

)
, (17)

see also Refs. [18,19]. From chiral perturbation theory combined with large NC arguments |φ� −
φs |/|φ� + φs | � 1 can be inferred according to Refs. [46–49] which is confirmed by lattice 
QCD [19]. Therefore, we will consider only the average mixing angle φ

tan2 φ ≡ −Al,η′As,η

Al,ηAs,η′
. (18)

3.3. Excited state removal

To improve the η′ (and η) mass determinations, we use a method first proposed in Ref. [50], 
successfully applied for the η2 (the η′ in Nf = 2 flavour QCD) in Ref. [39] and very recently to 
the Nf = 2 + 1 + 1 case in Ref. [19]. It relies on the assumption that disconnected contributions 
are significant only for the η and η′ state, but negligible for higher excited states. This means, in 
turn, that only the connected contributions to C are affected by excited states.

Since the signal-to-noise ratio of the connected contributions is much larger than the one of 
the disconnected ones, we can determine the corresponding ground state at large Euclidean times 
and subtract the excited states at small times. This subtracted connected and the full disconnected 
contributions are combined in Csub

q,q ′(t), which is then used in the analysis. We refer to the discus-
sion in Ref. [19] for more details.

This procedure clearly depends on the validity of the assumption. However, it can be checked 
in our Monte-Carlo data: if the subtracted combination of connected and disconnected contri-
butions does not show excited states anymore, we take it as a strong hint for the validity of 
the assumption. This is the case for all our ensembles, and it was also the case in the unitary 
approach [19].

For all ensembles we observe that the mass of the η meson is unaffected by this procedure 
within errors. Only the error estimates get significantly smaller. This is also the case for the η′
where, however, the errors are quite significant before excited state removal.
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Fig. 2. Effective masses MOS
η and MOS

η′ for the A80.24s ensemble using ηs matching for (a) a 6 × 6 correlation matrix 
including local and fuzzed operators and (b) a 3 ×3 local-only correlation matrix with connected excited states subtracted. 
The fitted values are shown as lines with error band. The corresponding fit range is indicated by the length of the lines. 
For further details see text and Table A.13.

As an example we show in Fig. 2 the effective masses of the two lowest-lying states for the 
A80.24s ensemble from ηs matching. The values shown in the left panel are obtained from the 
standard method using a 6 × 6 correlation function matrix build from local and fuzzed operators, 
whereas the right panel shows the results for a 3 × 3 local-only correlation function matrix with 
excited states removed from its connected contributions. Our fitted values are always obtained 
from a cosh-type fit to the respective principal correlators. The corresponding fit ranges are indi-
cated by the bands in the plots. In general, our choice for the fit ranges [t1, t2] and the values of t0
for the GEVP are given in Table A.13. We remark that – since there is usually no clear plateau 
reached for the η′ state from the standard method – we apply a two-state fit to the corresponding 
principal correlator in this case. In all other cases we employed a single state fit in the plateau 
region.

Comparing the two panels in Fig. 2 one observes that the η mass plateau is unaffected, but 
starts at t/a = 2 in the case of removed excited states. For the η′ there is no plateau reached in 
the left panel before the signal is lost in noise, whereas in the right one a reasonable plateau is 
visible. The extracted masses still agree within errors.

4. Results

In order to compare the mixed case with the unitary case we match the two actions as detailed 
in the previous sections using either the kaon or the ηs mass. Next we compute OS meson masses 
at these matching points. As an example we show in Fig. 3 the effective masses for the principal 
correlators λ(n)(t, t0) of η and η′ as a function of t/a after removal of excited states from the 
connected contributions. For η and η′ a plateau in the effective masses is visible from early t/a
on. The corresponding result of an exponential fit is indicated by the horizontal lines. The fit 
range corresponds to the extension of the lines in t/a. All OS meson masses are compiled in the 
appendix in Tables A.7 and A.8.
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Fig. 3. We show the effective masses aMOS
η and MOS

η′ from a 3 × 3 correlation matrix after subtraction of excited states 
as described in the text for ensemble A60.24. Panel (a) is for kaon matching and (b) for ηs matching.

The ηc decouples from η and η′ and the corresponding signal is lost in noise very early in t/a. 
Hence, we will not discuss it further here and due to the decoupling we will also not discuss the 
charm quark mass dependence of operators in the following.

It turns out that the choice of the matching variable makes a significant difference for the 
extracted value of Mη. Moreover, we always find aM

ηs
η < aMK

η . On the other hand, the value 
of Mη′ is unaffected within statistical errors. We find this consistently for all the ensembles 
investigated; cf. Tables A.7 and A.8.

In addition one observes φK < φηs by approximately 15◦; cf. Table A.9. This results from 
a change in the overlap of mass and flavour eigenstates, leading to an increased light quark 
contribution to the η for kaon matching. Consequently, the light quark contribution to the η′
is reduced, while the respective strange quark contributions behave in the opposite way. Since 
most of the noise is introduced by the light quark disconnected diagrams in our calculation, this 
explains why Mηs

η in general exhibits a smaller statistical error than MK
η , whereas the error for 

M
ηs

η′ is larger than the one for MK
η′ .

However, there is a tendency that kaon matching leads to worse plateaus than ηs matching. 
A particularly extreme case of this behaviour is shown in Fig. 4 for the B55.32 ensemble. In the 
left panel the effective masses for the two lowest lying states from kaon matching are plotted. 
Clearly there is no plateau visible for the first excited state. For comparison and to guide the 
eye we show the situation in the unitary setup in the right panel, calculated on the same set of 
configurations. This is the only ensemble for which we cannot identify a plateau for the η′ safely. 
Therefore, we will not quote a value for the η′ mass for B55.32 and kaon matching.

Although the observed behaviour on B55.32 can still be interpreted as a statistical fluctuation, 
it might – in principle – also be caused by unitarity violation. However, it is neither possible to 
verify nor exclude the latter from our present data. While earlier studies [6,51] observed a sign 
flip in the scalar correlator signalling unitarity violation at least for a certain regime of valence 
quark masses, a similar argument cannot easily be extended to our case. The reason is that only 
the strange quark is treated in a mixed action approach while the light quarks are unitary. When 
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Fig. 4. We show the effective masses aMη and Mη′ of the two lowest-lying states on the B55.32 ensemble for (a) kaon 
matching and (b) the unitary case using subtraction of excited states as described in the text.

looking at the scalar correlator made from strange quarks only, we do not observe it to become 
negative on any of our ensembles.

Another observation regarding the two matching methods concerns the behaviour of the 
ground states in the correlation functions used to build the full correlation function matrix. One 
expects all correlators with the same quantum numbers to asymptotically approach the same 
ground state mass. We observe this for the unitary case, where the η mass can be extracted from 
all correlators in the matrix C (diagonal and off-diagonal) at large Euclidean times. In the OS case 
we observe a similar behaviour for ηs matching, but for kaon matching e.g. the strange–strange 
correlator alone does often not reproduce the η mass from the light–light correlator. This might 
signal unitarity violations for the kaon matching procedure on the one hand, and can explain the 
worse plateaus for this particular choice of the matching observable on the other hand.

Finally, for Mηs
η we observe the error to be reduced approximately by a factor of two with 

respect to the unitary result for all ensembles (cf. Table A.7). We attribute this to the fact that 
we can use the variance reduction method discussed in Section 3.1 for the OS strange quark, 
which is not possible for the unitary strange quark. However, the errors of Mηs

η′ and φηs do not 
show such an error reduction (cf. Tables A.8 and A.9), presumably because the strange quark 
contributes little to these observables.

4.1. Light quark mass dependence

The first goal of this paper is to compare unitary to mixed action approaches and study the 
continuum limit of the corresponding differences. For this purpose we will study differences of 
quantities of the form �O = OOS − Ounitary. Our ensembles at different values of the lattice 
spacing are not at exactly identical light and strange sea quark masses. Therefore, we have to 
understand whether we can nevertheless study the continuum limit.

Theoretically, the answer to this question is yes: both in the unitary and in the mixed action 
approach we may write

O lat = Ocont +O(a2�2 )
QCD
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Fig. 5. (a) r0�Mη as a function of (r0MPS)2 for the four A ensembles A40, A60, A80(s) and A100(s). Open symbols 
correspond to the s-ensembles. (b) like (a), but for r0�Mη′ . The kaon matching and s-ensemble data have been displaced 
horizontally for better legibility.

Table 4
The chirally extrapolated values for r0/a at each value of β corresponding to the three 
different lattice spacings [8].

β 1.90 1.95 2.10
r0/a 5.31(8) 5.77(6) 7.60(8)

and henceforth the aforementioned difference �O is O(a2�2
QCD). A quark mass dependence is 

expected to be negligible because for the quark mass difference δμ � �QCD holds. Since �O is 
always computed on identical gauge configurations there is no physical quark mass dependence 
that needs to be taken into account, because it cancels in the difference.

Despite this theoretical argument, let us also investigate this point numerically. We first study 
the light quark mass dependence of the difference between unitary and OS values of Mη and 
Mη′ . For this purpose we focus on the A-ensembles A40, A60, A80 and A100, where we have 
different light quark mass values available. We denote

�MX = MOS
X − M

unitary
X , X = η,η′

the difference between unitary and OS meson masses. Analogously we define the angle dif-
ference �φ. r0�Mη is shown for the A-ensembles in the left panel of Fig. 5 as a function of 
(r0MPS)2. The chirally extrapolated values of r0/a used in this study have been determined in 
[8] and are listed in Table 4. Filled circles represent the ηs matching results, filled boxes the cor-
responding kaon matching results. The differences are computed using exactly the same config-
urations leading to reduced statistical errors due to the correlation between unitary and OS data.

For ηs matching r0�Mη is for all four investigated ensembles compatible with zero within one 
sigma, while for kaon matching the difference is always positive and not compatible with zero. 
For both matching procedures, but in particular for ηs matching, the dependence on (r0MPS)2 is 
not significant within our statistical uncertainties.

In the right panel of Fig. 5 we show r0�Mη′ as a function of (r0MPS)2. Despite the larger 
uncertainties, the differences are compatible with zero for all ensembles and both matching pro-



K. Ottnad et al. / Nuclear Physics B 896 (2015) 470–492 483
cedures. There is a slight trend for differences with larger modulus for kaon matching. Like for 
the η the light quark mass dependence is not significant.

The angle difference �φ shows a very similar behaviour to �Mη, see Tables A.10 and A.11. 
For ηs matching the difference is compatible with zero, while for kaon matching a value of about 
−15◦ is observed. Also here the light quark mass dependence is not significant. Besides, we find 
that the difference between φ� and φs is compatible with zero for both matching methods and 
compatible to the one found in the unitary setup [19], again confirming the smallness of OZI 
suppressed corrections.

In order to check the strange quark mass dependence of the differences �M and �φ we make 
use of the A80, A80s and A100, A100s ensembles. The s-ensembles differ from their non-s 
counterparts only by a different bare strange quark mass value. The corresponding values for the 
differences defined before are also displayed in Fig. 5 with open symbols. For ηs matching the 
differences show no dependence on the strange quark mass, whereas this cannot be concluded 
completely for kaon matching. In particular, we see for A100s deviations for kaon matching, but 
statistical errors can still account for the deviation.

4.2. Continuum limit

Next, we study the dependence on the lattice spacing. For this purpose we use the ensem-
bles A60.24, B55.32 and D45.32sc, which have approximately the same physical value of 
the pion mass, i.e. r0M

A60.24
PS = 0.917(14)stat, r0M

B55.32
PS = 0.888(09)stat and r0M

D45.32sc
PS =

0.911(11)stat, where we included the statistical error from the respective, chirally extrapolated 
values of r0/a. As discussed in the previous section, we do not expect the residual differences in 
the light and strange quark masses to have any effect on this study.

The difference between OS and unitary results �M for both matching procedures is shown 
for η and η′ in Fig. 6 as a function of (a/r0)

2 in the left and right panel, respectively. The lines 
represent linear fits in (a/r0)

2 to our data, and the corresponding continuum extrapolated values 
are shown with open symbols.

r0�Mη is shown in the left panel of Fig. 6. For both matching procedures we observe a 
linear dependence in (a/r0)

2. A corresponding continuum extrapolation in (a/r0)
2 leads to the 

expected vanishing of this difference at a = 0 within errors. Kaon matching clearly exhibits 
larger a2 artifacts, while ηs matching gives r0�Mη compatible with zero for each value of the 
lattice spacing separately.

In the right panel of Fig. 6 we show �Mη′ , again for both matching procedures. We remark 
that for kaon matching it is not possible to perform a fit from our present data, because of the 
missing mass value on the B55.32 ensemble which is due to a bad plateau, as discussed above. 
In this case, statistical errors are significantly larger. However, within their larger errors the dif-
ference for the two matching procedures seems compatible and the difference vanishes in the 
continuum limit for ηs matching, as indicated by the fitted line in the plot. In contrast to the η
mass, it cannot be concluded that lattice artifacts for kaon matching are significantly larger than 
for ηs matching.

In the left panel of Fig. 7 �φ is shown as a function of (a/r0)
2, again for the ensembles 

A60.24, B55.32 and D45.32sc. Like for �Mη we observe also for �φ larger differences for 
kaon matching compared to ηs matching. For ηs matching the difference is in fact compatible 
with zero for all three ensembles separately. For both matching procedures the continuum ex-
trapolated values are compatible with zero.
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Fig. 6. Continuum extrapolation of (a) r0�Mη and (b) r0�Mη′ as a function of (r0/a)2. We show the continuum 
extrapolated results from a linear extrapolation of the three ensembles (D45.32sc, B55.32, A60.24) in (a/r0)2 as open 
symbols. The continuum results are displaced horizontally for legibility.

Fig. 7. (a) like Fig. 6, but for the mixing angle difference �φ. In (b) we show r0�μs at 2 GeV in the MS scheme as a 
function of (a/r0)2 for the two methods M1 and M2 to estimate ZP presented in Ref. [8].

Finally, we show in the right panel of Fig. 7 the quark mass difference

�μs = 1

ZP

(μK
s − μηs

s ) (19)

as a function of (a/r0)
2 for the three ensembles A60.24, B55.32 and D45.32sc at 2 GeV in the 

MS scheme. The renormalisation constant ZP has been taken from Ref. [8]. The two colours 
correspond to the methods M1 and M2 for estimating ZP . We refer to Ref. [8] for the details. 
In the continuum limit it is expected that the two matching conditions agree and the difference 
should vanish like a2. This is what is confirmed by Fig. 7(b). Also, the two methods M1 and M2 
give compatible results in the continuum limit, as expected.
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Fig. 8. (MOS
η )2 as a function of (MOS

K
)2 for ensembles A80.24 and A80.24s.

4.3. Dependence on sea and valence strange quark mass

Next we study the dependence of the η (and in principle also the η′) meson mass on the 
valence and sea quark mass values. As said in the introduction, the dependence on the valence 
and sea quark masses must be identical (at least within errors) to legitimate re-tuning in the 
valence quark masses only against sea strange quark mass mismatches. For this purpose we first 
define the dimensionless quantity

Dval
η = d(MOS

η )2

d(MOS
K )2

∣∣∣∣∣
fixed sea ensemble

, (20)

which can be computed using the two matching points we have available for each ensemble. For 
estimating Dval

η from two μs values at each ensemble, we have to assume that (MOS
η )2 depends 

linearly on (MOS
K )2 to a good approximation. That this is the case can be seen in Fig. 8, where 

we show (MOS
η )2 as a function of (MOS

K )2 for the two ensembles A80.24 and A80.24s. The lines 
represent linear fits to our data, which describe the data well within errors.

We expect Dval
η to be mostly sensitive to the valence strange quark mass if computed for 

several valence μs -values on the same ensemble. The results for Dval
η are compiled in Table 5

for all ensembles and ηs matching. They appear – independently of the lattice spacing, light 
and strange quark mass values – to be all compatible with 1. Taking the weighted average we 
obtain Dval

η = 1.09(5), where the error is purely statistical. Concerning possible systematics we 
stress that there is no trend visible from the data, e.g. regarding a quark mass or lattice spacing 
dependence.

Including the sea strange quark mass dependence, the corresponding derivative is given by

Dη = d(Mη)
2

d(MK)2
.

For the unitary case we find Dη = 1.45(10) and in the OS case DOS
η = 1.46(6), using the 

A100.24, A100.24s and A80.24, A80.24s ensembles and ηs matching, see Table 6. While Dη
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Table 5
The valence derivative Dval

η obtained in the 
OS case by using the mass values from the 
kaon and ηs matching points.

Ensemble Dval
η

A40.24 0.76(22)

A60.24 0.97(17)

A80.24 1.17(17)

A100.24 0.92(18)

A80.24s 1.07(11)

A100.24s 1.32(08)

B55.32 0.93(09)

D45.32sc 0.86(31)

Table 6
We list the values for Dη evaluated both for the unitary and the OS 
case using the two A80 and the two A100 ensembles. This derivative 
includes, in contrast to Dval

η , the valence and sea strange quark mass 
dependence. The values for DOS

η are for ηs matching.

Ensemble Dη DOS
η

A80/A80s 1.54(13) 1.37(07)

A100/A100s 1.34(15) 1.67(11)

and DOS
η are compatible within errors, they differ significantly from Dval

η . For kaon matching the 
relative statistical errors on DOS

η turn out to be at least a factor five larger than for ηs matching. 
Therefore, a meaningful statement regarding the compatibility of DOS

η with Dη and Dval
η for kaon 

matching is not possible from our current data.
We take this as an indication that Mη is indeed a quantity with a significant sea strange quark 

mass dependence. Therefore, correcting for mismatches of the sea strange quark mass value in 
the valence sector only is not enough for Mη.

In principle, the difference between Dη and Dval
η that we found for a single lattice spacing 

could also be a lattice artifact. We do not think this is the case for two reasons: first, in Ref. [18]
the value of Dη was used to correct a mismatch in the strange quark mass tuning for all three 
lattice spacings available. And we did not observe large cut-off effects introduced by this pro-
cedure. Second, also DOS

η is merely independent of the lattice spacing. In fact, as the DX are 
computed from differences and the leading lattice artifacts are independent of the quark mass, it 
is expected that these quantities are not plagued by large cut-off effects.

Unfortunately, the statistical uncertainty on the η′ meson masses is too large to allow for 
a meaningful investigation of Dη′ . Within errors this quantity is always zero, irrespective of 
whether the valence or the full strange quark mass dependence is considered. Moreover, Mη′ has 
a larger light than strange quark contribution. It would, therefore, be interesting to perform the 
same study for the valence light quark mass instead of the valence strange.

Finally, we remark that it is in principle possible to calculate the difference between Dη and 
Dval

η from chiral perturbation theory [52–54]. At leading order the corresponding prediction is 
4/3 for both derivatives, implying that the difference is an NLO effect.
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5. Summary and discussion

In this paper we have studied η and η′ mesons in a mixed action approach and in comparison 
to the unitary results. The mixed action was so-called Osterwalder–Seiler fermions on a twisted 
mass sea with Nf = 2 + 1 + 1 dynamical quark flavours.

We have found that indeed the difference between mixed and unitary results vanishes as the 
continuum limit is approached. The rate is as expected of O(a2) [11] for all quantities and match-
ing procedures investigated in this paper.

For the η mass we find a significant dependence of the size of the cutoff effects on the match-
ing procedure. Lattice artifacts in the difference to the unitary result are compatible with zero 
when the two actions are matched using the ηs meson, while they are of normal size when the 
kaon is used as a matching variable. The same is true for the mixing angle and the strange quark 
mass.

For Mη′ we do not observe a strong dependence on the matching procedure. This can have 
two reasons: first the error of Mη′ is large making precise statements difficult. Second, the η′
receives a strong contribution from sea quarks, because it is mainly the singlet state. The sea 
quark contributions are unaffected by different choices of the valence strange quark mass. Hence, 
this finding might reflect the physical properties of the η′ meson.

This shows that the mixed action approach can also be applied in practice for flavour singlet 
quantities and, more generally, for observables involving fermionic disconnected diagrams. In 
case of ηs matching we find even reduced statistical errors for the η mass which might turn 
out to be an important advantage of the mixed approach. Thus, we will use the mixed action to 
investigate more complicated problems like η → γ γ form factors or Kπ scattering for I = 1/2
in the future.

Another important result of this paper is that for the η meson it is not sufficient to re-tune the 
valence quark masses to correct for small mismatches in the simulation runs. Our data shows that 
the valence strange quark mass dependence of the η differs significantly from the dependence on 
the sea plus valence strange quark mass. And this difference is not vanishing as the continuum 
limit is approached. For the η′ we cannot make such a statement due to too large statistical errors, 
but we expect a similar result once Mη′ can be determined with higher accuracy.

The latter finding seems to contradict previous studies where the valence quark masses have 
been re-tuned to their physical values in the same mixed action approach for instance to deter-
mine non-singlet pseudo-scalar decay constants or quark masses (see for instance Refs. [8,55,
56]). However, these investigations were concerned with observables for which the quark mass 
dependence is expected to be mainly governed by the valence quarks. For the η and η′ mesons 
studied here this is not the case as OZI violating contributions are anomalously large. However, 
with high enough accuracy the effect seen here should also show up in other physical quantities, 
but on the current level of precision it is likely to be a negligible systematic uncertainty.
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Appendix A. Data tables

In this appendix we have compiled all data in tables for convenience.

Table A.7
Results for aMη for the unitary and the mixed action approach. For the latter we show the values corresponding to ηs

and kaon matching.

Ensemble aMη aM
ηs
η aMK

η

A40.24 0.2837(47) 0.2793(35) 0.312(12)

A60.24 0.2870(28) 0.2899(16) 0.3285(74)

A80.24 0.3009(20) 0.2970(09) 0.3410(67)

A100.24 0.3074(23) 0.3067(13) 0.3412(75)

A80.24s 0.2678(13) 0.2690(07) 0.3130(42)

A100.24s 0.2759(17) 0.2741(10) 0.3247(30)

B55.32 0.2467(12) 0.2465(07) 0.2753(34)

D45.32sc 0.1890(34) 0.1929(39) 0.2032(72)

Table A.8
Same as Table A.7, but for aMη′ .

Ensemble aMη′ aM
ηs

η′ aMK
η′

A40.24 0.443(27) 0.457(28) 0.448(15)

A60.24 0.482(27) 0.474(27) 0.458(15)

A80.24 0.481(26) 0.485(29) 0.466(17)

A100.24 0.461(24) 0.441(21) 0.442(13)

A80.24s 0.465(23) 0.461(25) 0.431(13)

A100.24s 0.542(42) 0.523(40) 0.463(20)

B55.32 0.425(12) 0.415(12) bad plateau
D45.32sc 0.278(12) 0.269(12) 0.271(09)

Table A.9
Same as Table A.7, but for the mixing angle φ.

Ensemble φ φηs φK

A40.24 47.1(2.0) 47.3(2.2) 30.6(4.1)

A60.24 49.2(1.4) 49.8(1.6) 34.2(3.7)

A80.24 49.9(1.1) 51.1(1.1) 38.0(3.5)

A100.24 49.6(1.3) 50.3(1.3) 31.9(4.1)

A80.24s 51.3(0.8) 52.6(0.5) 36.2(3.2)

A100.24s 53.8(0.7) 55.1(0.6) 44.2(2.7)

B55.32 48.2(0.8) 49.5(1.3) 34.0(2.9)

D45.32sc 45.6(2.5) 47.3(4.4) 38.2(5.8)
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Table A.10
Values for a�Mη , a�Mη′ and �φ [deg] as defined in the main text for kaon matching procedure.

Ensemble a�Mη a�Mη′ �φ [deg]

A40.24 +0.0281(89) +0.004(14) −16.5(2.6)

A60.24 +0.0415(61) −0.024(15) −15.0(2.7)

A80.24 +0.0401(58) −0.015(11) −11.9(2.6)

A100.24 +0.0338(69) −0.018(13) −17.7(3.3)

A80.24s +0.0452(43) −0.034(12) −15.1(2.8)

A100.24s +0.0489(31) −0.079(24) −9.5(2.7)

B55.32 +0.0286(35) N/A −14.3(2.9)

D45.32sc +0.0142(44) −0.007(06) −7.4(3.7)

Table A.11
Same as Table A.10, but for ηs matching procedure.

Ensemble a�Mη a�Mη′ �φ [deg]

A40.24 −0.0044(32) +0.014(11) +0.2(1.2)

A60.24 +0.0029(24) −0.008(10) +0.5(1.0)

A80.24 −0.0039(18) +0.004(08) −1.2(0.6)

A100.24 −0.0007(22) −0.020(09) +0.7(1.0)

A80.24s +0.0011(15) −0.004(08) +1.3(0.9)

A100.24s −0.0018(20) −0.019(13) +1.3(0.8)

B55.32 −0.0002(14) −0.010(17) +1.3(1.5)

D45.32sc +0.0039(20) −0.010(05) +1.8(2.4)

Table A.12
OS kaon and ηs mass values for both matching procedures.

Ensemble aMK
K

aM
ηs
K

aMK
ηs

aM
ηs
ηs

A40.24 0.2583(16) 0.2031(17) 0.3824(13) 0.3046(18)

A60.24 0.2669(09) 0.2161(09) 0.3838(10) 0.3123(14)

A80.24 0.2770(06) 0.2297(06) 0.3860(08) 0.3126(12)

A100.24 0.2880(08) 0.2422(09) 0.3923(11) 0.3178(16)

A80.24s 0.2551(07) 0.2027(07) 0.3533(09) 0.2720(12)

A100.24s 0.2649(07) 0.2173(07) 0.3538(12) 0.2695(18)

B55.32 0.2280(04) 0.1893(04) 0.3221(04) 0.2640(06)

D45.32sc 0.1758(10) 0.1618(10) 0.2319(04) 0.2096(05)
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Table A.13
List of fit parameters. tηl,s

1 and tηl,s

2 define the fit intervals for the ground state of the connected correlation function in 
the light (strange) sector, which is required for the subtraction of excited states from the full correlator, before solving 
the GEVP for the resulting correlation function matrix. The t0 values for the GEVP used to determine the η, η′ states 
are given by tη,η′

0 whereas tη,η′
1 , tη,η′

2 denote the respective fit ranges to the principal correlators. In the last row we give 
the parameters for the GEVP applied to the full 6 × 6 correlation function matrix of the A80.24 ensemble for the ηs

matching case, as shown in the left panel of Fig. 2.

Ensemble t
η�
1 t

η�
2 t

ηs
1 t

ηs
2 t

η
0 t

η
1 t

η
2 t

η′
0 t

η′
1 t

η′
2

A-ensembles 12 22 12 22 1 3 12 1 2 5
B55.32 15 25 15 25 1 3 16 1 2 5
D45.32sc 18 30 18 30 1 3 16 1 2 5

A80.246×6 2 7 15 1 2 8
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