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Stable dominating circuits in snarks

Martin Kochol
M �U SAV, �Stef�anikova 49, 814 73 Bratislava 1, Slovakia

Abstract

Snarks are cyclically 4-edge-connected cubic graphs with girth at least 5 and with no 3-edge-
coloring. We construct snarks with a (dominating) circuit C so that no other circuit C′ satis)es
V (C)⊆V (C′). These graphs are of interest because two known conjectures about graphs can be
reduced on them. The )rst one is Sabidusi’s Compatibility Conjecture which suggests that given
an eulerian trail T in an eulerian graph G without 2-valent vertices, there exists a decomposition
of G into circuits such that consecutive edges in T belong to di1erent circuits. The second
conjecture is the Fixed-Circuit Cycle Double-Cover Conjecture suggesting that every bridgeless
graph has a cycle double cover which includes a )xed circuit. c© 2001 Elsevier Science B.V.
All rights reserved.

1. Introduction

By a circuit we mean a connected graph where each vertex has valency 2. Let G
be a circuit in a graph G. C is called dominating if each edge of G is incident with
a vertex from C. C is called hamiltonian if V (C) = V (G). By a cycle double cover
(CDC) of a graph G we mean a family L of circuits in G so that each edge of G is
contained in just two circuits from L.
The well-known CDC-conjecture states that any bridgeless graph has a CDC. There

exist several variants and strengthenings of this conjecture. One of them is the Fixed
Circuit Cycle Double Cover Conjecture (see [4,8]):

Conjecture 1. Given any circuit C in a bridgeless graph G, there exists a cycle double
cover of G which includes C.

This generalizes the following conjecture of Fleischner.

Conjecture 2. Given a dominating circuit C in a cubic graph G, there exists a cycle
double cover of G which includes C.
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Fig. 1.

Fleischner in fact proved (see [7], and also [3,5,6]) that this conjecture is equivalent
to Sabidusi’s Compatibility Conjecture [22]:

Conjecture 3. Given an eulerian trail T in an eulerian graph G without 2-valent ver-
tices, there exists a decomposition S of G into circuits so that the consecutive edges
in T belong to di1erent circuits in S.

More detailed discussion about Sabidusi’s conjecture and its relation to the CDC-
conjecture can be found in the survey article of Jaeger [12] and in the book of
Fleischner [6].
By a snark we mean a cyclically 4-edge-connected cubic graph with girth at least 5

and with no 3-edge-coloring. Note that a graph is called cyclically k-edge-connected
if deleting fewer than k edges does not disconnect the graph into components so that
at least two of them have circuits. The girth of a graph is the length of its smallest
circuit.
It is well known that the CDC-conjecture remains to verify for snarks (see, e.g.,

[2,12,13,21,24–26]). We show that also Conjecture 2 remains to verify if G is a snark.
We only sketch the proof because we use the well-known arguments. Suppose a cubic
graph G with a dominating circuit C presents a counterexample to Conjecture 2. Let
G has an edge cut of cardinality 63 so that after deleting it we get two components
H1 and H2 having circuits (if there are more than two components, then G must have
a bridge, what is not possible, or we can take a smaller edge cut and get only two
components). After contracting H1 and H2 into one vertex we get from G new graphs
G1 and G2 and from C new circuits C1 and C2, respectively. Then at least one of
them is (or is homeomorphic with) a smaller counterexample (if not, then neither G
can be). If G has a circuit of length 4, then we get a smaller counterexample after
applying the reductions indicated in Fig. 1 (the edges of the circuit C are depicted by
bold lines in this )gure). If G is 3-edge-colorable, then, by [10, Lemma 1] (see also
[15,23]), it cannot be a counterexample to this conjecture. Therefore, if a cubic graph
G with a dominating circuit C is a smallest counterexample to Conjecture 2, then G
is a snark.
But what can be said about C? We claim that there does not exist another circuit

C′ satisfying V (C)⊆V (C′). In this case we say that C is stable. Really, if C is not
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stable and we have a circuit C′ so that V (C)⊆V (C′), then also C′ is dominating, but
neither C nor C′ are hamiltonian (cubic hamiltonian graphs are 3-edge-colorable, thus,
by [10, Lemma 1], Conjecture 2 is satis)ed for them). Take G′ so that V (G′)=V (G)
and E(G′) = E(G)− [E(C)− E(C′)]. All vertices of G′ have valency 2 or 3 (because
E(C)−E(C′) is a matching) and C′ is dominating in G′. G′ is not a circuit, because C′

is not hamiltonian. Furthermore, G′ and C′ present a counterexample to Conjecture 1. If
not, then G′ has a CDC L′ so that C′ ∈ L′, and taking L=(L′−C′)∪{C; C1; : : : ; Ck},
where C1; : : : ; Ck are the circuits induced by the set of edges [E(C)∪E(C′)]− [E(C)∩
E(C′)], we get a CDC of G which includes C — a contradiction. Thus, the cubic
graph G′′ homeomorphic with G′ contains a dominating circuit C′′ (arising from C′

after suppressing the vertices of valency two) so that G′′ and C′′ present a smaller
counterexample to Conjecture 2 than are G and C.
Thus, by induction, Conjecture 2 remains to verify for the cases when G is a snark

and C is a stable dominating circuit in G.
Clearly, any bridgeless graph can be obtained from a bridgeless cubic graph after

contracting some edges. Using this fact and similar arguments as are presented above,
we can show that Conjecture 1 remains to verify for the cases when G is a snark and
C is a stable circuit in G. Now it is natural to ask the following questions.

Problem 1: Do there exist snarks with stable circuits?

Problem 2: Do there exist snarks with stable dominating circuits?

If the answer to Problem 1 (resp. 2) is negative, then Conjecture 1 (resp. 2) is
valid. In this paper we construct an in)nite family of snarks with stable dominat-
ing circuits, thereby obtaining a positive answer to both problems. By the way, our
methods can be used also for constructions of snarks with a stable circuit that is not
dominating.
Problem 1 was given by Huck [9], who wanted to use the above-mentioned argu-

ments for proving Conjecture 1. But we have a suspicion that also other authors have
been aware of the signi)cance of this problem with respect to Conjecture 1. For in-
stance, in 1990 Seymour asked the following question (see [7]): Does there exist a
cubic 3-connected graph with a stable circuit? This problem was solved by Fleischner
[7] who constructed graphs with stable dominating circuits. Unfortunately, these graphs
are not cyclically 4-edge-connected, and, therefore, they are not snarks. In this paper
we present another construction and obtain snarks with stable (dominating) circuits.

2. Construction

Following the notation from [18], by an abstract network, simply a network, we
mean a couple N= (G;U ) where G is a graph and U ⊆V (G). The vertices from U
and V (G)− U are called outer and inner vertices of N, respectively.
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Fig. 2. N′ = (G′; {p; q}; {r; s}). Fig. 3. N′′ = (G′′; {p; z}; {r; y}).

For technical reasons, we shall deal with networks where the set U is partitioned
into nonempty sets U1; : : : ; Un. In this case we write N= (G;U1; : : : ; Un) and call N
the partitioned network. Sets U1; : : : ; Un are called connectors of N. For example in
Figs. 2 and 3 partitioned networks N′=(G′; {p; q}; {r; s}) and N′′=(G′′; {p; z}; {r; y})
are indicated, respectively.

Remark 1. Adding to G′′ edges (p; z) and (r; y) we get a Petersen graph P. Further-
more, deleting from P the vertices z and y we get the graph G′.

Remark 2. ’= (pq)(tw)(uv) and  = (pq)(rs)(tu)(vw) are automorphisms of G′.

Let N = (G;U ) be a network. Any path v1 : : : vn in G we shall call v1–vn-path.
Furthermore, if v1; vn ∈ U , then it is called open in N. By a k-polygon in N (brieNy
a polygon) we mean k vertex disjoint open paths in N.
Furthermore, if N is partitioned, then an open v1–vn-path in N is called crossing

if the vertices v1 and vn do not belong to the same connector. A polygon in N is
called crossing if it is composed from crossing paths. For instance, paths pvr and qws
form a crossing polygon in N′.

Lemma 1. Let N′ be the partitioned network from Fig. 2 and X = V (G′) − {r}.
Then qutpvws is the only q–s-path containing all vertices from X and pvwquts is the
only p–s-path containing X. Furthermore; these two 1-polygons are the only crossing
polygons in N′ containing all vertices from X.

Proof: Let A be a q–s-path containing X . If it contains r, then A covers all vertices
from G′ and, using Remark 1, this path can be extended into a hamiltonian circuit in
P, which is a contradiction. Thus, A cannot contain r and neither the edges incident
with it, and, therefore, (w; v), (v; p), (q; u), (u; t)∈A. Also (p; t)∈A because p has
valency 2. Since (q; u)∈A, then (q; w) �∈A, and, therefore (w; s)∈A. Thus A=qutpvws.
Furthermore, applying the automorphism ’ we get that pvwquts is the only p–s-path
containing X .



M. Kochol / Discrete Mathematics 233 (2001) 247–256 251

Fig. 4.

Suppose B is a crossing polygon in N′ covering X and not equal to a q–s- or a
p–s-path. Then it must contain also vertex r and, therefore, all vertices form G′. Using
Remark 1 we can extend B into a hamiltonian circuit in P — a contradiction.

Lemma 2. Let N′ be the partitioned network from Fig. 2 and Y = V (G′) − {w}.
Then qurvpts is the only crossing 1-polygon in N′ containing all vertices from Y .

Proof: Let A be a q–s-path containing all vertices from Y . If it contains also vertex
w, then, by Remark 1, it would imply hamiltonicity of P. Then A cannot contain the
edges incident with w and, thus, (s; t); (q; u); (p; v); (v; r) ∈ A. Furthermore (t; u) �∈ A,
otherwise A is not a path, and thus (p; t); (u; r) ∈ A, what implies that A= qurvpts.
If a crossing path B in N′ is no q–s-path and covers X , then it contains the

edges incident either with q or with s, and, thus, also vertex w. Therefore, B con-
tains all vertices from G′, what, by Remark 1, implies hamiltonicity of P — a
contradiction.

Lemma 3. Let N′′ be the partitioned network from Fig. 3 and Z = V (G′′) − {w}.
Then zqurvptsy is the only z–y-path in N′′ containing all vertices from Z.

Proof: Let A be an z–y-path containing Z . It cannot contain (z; y) (otherwise, A= zy)
and, therefore, it contains the edges (z; q) and (s; y). Then, the statement follows from
Lemma 2.

Take the graph G depicted in Fig. 4. It arises from three copies of G′ (G1, G3,
G4) and one copy of G′′ (G2) after joining the vertices of valency 2 as indicated in
the )gure. Let T = X1 ∪ Z2 ∪ X3 ∪ Y4, where X1, X3 (Y4, Z2) are the sets arising from
X (Y ,Z) after adding appropriate indices. More formally, T = V (G)− {r1; w2; r3; w4}.
The edges depicted in Fig. 4 by bold lines induce a dominating circuit C satisfying
V (C) = T . We show that C is stable.
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Fig. 5.

Fig. 6. N(1) = (G(1); {p; q}; {r; s}).

Theorem 1. Graph G is a snark with a stable dominating circuit C so that V (C)=T .

Proof: Graph G contains the graph H indicated in Fig. 5 as an induced subgraph, thus,
by [20, Lemma 2], G is a snark.
Let C be a circuit in G so that T ⊆V (C). If C∩G1 is a 2-polygon, then, by Lemma 1,

it must be composed from a p1–q1- and an r1–s1-paths, and, therefore, C ∩Gi must be
a crossing 2-polygon for any i = 2; 3; 4, which contradicts Lemma 1 in the case i = 3.
Thus C∩G1 is a 1-polygon and analogously can be shown that C∩G3 is a 1-polygon

as well. Then we can check that C ∩ Gi is a crossing 1-polygon for any i = 1; : : : ; 4.
Therefore, by Lemma 2, C ∩G4 is a q4–s4-path, and, by Lemma 1, C ∩G1 and C ∩G3

are q1–s1- and q3–s3-paths, respectively, what together with Lemma 3 gives that C∩G2

is a z2–y2-path. From Lemmas 1–3 it follows that these paths are unique and that C
is the circuit depicted in Fig. 4, concluding the proof.

Fig. 6 depicts a partitioned network N(1). If X (1) = V (G(1)) − {r; r1}, then using
Lemma 1 we can check that there exist a q–s- and a p–s-paths each containing X (1)

and that they are the only crossing polygons in N(1) containing X (1), which is similar
to Lemma 1.
Fig. 7 depicts a partitioned network N(2). If Z (2) = V (G(2)) − {w1; w2; w3}, then

using Lemmas 2 and 3 we can check that there exists just one z–y-path containing all
vertices from Z (2). This is similar to Lemma 3.
Thus we can replace G1 by a copy of G(1) and G2 by a copy of G(2) in the

graph G. Furthermore, we can recursively repeat this operations. All graphs obtained
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Fig. 7. N(2) = (G(2); {p; z}; {r; y}).

Fig. 8. N(3) = (G(3); {x1; x2; x3; x4}).

in this process are snarks and have a stable dominating circuit. This can be checked
analogously as in Theorem 1 using the above-mentioned properties of N(1) and N(2).
Therefore, we can conclude.

Theorem 2. For every nonnegative integers k; m there exists a snark of order 34 +
8k + 18m having a stable dominating circuit of length 30 + 7k + 16m.

It is only an easy exercise to prove that Theorem 2 implies the following.

Theorem 3. For every even integer n¿82; there exists a snark of order n having a
stable dominating circuit.

Remark 3. We can also construct snarks with a stable circuit that is not dominating.
For instance, let N(3) be the network from Fig. 8 and C(3) be the circuit in it indicated
by bold lines. Denote T (3) = V (C(3)). Then using the ideas from Theorem 1 we can
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Fig. 9.

show the following:

• there does not exist a polygon in N(3) containing all vertices from T (3);
• C(3) is the only circuit in G(3) containing all vertices from T (3).

Now add new vertices o1 and o2 to G(3) together with edges (o1; o2), (x1; o1), (x2; o1),
(x3; o2), (x4; o2), getting a new graph G(4). G(4) is a snark. This follows either from
the methods presented in [14,19], or from the fact that G(4) arises as dot product (see
[1,2,11,24,26]) of two copies of Petersen graph and a cubic graph with a 1-edge-cut
(that is not 3-edge-colorable — see, e.g., [1,2,24,26]). Thus G(4) is a snark containing
a circuit C(3), which is stable but not dominating. Using dot products of G(4) and other
snarks we get an in)nite class of snarks with this property.

Remark 4. Suppose a family C = {C1; : : : ; Ck} of circuits in a graph satis)es the
following condition: if C′ ⊆C and there exists a family of circuits C′′ covering all
vertices from

⋃
C∈C′ V (C) so that |C′′|6|C′|, then C′′ = C′. In this case we say that

C is stable. Take a graph G(4)
k arising from k¿1 copies of G(3) as indicated in Fig. 9

(G(4)
1 is identical with G(4)). Similar to G(4), G(4)

k is also a snark. Take a family C
(4)
k

of k circuits in G(4)
k arising as copies of C(3). From Remark 3 it follows that C(4)

k is
stable. Therefore, we can conclude: for every positive integer k, there exists a snark
of order 52k + 2 with a stable family of k circuits. This, in certain sense, generalizes
Theorem 1.

Graph G from Fig. 4 has in fact two stable dominating circuits. The second one can
be obtained from C after applying the permutations ’,  and ’ to G1, G4 and G3,
respectively. Similarly, the graphs from Theorem 2 have at least two (some of them
more) stable dominating circuits. Analogously the network from Fig. 8 has at least
four stable circuits whose vertices cannot be covered by a polygon.
Let us note that using more general results from [14,19] we can check that the snarks

from Theorem 2 can have arbitrary large oddness (see [14,19] for more details and
de)nitions). This fact is also of some interest, because snarks with oddness 2 have a
CDC (see [10,15]).
All snarks presented here are cyclically 4-edge-connected. But there are known con-

structions of cyclically 5- and 6-edge-connected snarks (see, e. g., [11,14,16,17,19,26]).
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Thus it is natural to set the following problem: Construct cyclically 5- or 6-edge con-
nected snarks with a stable (dominating) circuit.
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