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In this paper, a generalized Taylor’s formula of the kind

f �x� =
n∑
j=0

aj�x− a��j+1�α−1 + Tn�x�;

where aj ∈ �, x > a, 0 ≤ α ≤ 1, is established. Such expression is precisely the clas-
sical Taylor’s formula in the particular case α = 1. In addition, detailed expressions
for Tn�x� and aj , involving the Riemann–Liouville fractional derivative, and some
applications are also given. © 1999 Academic Press

Key Words: Generalized Taylor’s formula, Riemann–Liouville operator, fractional
calculus, fractional differential equations.

*Paper partially supported by DGICYT and by DGUI of G.A.CC.

255

0022-247X/99 $30.00
Copyright © 1999 by Academic Press

All rights of reproduction in any form reserved.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82817779?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


256 trujillo, rivero, and bonilla

1. INTRODUCTION

The ordinary Taylor’s formula has been generalized by many authors.
Riemann [6], had already written a formal version of the generalized
Taylor’s series:

f �x+ h� =
∞∑

m=−∞

hm+r

0�m+ r + 1��D
m+r
a f ��x�; �1:1�

where for α ≤ 0;Dα
af �x� = I−αa f �x� is the Riemann–Liouville fractional

integral of order −α. This fractional integral operator is defined for β ∈ �+,
a ∈ � and x > a as follows:

Iβa f �x� =
1

0�β�
∫ x
a
�x− t�β−1f �t�dt; �1:2�

and for n ∈ N and �n − 1� < α ≤ n is Dα
af �x� = DnIn−αa f �x�, where D

denotes the classical derivative. Moreover, I0
af �x� = f �x�.

The proof of the validity of such an expansion for certain classes of
functions was undertaken by Hardy [4], both for finite and infinite a.

Afterwards, Watanabe [8] obtained the following relation:

f �x� =
n−1∑
k=−m

�x− x0�α+k
0�α+ k+ 1��D

α+k
a f ��x0� + Rn;m �1:3�

with m < α, x > x0 ≥ a, and:

Rn;m = �Iα+nx0
Dα+n
a f ��x� + 1

0�α−m�
∫ x0

a
�x− t�−α−m−1�Dα−m−1

a f ��t�dt:

On the other hand, a variant of the generalized Taylor’s series was given
by Dzherbashyan and Nersesyan [3]. For f having all of the required con-
tinuous derivatives, they obtained:

f �x� =
m−1∑
k=0

�D�αk�f ��0�
0�1+ αk�

xαk + 1
0�1+ αm�

∫ x
0
�x− t�αm−1�D�αm�f ��t�dt:

�1:4�
where x > 0, α0, α1; : : : ; αm is an increasing sequence of real numbers such
that 0 < αk − αk−1 ≤ 1, k = 1; : : : ;m and D�αk�f = I1−�αk−αk−1�

0 D
1+αk−1
0 f .

In this paper, under certain conditions for f and α ∈ �0; 1�, the following
generalized Taylor’s formula:

f �x� =
n∑
j=0

cj

0��j + 1�α��x− a�
�j+1�α−1 + Rn�x; a� �1:5�
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is obtained, with

Rn�x; a� =
D
�n+1�α
a f �ξ�

0��n+ 1�α+ 1��x− a�
�n+1�α; a ≤ ξ ≤ x

cj = 0�α���x− a�1−αDjα
a f �x���a+�; ∀j = 0; : : : ; n

and the sequential fractional derivative is denoted by

Dnα
a = Dα

a

n
^· · · · · · Dα

a; �1:6�
where n ∈ �, according to the definition introduced by Miller and Ross [5].
Also a generalized mean value theorem and some applications of above
generalized Taylor’s formula are given.

2. DEFINITIONS AND PROPERTIES

Let � be an real interval and α ∈ �0; 1�.
Definition 2.1. Let f a Lebesgue measurable function in �, α ∈ �0; 1�

and x0 ∈ �. f is called α-continuous in x0 if there exists λ ∈ �0; 1− α� for
which g�x� = �x− x0�λf �x� is a continuous function in x0. Moreover, f is
called 1-continuous in x0 if it is continuous in x0.

As usualy it is said that “f is a α-continuous function on � if f is
α-continuous for every x in �,” and it is denoted:

Cα��� =
{
f ∈ F��� x f is α-continuous in �

}
;

and so C1��� = C���.
Definition 2.2. Let a ∈ �. The function f is called a-singular of order

α if

lim
x→a

f �x�
�x− a�α−1 = k <∞ and k 6= 0:

Let α ∈ �+, a ∈ �, E an interval, E ⊂ �, such that a ≤ x, ∀x ∈ E. Then
we write

aIα�E� =
{
f ∈ F��� x Iαa f �x� exists and it is finite ∀x ∈ E}

aDα�E� =
{
f ∈ F��� xDαaf �x� exists and it is finite ∀x ∈ E};

where F��� stands for the set of real functions of a single real variable with
domain in �.

Some properties of the Riemann–Liouville derivative and integral opera-
tors will be extensively used. They are collected in the next two propositions.
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Proposition 2.1. Let α ∈ �0; 1�; �a; b� ⊂ �. Then

(i) If f ∈ C��a; b�� and f ∈ aIα��a; b��, then

Dα
aI
α
a f �x� = f �x�; ∀x ∈ �a; b�: �2:1�

(ii) If f , Dαaf ∈ C��a; b�� and Dαaf ∈ aIα��a; b��, then

IαaD
α
af �x� = f �x� + k

�x− a�α−1

0�α� ; ∀x ∈ �a; b�; �2:2�

where

k = −0�α���x− a�1−αf �x���a+� = −�I1−α
a f �x���a+�: �2:3�

Proof. (i) It follows from its corresponding ordinary case �α = 1�.
(ii) First, it is assumed that IαaD

α
af �x� = f �x� + 9�x�, where 9�x�

is a suitable function. From this Dαa9�x� = 0 and then 9�x� = k��x −
a�α−1/0�α��. Therefore

k = −0�α� limx−→a+��x− a�1−α�f �x� − IαaDα
af �x���

= −0�α���x− a�1−αf �x���a+�:
Proposition 2.2. Let α ∈ �0; 1�, m ∈ � and f a function. If one of the

following conditions is satisfied,

(i) f ∈ L�a; b� and �m+ 1�α ≥ 1.
(ii) f ∈ Cγ��a; b�� with 0 ≤ 1− �m+ 1�α ≤ γ ≤ 1.

(iii) f ∈ Cγ��a; b�� with 0 ≤ 1− �m+ 1�α ≤ γ ≤ 1 and it is a-singular
of order α,

then the relation:

I
�m+1�α
a f �x� = Iαa Imαa f �x� = Imαa Iαa f �x�; ∀x ∈ �a; b� �2:4�

holds true.

Proof. See Bonilla–Trujillo–Rivero [2] and Samko–Kilbas–Marichev [7].

3. A GENERALIZED MEAN VALUE THEOREM

Theorem 3.1. Let α ∈ �0; 1� and f ∈ C��a; b�� such that
Dαaf ∈ C��a; b��. Then

f �x� = ��x− a�1−αf �x���a+��x− a�α−1 +Dα
af �ξ�

�x− a�α
0�α+ 1� ; ∀x ∈ �a; b�

�3:1�
with a ≤ ξ ≤ x:
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Proof. Since

IαaD
α
af �x� =

1
0�α�

∫ x
a
�x− t�α−1Dα

af �t�dt;

by using the integral mean value theorem, we have

IαaD
α
af �x� = Dαaf �ξ�

�x− a�α
0�α+ 1� ;

where a ≤ ξ ≤ x. Now (3.1) is obtained from (2.2).

Remark 3.1.

(i) If b = a+ h and f ∈ C��a; a+ h�� such that
Dα
af ∈ C��a; a+ h��, then

f �a+ h� = �h1−αf �x���a+�hα−1 +Dα
af �ξ�

hα

0�α+ 1� ;

with a ≤ ξ ≤ a+ h.

(ii) If f ∈ L�a; b� and Dα
af ∈ C��a; b�� then (3.1) holds almost ev-

erywhere in �a; b�.
(iii) Another variant of the above theorem can be given as follows:

f �x� = �I1−α
a f �x���a+��x− a�α−1 +Dα

af �ξ�
�x− a�α
0�α+ 1� ; ∀x ∈ �a; b�;

with a ≤ ξ ≤ x, under the same conditions for f as those in Theorem 3.1.

Corollary 3.1. Let α ∈ �0; 1� and g ∈ C��a; b�� such that

Dαa��x− a�α−1g�x�� ∈ C��a; b��:
Then

g�x� = g�a+� + �D
α
a��x− a�α−1g�x����ξ�

0�α+ 1� �x− a�; ∀x ∈ �a; b� �3:2�

for some ξ, a ≤ ξ ≤ x.

Proof. The function f �x� = �x − a�α−1g�x� satisfies the conditions of
the above theorem. So

f �x� = g�a+��x− a�α−1 + �D
α
a��x− a�α−1g�x����ξ�

0�α+ 1� �x− a�α

and (3.2) is obtained.
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Corollary 3.2. Let α ∈ �0; 1�. Let g be a continuous function on
�a; b�, differentiable in the ordinary sense when x > a and such that
Dαa��x− a�α−1g�x�� ∈ C��a; b��. Then

Dα
a��x− a�α−1g�x���a+� = 0�α+ 1�Dg�a+�: �3:3�

Proof. Applying the above theorem to the function
f �x� = �x− a�α−1g�x�, we obtain

Dα
af �ξ� =

0�α+ 1�
�x− a�α �f �x� − ��x− a�

1−αf �x���a+��x− a�α−1�

= 0�α+ 1�
�x− a� �g�x� − g�a

+��:

Now, (3.3) is obtained by taking limits when x→ a+.

Corollary 3.3. Let α ∈ �0; 1�. Let g be a continuous function on �a; b�
such that g�a+� = g�b� and

Dα
a��x− a�α−1g�x�� ∈ C��a; b��:

Then there exists ξ, a ≤ ξ ≤ b, such that �Dαa�x− a�α−1g�x���ξ� = 0:

Proof. It follows from Corollary 3.1.

4. A GENERALIZATION OF TAYLOR’S FORMULA

Proposition 4.1. Set α ∈ �0; 1� and m ∈ � − �0�. Let f be a function
such that

(i) Dmα
a f and D�m+1�α

a f are continuous in �a; b�,
(ii) D

�m+1�α
a f ∈a Iα��a; b��,

(iii) If α < 1/2 and �m + 1�α < 1, then D�m+1�α
a f is γ-continuous in

a, with 1− �m+ 1�α ≤ γ ≤ 1, or D�m+1�α
a f is a-singular of order α.

Then

Imαa Dmα
a f �x� − I�m+1�α

a D
�m+1�α
a f �x� = cm

�x− a��m+1�α−1

0��m+ 1�α� ; ∀x ∈ �a; b�:
�4:1�;

where cm = 0�α���x− a�1−αDmα
a f �x���a+� = I1−α

a Dmα
a f �a+�:

If m = 0, and f is a continuous function such that Dα
af ∈ C��a; b�� and

Dα
af ∈ aIα��a; b�� then, (4.1) also holds.
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Proof. For m = 0 see Samko–Kilbas–Marichev [7]. For m > 0, we find
from (2.4) that

Imαa Dmα
a f − I�m+1�α

a D
�m+1�α
a f = Imαa Dmα

a f − Imαa �IαaDα
a�Dmα

a f:

Now (4.1) follows from (1.6), (2.1) and (2.2).

Theorem 4.1. Set α ∈ �0; 1�, n ∈ �. Let f be a continuous function in
�a; b� satisfying the following conditions:

(i) ∀j = 1; : : : ; n, Djα
a f ∈ C��a; b�� and Djαa f ∈ aIα��a; b��.

(ii) D
�n+1�α
a f is continuous on �a; b�.

(iii) If α < 1/2 then, for each j ∈ N , 1 ≤ j ≤ n, such that �j+ 1�α < 1,
D
�j+1�α
a f �x� is γ-continuous in x = a for some γ, 1 − �j + 1�α ≤ γ ≤ 1, or

a-singular of order α.

Then, ∀x ∈ �a; b�,

f �x� =
n∑
j=0

cj�x− a��j+1�α−1

0��j + 1�α� + Rn�x; a�; �4:2�

with

Rn�x; a� =
D
�n+1�α
a f �ξ�

0��n+ 1�α+ 1��x− a�
�n+1�α; a ≤ ξ ≤ x �4:3�

and for each j ∈ N , 0 ≤ j ≤ n,

cj = 0�α���x− a�1−αDjα
a f �x���a+� = I1−α

a Djα
a f �a+�: �4:4�

Proof. By using (4.1), for j = 0; : : : ; n, it follows that

f �x� =
n∑
j=0

cj�x− a��j+1�α−1

0��j + 1�α� + I�n+1�α
a D

�n+1�α
a f �x�:

Applying the integral mean value theorem, we have

I
�n+1�α
a D

�n+1�α
a f �x� = 1

0�α�n+ 1��
∫ x
a
�x− t��n+1�α−1D

�n+1�α
a f �t�dt

= D�n+1�α
a f �ξ�

∫ x
a
�x− t��n+1�α−1dt

= D�n+1�α
a f �ξ� �x− a�

�n+1�α

0��n+ 1�α+ 1�
with a ≤ ξ ≤ x, and so (4.2) is obtained.
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Corollary 4.1. Set α ∈ �0; 1� and n ∈ �. Let g be a continuous function
on �a; b� such that the function

f �x� = �x− a�α−1g�x�
satisfies the conditions of the above theorem. Then, ∀x ∈ �a; b�,

g�x� =
n∑
j=0

cj�x− a�jα
0��j + 1�α� + R

′
n�x; a� �4:5�

with

R′n�x; a� =
�D�n+1�α

a �x− a�α−1g�x���ξ�
0��n+ 1�α+ 1� �x− a�nα+1; a ≤ ξ ≤ x

and where

cj = 0�α���x− a�1−αDjα
a �x− a�α−1g�x���a+�

= �I1−α
a Djα

a �x− a�α−1g�x���a+�
for each j ∈ N , 1 ≤ j ≤ n.

Proof. It follows from the above theorem.

Remark 4.1. In a natural way, all functions f �x� satisfying the condi-
tions of Theorem 4.1 could be expanded in a generalized Taylor’s series as
follows:

f �x� = �x− a�α−1
∞∑
j=0

cj�x− a�jα
0��j + 1�α� ; �4:6�

with cj given above, holds for all x ∈ �a; b�, where the series converges and

lim
n→∞Rn�x; a� = 0:

The functions which can be expanded as in (4.6) will be called α-analytic
in x = a.

5. APPLICATIONS

1. Let us consider the fractional differential equation:

Dα
0y�x� = λy�x�; �5:1�

where 0 < α ≤ 1, λ a real number and x > 0.
It is assumed that y(x) is 0-singular of order α, and continuous ∀x > 0.
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Since Djα0 y�x� = λjy�x�, ∀j ∈ �, and ∀x > 0,

lim
j→∞

x�j+1�α

0��j + 1�α+ 1� = 0:

We obtain

y�x� =
∞∑
j=0

cj
x�j+1�α−1

0��j + 1�α� ;

where c0 = 0�α��x1−αy�x���0+�, cj = λjc0.
Then

y�x� = c0x
α−1

∞∑
j=0

λjxjα

0��j + 1�α�
which converges ∀x > 0.

If it is assumed that

lim
x→0+
�x1−αy�x�� = 1

0�α� ;

it may define the α-exponential function:

eλxα = xα−1
∞∑
j=0

λj
xjα

0��j + 1�α� = x
α−1Eα;α�λxα� �5:2�

where Eα;β�z� is the Mittag–Leffler function.
The general solution of (5.1) is then, y�x� = keλxα .

2. Let us consider now the fractional differential equation

D2α
0 y�x� = −y�x� �5:3�

with 0 < α ≤ 1, x > 0 and D2
0α = Dα0Dα

0 [see (1.6)].
Assuming that y�x� is 0-singular of order α and continuous ∀x > 0, then
∀n ∈ �,

D4nα
0 y�x� = y�x�; D�4n+1�α

0 y�x� = Dα0y�x�; D�4n+2�α
0 y�x� = −y�x�;

D
�4n+3�α
0 y�x� = −Dα

0y�x�
and using the generalized Taylor’s formula, we obtain

y�x� = c0x
α−1

∞∑
n=0

�−1�n x2nα

0��2n+ 1�α� + c1x
α−1

∞∑
n=0

�−1�n x�2n+1�α

0��2n+ 2�α� :
�5:4�

(A) If it is assumed that

�x1−αy�x���0+� = 0 and �x1−αDα
0y�x���0+� =

1
0�α� ;
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it may define,

sinα�x� = xα−1
∞∑
n=0

�−1�n x�2n+1�α

0��2n+ 2�α� = x
2α−1E2α;2α�−x2α� �5:5�

which converges ∀x > 0.
(B) If it is assumed that

�x1−αy�x���0+� = 1
0�α� and �x1−αDα

0y�x���0+� = 0

it may similarly define:

cosα�x� = xα−1
∞∑
n=0

�−1�n x2nα

0��2n+ 1�α� = x
α−1E2α;α�−x2α� �5:6�

which converges ∀x > 0.
The general solution of (5.2) is y�x� = c0sinα�x� + c1cosα�x�.
The above functions satisfy the following relations:

sinα�x� =
eixα − e−ixα

2i
; cosα�x� =

eixα + e−ixα
2

and

eixα = cosα�x� + isinα�x�; sin2
α�x� + cos2

α�x� = eixα e−ixα
just as in the ordinary case, where i is the complex imaginary unit (i2 = −1),
using the notation of Euler, and eλxα is the natural extension of (5.2) to
complex values of λ.
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