Journal of Algebra 212, 65-78 (1999)
Article ID jabr.1998.7618, available online at http: //www.idealibrary.com on IIIE}I®

Quasi-Isometrically Embedded Subgroups of
Thompson’s Group F

José Burillo*

Denartment of Mathematics Tufts Lniversitv._Medford Massachusetts 02155

metadata, citation and similar papers at core.ac.uk

Received March 13, 1998

The goal of this paper is to study subgroups of Thompson’s group F which are
isomorphic to F X Z" and F X F. A result estimating the norm of an element of
Thompson'’s group is found, and this estimate is used to prove that these particular
subgroups are quasi-isometrically embedded.  © 1999 Academic Press

The interesting properties of Thompson’s group F have made it a
favorite object of study among group theorists and topologists. It was first
used by McKenzie and Thompson to construct finitely presented groups
with unsolvable word problems [7]. It is of interest also in homotopy theory
in work related to homotopy idempotents, due to its universal conjugacy
idempotent map ¢, also used to see that F is an infinitely iterated HNN
extension. In [2] Brown and Geoghegan found F to be the first torsion-free
infinite-dimensional FP, group. Also, F contains an abelian free group of
infinite rank, but it does not admit a free nonabelian subgroup [1]. These
properties suggest that, even though F is finitely presented, it has certain
features which are usually found in infinitely generated groups. The fact
that it admits quasi-isometrically embedded subgroups isomorphic to F X
Z"™ and F X F is another example of these tendencies.

Many questions about F are still open, in particular it is not known
whether F is automatic, or what is its Dehn function—although some
estimates have been found by Guba, who proves it is polynomial in [5]. The
amenability of F is also unknown, a fact that is of considerable interest

*The author thanks Z. Nitecki and J. Taback for useful comments in the development of
this work, and the referee for bringing the paper [6] to his attention.
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since F is expected to be a counterexample to the von Neumann conjec-
ture (a group is amenable if and only if it does not contain a free
nonabelian subgroup) for finitely presented groups.

Questions about the geometric properties of F have also been proposed.
Bridson raised the question of whether F and F X Z could be quasi-iso-
metric. In this paper we provide a partial answer to this question, proving
that F admits a quasi-isometrically embedded subgroup isomorphic to
F X Z. As a corollary, F is the first example of a finitely presented group
whose asymptotic cone is infinite-dimensional (see [4]).

There are in the literature several interpretations of F that are useful to
study it. Cannon et al. provide two of these interpretations in [3], one as a
group of homeomorphisms of the interval [0, 1], and another in terms of
tree diagrams. In [2] Brown and Geoghegan prove that F is isomorphic to
a certain group of piecewise linear homeomorphisms of R, a fact that will
be used extensively in this paper. This construction allows us to translate
group-theoretical questions to the setting of these homeomorphisms of R.
Another interesting geometric interpretation for F has been described
recently by Guba and Sapir in [6]. Some of the results below—mainly
Proposition 4—admit alternate geometric proofs using the diagrams con-
structed in [6].

The organization of this paper is as follows: after a summary of results
about F in Section 1, including a description of the geometric realizations
for F, an estimate of the norm of an element of F is found in Section 2.
The last sections are dedicated to stating and proving the results about the
different subgroups of F.

1. GENERALITIES ON THOMPSON’S GROUP F

Thompson’s group F is the group defined by the infinite presentation
P ={x,k=0 Ixi_lxjxi =X, 0T <j).

Even though this is an infinite presentation, it follows from the relations
that the generators x,, for k£ > 1, are a consequence of x, and x,. In fact,
F admits a finite presentation given by

- -1 -1 -1 -2, .2
7—<x0,x1 | [xox1 , Xo xlxo],[xoxl ' Xo xlxo]>

(see [2]). Throughout this paper, every time we refer to the word metric, or
the norm, or the distance in F, it will make reference to the finite
presentation . of F.

It is a consequence of the presentation & that the map ¢: F —> F
defined by ¢(x,) = x,,, is a conjugacy idempotent, i.e., satisfies ¢?(x) =
xo 'p(x)x,, for all x € F. Also, ¢ is injective, mapping F to the copy of
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itself generated by x,, for k > 1. Moreover, this map is shown in [2] to be
universal among conjugacy idempotents.

It is also seen in [2, 3] that the elements of F admit a unique normal
form in the generators of £. From the relations in & it is easy to see that
any element of F admits an expression of the form

xnxTe eoe xTnx7Sm oo x7S2x751
177 J2 J1

lll m

such that

@ rye Sy S, >0,
2 i <i,< - <i,

Q) j<j, < <j,,and
@ i, #j,

This expression is not unique if we do not require an extra condition: if for
some i both x; and x;* appear, then either x,,, or x;,}; must appear as
well. For otherwise there would be a subproduct of the form x;¢$?(x)x;*
that could be replaced by ¢(x). From this construction it is clear that,
given a word in the generators x, of £, using the relations and the extra
condition, we can obtain the unique normal form, and the length of the
word does not increase in this process. In other words, the unique normal
form is the shortest of all the words that represent a given element in the
generators of . This fact will be used later in this paper.

Geometric realizations of F as a group of homeomorphisms of the real
line, or of a closed interval, can be used to deduce algebraic properties
of F. Two realizations will be used in this paper to understand the
different subgroups of F.

Brown and Geoghegan show in [2] that G admits an isomorphism with
the group of certain piecewise linear homeomorphisms of R. Let

fir R=>R
be the map defined by

t ift <k,
filt)y=(2t—k ifk<t<k+1,
t+1 ift >k + 1.

The group G generated by the maps f,, for all integers k > 0, and with
right action, is isomorphic to Thompson’s group, with x, identified with f,.
The right action means that the composition of two maps is written the
opposite way: the element x,x; of F is associated with the element f; f; of
G, which represents the map f; < f; on R. From now on we will identify the
groups F and G. This construction will be extremely useful in Section 2.

Using this construction it is easy to see more properties of F: the
subgroup of F generated by the elements x,,x,., ,, for k > 0, is a free
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abelian subgroup of infinite rank. To see that two of these elements
commute, observe that the map f,,f>.., is the identity except in the
interval [2k,2k + 2]. Also, due to this fact, it is clear that x,x;* com-
mutes with x, for k > 2, so the subgroup generated by x,x; %, x,, and x,
is isomorphic to F X Z. In Section 3 it will be proved that this subgroup is
nondistorted in F.

Another interesting subgroup of G can be constructed by considering
those maps f € G which satisfy f(1) = 1. This subgroup is isomorphic to
G X G. The second component is the subgroup ¢(G) of elements of G
which are the identity in the interval [0, 1], which is clearly isomorphic to
G, generated by f, and f,. To see that the first component, which is the
subgroup of maps f € G which are the identity everywhere except in the
interval [0, 1], we will use another geometric realization of F as a group of
homeomorphisms of [0, 1]. A complete description of this realization can
be found in [3].

Let H be the group of orientation-preserving homeomorphisms g of
[0, 1] which satisfy the following properties:

(1) g is piecewise linear,

(2) the derivative of g, at any point where it is defined, is a power of
2, and

(3) the points where g is not differentiable are dyadic integers.

It is proved in [3] that this group is isomorphic to F. The authors of [3]
write the compositions acting on the left and use 4 and B for the
generators of F, so since we take compositions on the right, we will take as
generators of H the elements

1
1 t ift OE}
2t ift e O,Z} 1 :1 5
go(t)z t+z ifr e Z’E} gl(t)= 1 _ :5 3
‘ 1 -1 t+§ ift € g,z
7 tg Mis 5’1} ¢ 1 (3
—+ = ifre|-,1],
2 2 | 4

which correspond to the elements 4~! and B~ in [3].

If we consider the subgroup of H of those maps g such that g(3) = 1, it
is clear that this subgroup is isomorphic to H X H, where the two
components of H X H are the maps which are the identity in the intervals
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[%,1] and [0, 1], respectively. Generators for the second component are g,
and g, = g,'g, 4., and for the first component the generators are g2g; 'g;*
and g,g%g,g1 g, . So from this realization of F it is clear that F has a
subgroup isomorphic to F X F.

We can also identify H with the subgroup of G (see the first realization)
of elements which are the identity everywhere except in [0, 1]: an element
of H can be thought as the restriction to [0, 1] of one of this maps in G.
This way we see that this subgroup is also isomorphic to F. The elements
FEfiM ot and fof2f, i fy* correspond to g, and g, under this identifi-
cation, hence they generate this subgroup of G.

2. THE ESTIMATE OF THE NORM

The geometric interpretation given by the maps f, provides a method to
compute the word metric of F (with respect to the finite presentation .%).
For instance, to compute the norm of an element x of F, we can study the
corresponding map f in G: we know that f can be obtained as a
composition of the maps f, and f; and their inverses, and we only need to
estimate how many occurrences of f, and f, and their inverses we need to
obtain f. This can be studied from properties of the graph of f.

Given a point (a, b) of the graph of f, with b = f(a), since [ is piecewise
linear, we denote by f’ (a) and f’ (a) the right and left derivatives of f at
a. If fi.(a) # f' (a), we say that the point (a, b) is a breaking point of the
graph of f.

To completely understand the maps in G we need to study how
multiplying by a generator affects a map. Let f € G be one of these
piecewise linear homeomorphisms. Then, the map ff; = f; o f has a graph
that can be easily related to the graph of f. Since the map f; has slope 2
only on those points with y-coordinate in the interval [i, i + 2], the graph
of ff; is obtained by stretching the portion of the graph that has y-coordi-
nate in [i,i + 1] to the interval [i,i + 2], and all the graph is moved one
unit up in all the points with y > i + 1. A point (a, b) on the graph of f
with b € (i,i + 1) appears now as the point (a,i + 2(b — i)), and the
derivatives satisfy

(ff) (@) =2fi(a) and  (ff))-(a) =2f (a).

Similarly, the map ff; ! shrinks the interval [i,i + 2] down to [i,i + 1], and
the derivatives get divided by 2. We will use these facts in the proof of the
norm estimate below.
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The following lemma is an example of how these maps can be used to
obtain group-theoretical properties:

LEMMA 1. Let f € G, and let (a, b) be a point of the graph of f. Assume
that one of the two derivatives f' (a) and ' (a) is different from 1. Then the
norm of f can be bounded by

|flg = max{1l,a — 2,b — 2}.

In particular this applies to any breaking point of the graph of f.

Proof. Since |flg = |f tlg, we only need to prove that |flg > b — 2.
Clearly we can assume b > 3.

Observe that in f, and f; the highest point with a derivative different
from 1 is the point (2,3) in f,, and further compositions with either f, or
f1 can only increase the y-coordinate by 1, and double the slope only at a
point with y-coordinate in [0, 3]. So to achieve a derivative different from 1
in (a, b) one can start with f; and compose it with b — 3 generators more,
at least. So one needs to compose at least b — 2 generators to obtain a
graph that has a derivative different from 1 in (a, b). 1

The next result is the estimate of the norm of an element of G in terms
of the unique normal form.

PrRorPoOSITION 2. Let f € G be an element with normal form
— I e er _Sm e =S
f_ ill fiu Jm 1 .
Let D(f) =r, + - +r, + s, + -+ +s,, +i, +J,. Then

%]C)—ZslfIGSBD(f).

Proof.  Since |flg = |f*lg, we can assume that i, > j,..

One of the inequalities is easy: rewrite the normal form in terms of f,
and f, using f, = f,'"!f,f¢~! to obtain a word representing f with only
fo, f1 and their inverses. It is easy to see that the length of this word is less
than 3D(f).

It is also not difficult to see that [flc >r, + -+ +r, + 5, + == +s,: if
Iflg <r, + -+ +r, +s, + - +s,, there exists a word on f, and f; (and
their inverses) that has length less than the unique normal form, contra-
dicting the fact that the normal form is the shortest word for f. One could
take this word and construct from it a normal form that would be shorter
than the unique one.
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The last step in the proof is to prove that

ln
|f|GZE—2.

Assume that r, + -+ +r, +5, + -+ +5,, <i,/2. If not, the inequality
follows from the previous paragraph. Consider the graph of the element

= e fln
3% Iy !

the positive part of the normal form. Each one of these generators
performs a stretching of the graph (see above), the last one being a
stretching of the interval [i,, i, + 1] into [i,, i, + 2]. So in the graph of g
there is a point P with coordinates (x,i, + 1) such that the two deriva-
tives at this point are equal to 2V where N > r,. We want to follow the
movement down of P after composing with all the inverses that appear in
the normal form. The desired conclusion is that at the end, in the graph of
f, the point that corresponds to P is a breaking point, or else the function
f still has derivatives 2" at this point.

Observe the effect that composing with f‘l hason P.If j, =i, — 1,in
gf’1 the point corresponding to P is now a breaklng point: its derivatives
are 2V and 2V~ 1. Further compositions with any f;* will keep this point a
breaking point, since i, >j,, > -+ >j;. If j,, <i, — 1, then in gf; ! the
point P has just seen |ts y-coordinate decreased by one and the derlvatlves
are still both 27,

In the graph of gf; *~, the situation of the point P depends on the value
of s,

1 Ifs, <i,—j,—1 P isnot a breaking point and the deriva-
tives are both 2%

(@ 1Ifs, =i, —j, — 1 the last composition by f, ! has made P a
breaking point.

3 Ifs,>i,—j,— 1 P is now a breaking point whose y-coordi-
nate is not an integer, and in any case it will remain a breaking point
throughout, so it will be a breaking point of f.

The key to this argument is to observe that since i, >j, > - >j,, a
composition by an f;'! cannot decrease the right derivative at P without
decreasing the left derivative. One of these compositions either divides the
left derivative by 2 without touching the right derivative, or it divides both
derivatives by 2. It divides both derivatives by 2 only after P has been
already made a breaking point. So the conclusion is that in f, either the
derivatives at this point are still 2V (if the s,,..., s, are small enough) or
else it is a breaking point. In any case one of the two derivatives at this
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point is not 1. We need now to compute the y-coordinate of this point to
apply Lemma 1.

In g the y-coordinate of P was i, + 1. Every application of an f;! may
decrease the y-coordinate at most by 1. So the y-coordinate is at least

i,+1—5 — - —s

m!
but from our assumption, r; + -+ +r, + s, + -+ +s,, < i,/2, we conclude
that the y-coordinate of this point is at least i,/2. From Lemma 1 it

follows now that |f|s > i,/2 — 2.
Combining all inequalities (including i, > j,,) we have

in ]m
[flg = max{r, + = +r, +s, + 45, = =2, — — 2

m? 2 2
Pyt A, s e s, 0 /24 /2 — 4
>
= 3
D
b,
6

and the proof is complete. |

This estimate of the norm can be used, for instance, to recover the
known fact that states that the growth of F is exponential (see [3]). One
only needs to count how many normal forms have D < n /3 to make sure
that the corresponding elements have norm less than n, and it is easy to
find that this number of normal forms is exponential in n.

3. QUASI-ISOMETRICALLY EMBEDDED SUBGROUPS

Recall that a map
F: X->Y

between metric spaces is called a quasi-isometric embedding if there exist
constants K, C > 0 such that

d(x,x")
K

for all x,x’ € X. If G is a finitely generated group, and H is a finitely
generated subgroup, then the fact that the inclusion is a quasi-isometric
embedding is equivalent to saying that the distortion function

- C<d(F(x),F(x')) <Kd(x,x')+C,

1
h(r) = — max{lxlylx € H,|xlg < r}
P
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is bounded. If a subgroup is quasi-isometrically embedded, then its own
word metric is equivalent to the metric induced by the word metric of the
ambient group, and the distortion is bounded.

Our goal is to prove that several subgroups of F are quasi-isometrically
embedded, namely, those subgroups constructed in Section 1 which are
isomorphic to F X Z" and F X F. The generators are:

(D) XoX1 7ty Koy p X501, Xpyy Xpy ey TOF F X 27,
Q) ty=xqx7 gt b, = xoxix; ey xg Y xy, x, for F X F.

PropPosSITION 3. The subgroup ¢"(F) of F is quasi-isometrically em-
bedded.

Proof. We have that ¢"(F) is isomorphic to F, and the normal form of
an element in ¢"(F) is exactly the same when the element is considered in
F, so we can use the norm estimate to establish the inequalities. [

Observe that for a particular ¢"(F) the constants for the quasi-isomet-
ric embedding will depend on n.

PropPOSITION 4. Every cyclic subgroup of F is quasi-isometrically embed-
ded.

Proof. Let x be the generator of the cyclic subgroup, and let

Tiyl2 voe vy TSm voe TS24 751
xllxlz XinX x]z xh !

™ Im

be its normal form. Conjugating the generator does not change the
property of being quasi-isometrically embedded, so we can assume that
i, #j,, and taking the inverse if necessary we can further assume that
i, <j,. Itis easy to see now that the normal form for x* starts with a term
xi"lrl, and then D(x*) is greater than kr,. |

An alternate proof of this result can be formulated as a corollary to
Lemma 15.29 of [6].

PROPOSITION 5. The subgroup Z X F generated by
-1
XgX1 ™, Xy, X
is quasi-isometrically embedded.

Proof. Let

= v'1y"2 it yaxyTSm e TS24 751
X xl1x12 xluxlm xlz xh

be an element of ¢%(F), i.e., with all indices being at least 2. Let
% = (xox;)*x be an element of Z X F. Its distance in Z X F can be
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estimated as k + D(x). We will compute the estimate D(x) of its distance
in F and see that it does not differ much from k + D(x).
To do that, we need to compute the normal form in F of x. But

¥ = ky=1 .. y—1,-1 T1yl2 vee ¥ nyT8m eee ¥y TS24 751
X = (xgxy xy g ) (xixz e xprxg X0 )

s; v—1 ... —-1_-1
Fr X X1 " Xg

= XOX g X X X
which is the normal form for x. Then,
D(x)=r + - +r, +s + - +s, +2k+i, +k+j, +k
and clearly,
k+ D(x) <D(x) <4(k + D(x))

which finishes the proof. |
COROLLARY 6. The subgroup F X 7" generated by

-1 -1 -1
Xopr Xop+10 XXy s X X3 ™ ooy Xop X0y

is quasi-isometrically embedded.

COROLLARY 7. (1) The free abelian group generated by
XoX1 T Xp Xzt Xpp p g0y

is quasi-isometrically embedded.
(2) The asymptotic cone of F is infinite-dimensional.

4. THE SUBGROUP F X F

The first component F of this subgroup is generated by the elements
to =x2x;txgt, oty =xoxx; txytxgt,

while the second component is just ¢(F). We need to compute the normal
form in F of a general element of F X F. The following lemma computes
this normal form for a particular type of elements of (z,,,). Let

o (k=1), k-1 _ 2.1 -1 .. -1
Iy =1 Ll " =XoXy ot Xp_ g XXX Xo

be the generators for the infinite presentation for F = (¢, t;).
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LEMMA 8. The element

't oeee tta
til l‘,»n

has a normal form in F of the type

-1

ri+1 T I3 ... rpy—1,-1 .,
POUWIX WX D Wy g XX T Dy X

i

XoXq o X; g X
where

(D fork=1,...,n—1, the word w is either 1 or x, x; ., - X
with [, > i, + 1, and

2 i, +r,<a<i,+r +r,+ - +r,

JeSY

Proof of Lemma 8. The proof is by induction on n. If n =1 the
element 1t has normal form

Xo ©t X; 1x-’1+1x_1

-1
i— iy i +rg Xo -

In this case there are no words w, and a = i; + r,.
Suppose now that the statement is true for n and consider an element of
the form

tﬁ ti’nt'

i PR
with i > i, and r > 1. To construct its normal form we multiply

ri+1

T2 ... iy~ 1ly=1 .. 4—1
(xoxl Xi o1 Xil TWiXZ e Wy g XX X, Tyt X )

-1 -1
X(xoxl XXX X ):
and the cancellations determine the new normal form:

(1) If a <i, then the new normal form is

ri+1
iy

e r e rn e r 71 e 71
XoXy =00 Xy g Xl WX Wy g XXttt XXXttt X

n

We have w, =x,,, - x; witha >i, +r, >i,, andthe new a is i + r.
(2) If a =i, then the new normal form is

ri+1
i1

e r cee
XoXy ©t Xy g X[TIWX2 W

ryvrv+—1 .. -1
n—1Xi"XiXity "7 Xo

sow, =1and the new a is i +r.
(3) If a > i, then we construct the new normal form by

ri+1

... o=l o0 g7l =1 (00 41
XogXg *o0 Xy 1 X TW X2 Wy—1Xi" X, Xif1Xi Xy = X

ri+1 ICE Fiyly—1 .. 1 -1 ... ,-1
LWL Wy XXX X Xy T X

= XXy U X Xy,
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so w,=1 and we have i+r<a+r<i,+r + - +r,+r<i+
ry + -=- +r, + r. The induction is complete. |

PROPOSITION 9.  The subgroup isomorphic to F X F generated by
_ 42,-1 -1 _ 2,-1..-1..-1
ty = X{x1 Xq L, = XogX1Xy X1 X5, Xy, X,

is quasi-isometrically embedded.
Proof. Let

t = tif11 tir:t/;sm t/ZSI’
x ZXSi e xgix[;ng ve xl;fl
be arbitrary elements of each component of F X F. The element (¢, x)
F X F has norm (in F X F) approximately equal to D(¢) + D(x), where

D(t) =r + - +r, s+ +s, +i, +j,,
D(x) =8+ +8, +te& +  +g +a,+ B,

We need to compute the normal form of the element ¢ in F. Since the
elements ¢, and x; commute, we will compute the normal form of

e G | o [ C R P [UAEREE AR ¢

By Lemma 8, we have

PRRPTRY (NE RS
(e afr) (s e 2

— ri+1
= (xoxl xil,lx 1

2 . S T [
i WX T Wy XX T X 2yt X )(x L X ")

a a

ri+1

= T2 as T 5 cee x8
_(xoxl Xi—1Xi TWiX;? Wn—lxin)(xai-%—a-%—l xa£+a+l)

x(x*:'- xal),

a

and similarly,

(g - ) (g -+ xg0)

_ P Smy=1y=1 ot =LYy 1 enn 8,
—(xoxl Xj o1 Xjl TULXGE Uy XX Xy Tyt X )(xﬁf xﬁ;)

_ S Y e x®
= (oxy e Xy e v, ) (X X )

X (x50 o xg ).
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Taking the inverse if necessary, we can assume that a < b, and then,
combining the two normal forms, we have

= e r +1 r e rn
IX = XgXy tor Xy g Xl TW X2 Wy X
xai+a+1 xa]p,+cl+1
Xat1 7 Xp

—¢€ cen —-é&
Xg A1 " Xp fht1

-5 -1

“Sm .. s;+1
jm " Um=1

-1 -1,.-1

xSyl
X TU1L X X —g T X T X

which, after reordering, yields the normal form for #x:

ri+1

= coe r e rﬂ
IX = XgXg = Xy g XTI W XGE e W, X

xa+1 '”xb
3 —
Xoitb+1 Xa)+b+1
—é& oK) —é&
Xg, A1 " Xp fhe1

—Smyy—1 oy TSyl s+l
X U, le

, . -1
Jm  Tm=1 J2

ceo x 1yt
Xj gt Xy Xgo.

We can now compute the norm in F of tx:
D(tx) =iy +r+1+1(wy)) +r, + - +l(w,_,)
+r,+(b—a)+8 + - +5,
titsy 1+ 1(vy) +sp+ - Hl(v,_q) +5, T e+ e,
+ta,+b+1+p, +b+1

Using the inequalities 0 < I(w,) <i,,, — i, and j,, <b < D(t), provided
by Lemma 8, we can deduce that

D(t) + D(x) <D(tx) <4D(t) + D(x) + 4

from which the desired result follows. |
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