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The goal of this paper is to study subgroups of Thompson’s group F which are
isomorphic to F = Zn and F = F. A result estimating the norm of an element of
Thompson’s group is found, and this estimate is used to prove that these particular
subgroups are quasi-isometrically embedded. Q 1999 Academic Press

The interesting properties of Thompson’s group F have made it a
favorite object of study among group theorists and topologists. It was first
used by McKenzie and Thompson to construct finitely presented groups

w xwith unsolvable word problems 7 . It is of interest also in homotopy theory
in work related to homotopy idempotents, due to its universal conjugacy
idempotent map f, also used to see that F is an infinitely iterated HNN

w xextension. In 2 Brown and Geoghegan found F to be the first torsion-free
infinite-dimensional FP group. Also, F contains an abelian free group of`

w xinfinite rank, but it does not admit a free nonabelian subgroup 1 . These
properties suggest that, even though F is finitely presented, it has certain
features which are usually found in infinitely generated groups. The fact
that it admits quasi-isometrically embedded subgroups isomorphic to F =
Zn and F = F is another example of these tendencies.

Many questions about F are still open, in particular it is not known
whether F is automatic, or what is its Dehn function}although some

w xestimates have been found by Guba, who proves it is polynomial in 5 . The
amenability of F is also unknown, a fact that is of considerable interest

U The author thanks Z. Nitecki and J. Taback for useful comments in the development of
w xthis work, and the referee for bringing the paper 6 to his attention.
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since F is expected to be a counterexample to the von Neumann conjec-
Žture a group is amenable if and only if it does not contain a free

.nonabelian subgroup for finitely presented groups.
Questions about the geometric properties of F have also been proposed.

Bridson raised the question of whether F and F = Z could be quasi-iso-
metric. In this paper we provide a partial answer to this question, proving
that F admits a quasi-isometrically embedded subgroup isomorphic to
F = Z. As a corollary, F is the first example of a finitely presented group

Ž w x.whose asymptotic cone is infinite-dimensional see 4 .
There are in the literature several interpretations of F that are useful to

w xstudy it. Cannon et al. provide two of these interpretations in 3 , one as a
w xgroup of homeomorphisms of the interval 0, 1 , and another in terms of

w xtree diagrams. In 2 Brown and Geoghegan prove that F is isomorphic to
a certain group of piecewise linear homeomorphisms of R, a fact that will
be used extensively in this paper. This construction allows us to translate
group-theoretical questions to the setting of these homeomorphisms of R.
Another interesting geometric interpretation for F has been described

w xrecently by Guba and Sapir in 6 . Some of the results below}mainly
Proposition 4}admit alternate geometric proofs using the diagrams con-

w xstructed in 6 .
The organization of this paper is as follows: after a summary of results

about F in Section 1, including a description of the geometric realizations
for F, an estimate of the norm of an element of F is found in Section 2.
The last sections are dedicated to stating and proving the results about the
different subgroups of F.

1. GENERALITIES ON THOMPSON’S GROUP F

Thompson’s group F is the group defined by the infinite presentation

² y1 :PP s x , k G 0 N x x x s x , if i - j .k i j i jq1

Even though this is an infinite presentation, it follows from the relations
that the generators x , for k ) 1, are a consequence of x and x . In fact,k 0 1
F admits a finite presentation given by

y1 y1 y1 y2 2FF s x , x N x x , x x x , x x , x x x² :0 1 0 1 0 1 0 0 1 0 1 0

Ž w x.see 2 . Throughout this paper, every time we refer to the word metric, or
the norm, or the distance in F, it will make reference to the finite
presentation FF of F.

It is a consequence of the presentation PP that the map f : F ª F
Ž . 2Ž .defined by f x s x is a conjugacy idempotent, i.e., satisfies f x si iq1

y1 Ž .x f x x , for all x g F. Also, f is injective, mapping F to the copy of0 0



SUBGROUPS OF THOMPSON’S GROUP F 67

w xitself generated by x , for k G 1. Moreover, this map is shown in 2 to bek
universal among conjugacy idempotents.

w xIt is also seen in 2, 3 that the elements of F admit a unique normal
form in the generators of PP. From the relations in PP it is easy to see that
any element of F admits an expression of the form

x r1 x r2 ??? x rn xys m ??? xys 2 xys1
i i i j j j1 2 n m 2 1

such that

Ž .1 r , . . . , r , s , . . . , s ) 0,1 n 1 m

Ž .2 i - i - ??? - i ,1 2 n

Ž .3 j - j - ??? - j , and1 2 m

Ž .4 i / j .n m

This expression is not unique if we do not require an extra condition: if for
some i both x and xy1 appear, then either x or xy1 must appear asi i iq1 iq1

2Ž . y1well. For otherwise there would be a subproduct of the form x f x xi i
Ž .that could be replaced by f x . From this construction it is clear that,

given a word in the generators x of PP, using the relations and the extrak
condition, we can obtain the unique normal form, and the length of the
word does not increase in this process. In other words, the unique normal
form is the shortest of all the words that represent a given element in the
generators of PP. This fact will be used later in this paper.

Geometric realizations of F as a group of homeomorphisms of the real
line, or of a closed interval, can be used to deduce algebraic properties
of F. Two realizations will be used in this paper to understand the
different subgroups of F.

w xBrown and Geoghegan show in 2 that G admits an isomorphism with
the group of certain piecewise linear homeomorphisms of R. Let

f : R ª Rk

be the map defined by

t if t F k ,
f t sŽ . 2 t y k if k F t F k q 1,k ½

t q 1 if t G k q 1.

The group G generated by the maps f , for all integers k G 0, and withk
right action, is isomorphic to Thompson’s group, with x identified with f .k k
The right action means that the composition of two maps is written the
opposite way: the element x x of F is associated with the element f f ofi j i j
G, which represents the map f ( f on R. From now on we will identify thej i
groups F and G. This construction will be extremely useful in Section 2.

Using this construction it is easy to see more properties of F: the
subgroup of F generated by the elements x xy1 , for k G 0, is a free2 k 2 kq1
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abelian subgroup of infinite rank. To see that two of these elements
commute, observe that the map f fy1 is the identity except in the2 k 2 kq1

w x y1interval 2k, 2k q 2 . Also, due to this fact, it is clear that x x com-0 1
mutes with x for k G 2, so the subgroup generated by x xy1, x , and xk 0 1 2 3
is isomorphic to F = Z. In Section 3 it will be proved that this subgroup is
nondistorted in F.

Another interesting subgroup of G can be constructed by considering
Ž .those maps f g G which satisfy f 1 s 1. This subgroup is isomorphic to

Ž .G = G. The second component is the subgroup f G of elements of G
w xwhich are the identity in the interval 0, 1 , which is clearly isomorphic to

G, generated by f and f . To see that the first component, which is the1 2
subgroup of maps f g G which are the identity everywhere except in the

w xinterval 0, 1 , we will use another geometric realization of F as a group of
w xhomeomorphisms of 0, 1 . A complete description of this realization can

w xbe found in 3 .
Let H be the group of orientation-preserving homeomorphisms g of

w x0, 1 which satisfy the following properties:

Ž .1 g is piecewise linear,
Ž .2 the derivative of g, at any point where it is defined, is a power of

2, and
Ž .3 the points where g is not differentiable are dyadic integers.

w x w xIt is proved in 3 that this group is isomorphic to F. The authors of 3
write the compositions acting on the left and use A and B for the
generators of F, so since we take compositions on the right, we will take as
generators of H the elements

1¡
t if t g 0,

1¡ 2
2 t if t g 0,

1 1 54
2 t y if t g ,

1 1 1 2 2 8~~t q if t g ,g t s g t sŽ . Ž .0 1 1 5 34 4 2
t q if t g ,

t 1 1 8 8 4
q if t g , 1¢ t 1 32 2 2

q if t g , 1 ,¢2 2 4

y1 y1 w xwhich correspond to the elements A and B in 3 .
1 1Ž .If we consider the subgroup of H of those maps g such that g s , it2 2

is clear that this subgroup is isomorphic to H = H, where the two
components of H = H are the maps which are the identity in the intervals
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1 1w x w x, 1 and 0, , respectively. Generators for the second component are g12 2

and g s gy1 g g , and for the first component the generators are g 2 gy1 gy1
2 0 1 0 0 1 0

and g g 2 gy1 gy1 gy1. So from this realization of F it is clear that F has a0 1 2 1 0
subgroup isomorphic to F = F.

Ž .We can also identify H with the subgroup of G see the first realization
w xof elements which are the identity everywhere except in 0, 1 : an element

w xof H can be thought as the restriction to 0, 1 of one of this maps in G.
This way we see that this subgroup is also isomorphic to F. The elements
f 2 fy1 fy1 and f f 2 fy1 fy1 fy1 correspond to g and g under this identifi-0 1 0 0 1 2 1 0 0 1
cation, hence they generate this subgroup of G.

2. THE ESTIMATE OF THE NORM

The geometric interpretation given by the maps f provides a method tok
Ž .compute the word metric of F with respect to the finite presentation FF .

For instance, to compute the norm of an element x of F, we can study the
corresponding map f in G: we know that f can be obtained as a
composition of the maps f and f and their inverses, and we only need to0 1
estimate how many occurrences of f and f and their inverses we need to0 1
obtain f. This can be studied from properties of the graph of f.

Ž . Ž .Given a point a, b of the graph of f , with b s f a , since f is piecewise
X Ž . X Ž .linear, we denote by f a and f a the right and left derivatives of f atq y

X Ž . X Ž . Ž .a. If f a / f a , we say that the point a, b is a breaking point of theq y
graph of f.

To completely understand the maps in G we need to study how
multiplying by a generator affects a map. Let f g G be one of these
piecewise linear homeomorphisms. Then, the map ff s f ( f has a graphi i
that can be easily related to the graph of f. Since the map f has slope 2i

w xonly on those points with y-coordinate in the interval i, i q 2 , the graph
of ff is obtained by stretching the portion of the graph that has y-coordi-i

w x w xnate in i, i q 1 to the interval i, i q 2 , and all the graph is moved one
Ž .unit up in all the points with y G i q 1. A point a, b on the graph of f

Ž . Ž Ž ..with b g i, i q 1 appears now as the point a, i q 2 b y i , and the
derivatives satisfy

X XX Xff a s 2 f a and ff a s 2 f a .Ž . Ž . Ž . Ž . Ž . Ž .i q i yq y

y1 w x w xSimilarly, the map ff shrinks the interval i, i q 2 down to i, i q 1 , andi
the derivatives get divided by 2. We will use these facts in the proof of the
norm estimate below.
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The following lemma is an example of how these maps can be used to
obtain group-theoretical properties:

Ž .LEMMA 1. Let f g G, and let a, b be a point of the graph of f. Assume
X Ž . X Ž .that one of the two derï atï es f a and f a is different from 1. Then theq y

norm of f can be bounded by

< < � 4f G max 1, a y 2, b y 2 .G

In particular this applies to any breaking point of the graph of f.

< < < y1 < < <Proof. Since f s f , we only need to prove that f G b y 2.G G G

Clearly we can assume b G 3.
Observe that in f and f the highest point with a derivative different0 1

Ž .from 1 is the point 2, 3 in f , and further compositions with either f or1 0
f can only increase the y-coordinate by 1, and double the slope only at a1

w xpoint with y-coordinate in 0, 3 . So to achieve a derivative different from 1
Ž .in a, b one can start with f and compose it with b y 3 generators more,1

at least. So one needs to compose at least b y 2 generators to obtain a
Ž .graph that has a derivative different from 1 in a, b .

The next result is the estimate of the norm of an element of G in terms
of the unique normal form.

PROPOSITION 2. Let f g G be an element with normal form

f s f r1 ??? f rn fys m ??? fys1 .i i j j1 n m 1

Ž .Let D f s r q ??? qr q s q ??? qs q i q j . Then1 n 1 m n m

D fŽ .
< <y 2 F f F 3D f .Ž .G6

< < < y1 <Proof. Since f s f , we can assume that i ) j .G G n m
One of the inequalities is easy: rewrite the normal form in terms of f0

and f using f s fyiq1 f f iy1 to obtain a word representing f with only1 i 0 1 0
f , f and their inverses. It is easy to see that the length of this word is less0 1

Ž .than 3D f .
< <It is also not difficult to see that f G r q ??? qr q s q ??? qs : ifG 1 n 1 m

< < Žf - r q ??? qr q s q ??? qs , there exists a word on f and f andG 1 n 1 m 0 1
.their inverses that has length less than the unique normal form, contra-

dicting the fact that the normal form is the shortest word for f. One could
take this word and construct from it a normal form that would be shorter
than the unique one.
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The last step in the proof is to prove that

in
< <f G y 2.G 2

Assume that r q ??? qr q s q ??? qs - i r2. If not, the inequality1 n 1 m n
follows from the previous paragraph. Consider the graph of the element

g s f r1 ??? f rn ,i i1 n

the positive part of the normal form. Each one of these generators
Ž .performs a stretching of the graph see above , the last one being a

w x w xstretching of the interval i , i q 1 into i , i q 2 . So in the graph of gn n n n
Ž .there is a point P with coordinates x, i q 1 such that the two deriva-n

tives at this point are equal to 2 N where N G r . We want to follow then
movement down of P after composing with all the inverses that appear in
the normal form. The desired conclusion is that at the end, in the graph of
f , the point that corresponds to P is a breaking point, or else the function
f still has derivatives 2 N at this point.

Observe the effect that composing with fy1 has on P. If j s i y 1, inj m nm

gfy1 the point corresponding to P is now a breaking point: its derivativesjm

are 2 N and 2 Ny1. Further compositions with any fy1 will keep this point ai
breaking point, since i ) j ) ??? ) j . If j - i y 1, then in gfy1 then m 1 m n jm

point P has just seen its y-coordinate decreased by one and the derivatives
are still both 2 N.

In the graph of gfys m, the situation of the point P depends on the valuejm

of s :m

Ž .1 If s - i y j y 1, P is not a breaking point and the deriva-m n m
tives are both 2 N.

Ž . y12 If s s i y j y 1, the last composition by f has made P am n m jm

breaking point.
Ž .3 If s ) i y j y 1, P is now a breaking point whose y-coordi-m n m

nate is not an integer, and in any case it will remain a breaking point
throughout, so it will be a breaking point of f.

The key to this argument is to observe that since i ) j ) ??? ) j , an m 1
composition by an fy1 cannot decrease the right derivative at P withouti
decreasing the left derivative. One of these compositions either divides the
left derivative by 2 without touching the right derivative, or it divides both
derivatives by 2. It divides both derivatives by 2 only after P has been
already made a breaking point. So the conclusion is that in f , either the

N Ž .derivatives at this point are still 2 if the s , . . . , s are small enough or1 m
else it is a breaking point. In any case one of the two derivatives at this
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point is not 1. We need now to compute the y-coordinate of this point to
apply Lemma 1.

In g the y-coordinate of P was i q 1. Every application of an fy1 mayn i
decrease the y-coordinate at most by 1. So the y-coordinate is at least

i q 1 y s y ??? ys ,n 1 m

but from our assumption, r q ??? qr q s q ??? qs F i r2, we conclude1 n 1 m n
that the y-coordinate of this point is at least i r2. From Lemma 1 itn

< <follows now that f G i r2 y 2.G n
Ž .Combining all inequalities including i ) j we haven m

i jn m
< <f G max r q ??? qr q s q ??? qs , y 2, y 2G 1 n 1 m½ 52 2

r q ??? qr q s q ??? qs q i r2 q j r2 y 41 n 1 m n mG
3

D fŽ .
G y 2,

6

and the proof is complete.

This estimate of the norm can be used, for instance, to recover the
Ž w x.known fact that states that the growth of F is exponential see 3 . One

only needs to count how many normal forms have D F nr3 to make sure
that the corresponding elements have norm less than n, and it is easy to
find that this number of normal forms is exponential in n.

3. QUASI-ISOMETRICALLY EMBEDDED SUBGROUPS

Recall that a map
F : X ª Y

between metric spaces is called a quasi-isometric embedding if there exist
constants K, C ) 0 such that

d x , xXŽ .
X Xy C F d F x , F x F Kd x , x q C ,Ž . Ž . Ž .Ž .

K

for all x, xX g X. If G is a finitely generated group, and H is a finitely
generated subgroup, then the fact that the inclusion is a quasi-isometric
embedding is equivalent to saying that the distortion function

1
< < < < <� 4h r s max x x g H , x F rŽ . H Gr



SUBGROUPS OF THOMPSON’S GROUP F 73

is bounded. If a subgroup is quasi-isometrically embedded, then its own
word metric is equivalent to the metric induced by the word metric of the
ambient group, and the distortion is bounded.

Our goal is to prove that several subgroups of F are quasi-isometrically
embedded, namely, those subgroups constructed in Section 1 which are
isomorphic to F = Zn and F = F. The generators are:

Ž . y1 y1 n1 x x , . . . , x x , x , x for F = Z ,0 1 2 ny2 2 ny1 2 n 2 nq1

Ž . 2 y1 y1 2 y1 y1 y12 t s x x x , t s x x x x x , x , x for F = F.0 0 1 0 1 0 1 2 1 0 1 2

nŽ .PROPOSITION 3. The subgroup f F of F is quasi-isometrically em-
bedded.

nŽ .Proof. We have that f F is isomorphic to F, and the normal form of
nŽ .an element in f F is exactly the same when the element is considered in

F, so we can use the norm estimate to establish the inequalities.
nŽ .Observe that for a particular f F the constants for the quasi-isomet-

ric embedding will depend on n.

PROPOSITION 4. E¨ery cyclic subgroup of F is quasi-isometrically embed-
ded.

Proof. Let x be the generator of the cyclic subgroup, and let

x r1 x r2 ??? x rn xys m ??? xys 2 xys1 ,i i i j j j1 2 n m 2 1

be its normal form. Conjugating the generator does not change the
property of being quasi-isometrically embedded, so we can assume that
i / j , and taking the inverse if necessary we can further assume that1 1
i - j . It is easy to see now that the normal form for x k starts with a term1 1

k r k1 Ž .x , and then D x is greater than kr .i 11

An alternate proof of this result can be formulated as a corollary to
w xLemma 15.29 of 6 .

PROPOSITION 5. The subgroup Z = F generated by

x xy1 , x , x0 1 2 3

is quasi-isometrically embedded.

Proof. Let

x s x r1 x r2 ??? x rn xys m ??? xys 2 xys1
i i i j j j1 2 n m 2 1

2Ž .be an element of f F , i.e., with all indices being at least 2. Let
y1 kŽ .x s x x x be an element of Z = F. Its distance in Z = F can be0 1
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Ž . Ž .estimated as k q D x . We will compute the estimate D x of its distance
Ž .in F and see that it does not differ much from k q D x .

To do that, we need to compute the normal form in F of x. But

k y1 y1 y1 r r r ys ys ys1 2 n m 2 1x s x x ??? x x x x ??? x x ??? x xŽ . Ž .0 k 1 0 i i i j j j1 2 n m 2 1

s x k x r1 ??? x rn xys m ??? xys1 xy1 ??? xy1 xy1
0 i qk i qk j qk j qk k 1 01 n m 1

which is the normal form for x. Then,

D x s r q ??? qr q s q ??? qs q 2k q i q k q j q kŽ . 1 n 1 m n m

and clearly,

k q D x F D x F 4 k q D xŽ . Ž . Ž .Ž .

which finishes the proof.

COROLLARY 6. The subgroup F = Zn generated by

x , x , x xy1 , x xy1 . . . , x xy1
2 n 2 nq1 0 1 2 3 2 ny2 2 ny1

is quasi-isometrically embedded.

Ž .COROLLARY 7. 1 The free abelian group generated by

x xy1 , x xy1 . . . , x xy1
0 1 2 3 2 ny2 2 ny1

is quasi-isometrically embedded.
Ž .2 The asymptotic cone of F is infinite-dimensional.

4. THE SUBGROUP F = F

The first component F of this subgroup is generated by the elements

t s x 2 xy1 xy1 , t s x x 2 xy1 xy1 xy1 ,0 0 1 0 1 0 1 2 1 0

Ž .while the second component is just f F . We need to compute the normal
form in F of a general element of F = F. The following lemma computes

² :this normal form for a particular type of elements of t , t . Let0 1

t s tyŽ ky1.t t ky1 s x x ??? x x 2 xy1 xy1 ??? xy1
k 0 1 0 0 1 ky1 k kq1 k 0

² :be the generators for the infinite presentation for F s t , t .0 1
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LEMMA 8. The element

t r1 ??? t rn
i i1 n

has a normal form in F of the type

x x ??? x x r1q1 w x r2 w x r3 ??? w x rn xy1 xy1 ??? xy1 ,0 1 i y1 i 1 i 2 i ny1 i a ay1 01 1 2 3 n

where

Ž .1 for k s 1, . . . , n y 1, the word w is either 1 or x x ??? x ,k l l q1 ik k kq1

with l G i q 1, andk k

Ž .2 i q r F a F i q r q r q ??? qr .n n n 1 2 n

Proof of Lemma 8. The proof is by induction on n. If n s 1 the
element t r1 has normal formi1

x ??? x x r1q1 xy1 ??? xy1 .0 i y1 i i qr 01 1 1 1

In this case there are no words w and a s i q r .k 1 1
Suppose now that the statement is true for n and consider an element of

the form

t r1 ??? t rn t r ,i i i1 n

with i ) i and r G 1. To construct its normal form we multiplyn

x x ??? x x r1q1 w x r2 ??? w x rn xy1 xy1 ??? xy1Ž .0 1 i y1 i 1 i ny1 i a ay1 01 1 2 n

= x x ??? x x r xy1 ??? xy1 ,Ž .0 1 i i iqr 0

and the cancellations determine the new normal form:

Ž .1 If a - i, then the new normal form is

x x ??? x x r1q1 w x r2 ??? w x rn x ??? x x r xy1 ??? xy1 .0 1 i y1 i 1 i ny1 i aq1 i i iqr 01 1 2 n

We have w s x ??? x with a G i q r G i , and the new a is i q r.n aq1 i n n n

Ž .2 If a s i, then the new normal form is

x x ??? x x r1q1 w x r2 ??? w x rn x r xy1 ??? xy1
0 1 i y1 i 1 i ny1 i i iqr 01 1 2 n

so w s 1 and the new a is i q r.n

Ž .3 If a ) i, then we construct the new normal form by

x x ??? x x r1q1 w x r2 ??? w x rn xy1 ??? xy1 x r xy1 ??? xy1
0 1 i y1 i 1 i ny1 i a iq1 i iqr 01 1 2 n

s x x ??? x x r1q1 w x r2 ??? w x rn x r xy1 ??? xy1 xy1 ??? xy1
0 1 i y1 i 1 i ny1 i i aqr iqrq1 iqr 01 1 2 n
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so w s 1 and we have i q r F a q r F i q r q ??? qr q r F i qn n 1 n

r q ??? qr q r. The induction is complete.1 n

PROPOSITION 9. The subgroup isomorphic to F = F generated by

t s x 2 xy1 xy1 , t s x x 2 xy1 xy1 xy1 , x , x0 0 1 0 1 0 1 2 1 0 1 2

is quasi-isometrically embedded.

Proof. Let

t s t r1 ??? t rn tys m ??? tys1 ,i i j j1 n m 1

x s x d1 ??? x dp xy« q ??? xy« 1
a a b b1 p q 1

Ž .be arbitrary elements of each component of F = F. The element t, x g
Ž . Ž . Ž .F = F has norm in F = F approximately equal to D t q D x , where

D t s r q ??? qr q s q ??? qs q i q j ,Ž . 1 n 1 m n m

D x s d q ??? qd q « q ??? q« q a q b .Ž . 1 p 1 q p q

We need to compute the normal form of the element tx in F. Since the
elements t and x commute, we will compute the normal form ofi j

tx s t r1 ??? t rn x d1 ??? x dp xy« q ??? xy« 1 tys m ??? tys1 .Ž . Ž .Ž .ž /i i a a b b j j1 n 1 p q 1 m 1

By Lemma 8, we have

t r1 ??? t rn x d1 ??? x dpŽ . ž /i i a a1 n 1 p

s x x ??? x x r1q1 w x r2 ??? w x rn xy1 xy1 ??? xy1 x d1 ??? x dpŽ . ž /0 1 i y1 i 1 i ny1 i a ay1 0 a a1 1 2 n 1 p

s x x ??? x x r1q1 w x r2 ??? w x rn x d1 ??? x dpŽ . ž /0 1 i y1 i 1 i ny1 i a qaq1 a qaq11 1 2 n 1 p

= xy1 ??? xy1 ,Ž .a 0

and similarly,

t s1 ??? t sm x «1 ??? x «qŽ . Ž .j j b b1 m 1 q

s x x ??? x x s1q1 ¨ x s2 ??? ¨ x sm xy1 xy1 ??? xy1 x «1 ??? x «qŽ .Ž .0 1 j y1 j 1 j my1 j b by1 0 b b1 1 2 m 1 q

s x x ??? x x s1q1 ¨ x s2 ??? ¨ x sm x «1 ??? x «qŽ .Ž .0 1 j y1 j 1 j my1 j b qbq1 b qbq11 1 2 m 1 q

= xy1 ??? xy1 .Ž .b 0
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Taking the inverse if necessary, we can assume that a F b, and then,
combining the two normal forms, we have

tx s x x ??? x x r1q1 w x r2 ??? w x rn
0 1 i y1 i 1 i n -1 i1 1 2 n

x d1 ??? x dp
a qaq1 a qaq11 p

x ??? xaq1 b

xy« q ??? xy« 1
b qbq1 b qbq1q 1

xys m ¨y1 ??? xys 2 ¨y1 xys1q1 xy1 ??? xy1 xy1
j my1 j 1 j j y1 1 0m 2 1 1

which, after reordering, yields the normal form for tx:

tx s x x ??? x x r1q1 w x r2 ??? w x rn
0 1 i y1 i 1 i ny1 i1 1 2 n

x ??? xaq1 b

x d1 ??? x dp
a qbq1 a qbq11 p

xy« q ??? xy« 1
b qbq1 b qbq1q 1

xys m ¨y1 ??? xys 2 ¨y1 xys1q1 xy1 ??? xy1 xy1 .j my1 j 1 j j y1 1 0m 2 1 1

We can now compute the norm in F of tx:

D tx s i q r q 1 q l w q r q ??? ql wŽ . Ž . Ž .1 1 1 2 ny1

q r q b y a q d q ??? qdŽ .n 1 p

q j q s q 1 q l ¨ q s q ??? ql ¨ q s q « q ??? q«Ž . Ž .1 1 1 2 my1 m 1 q

q a q b q 1 q b q b q 1.p q

Ž . Ž .Using the inequalities 0 F l w F i y i and j F b F D t , providedk kq1 k m
by Lemma 8, we can deduce that

D t q D x F D tx F 4D t q D x q 4Ž . Ž . Ž . Ž . Ž .

from which the desired result follows.
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