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If f is a function of several variables, one calls a pair of variables substitutes (co.mp/ements) if 
the change of the value of the function when both variables are increased is at most (at least) equal 
to the sum of the changes when each is increased separately. We here consider the case wherefis 
the value of a maximum weight circulation on a network and the variables are the upper and 
lower bounds and the wei8hts of a pair of arcs. We introduce a simple combinatorial criterion for 
two arcs to be in “series” or “parallel” and show that these two cases correspond to the variables 
being complements or substitutes respectively. This generalizes results of Shapley for the special 
case of the maximum flow and optimal assignment problems. We also show that our result is best 

possible in that if two arcs are neither in series nor parallel, then the corresponding variables can 

be either substitutes or complements or both. 

1. Introduction 

The notion of substitutes and complements is a familiar one in economics. Butter 
and margarine are substitutes since there is something to be gained by having one or 
the other but not much additional gain from having both. A lock and key, on the 
other hand, are complements since neither is much use without the other. These 
ideas are easily made quantitative. Let&, yr) measure the welfare from having x1 
units of one good and yI of another, and suppose’ x2x1 and y2 >yl. The goods are 
substitutes (complements) if 

where the left side above measures the increase in welfare from increasing both x and 
y while the right side gives the sum of the increases if the quantities are increased one 

* This -esearch has been partially supported by the National Science Foundation under Grant SES- 
78051% rtnd the Office of Naval Research under Con.ract NO14-76-C-0134 with the University of 
California. 

1 If rbe xi are vectors, then “ > ” denotes the ?Iciual partial order. 
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at a time. Note that (1.1) simplifies to 

f@2,Y2) +f(xl,Y 1) 5 (2 mGY2) +%sY 1). 

Functions satisfying (1.2) are called sub (sup@ modujcrr. 

(1.2) 

In 1961, Shapley [ 1 I2 and [2] proved a number of interesting results concerning 
substitutes and complements in network and assignment problems. The first paper 
studies the value of the maximum flow in a network as a function of arc.capacities. 
The results are 

(A) Given any pair of arcs Ed,/? the maximum flow p is either a submodular or 
supermodular function of the arc capacities ca, cp over the entire range of capacity 
values. 

(B) If arcs a! and fl are “in parallel” meaning that either the heads or tails of the 
arcs lie on a common node, then they are substitutes. If they are “in series” 
meaning the head of a! is the tail of /3, then they are complements. 

The second paper treats the classical optimal assignment problem. With usual 
interpretation of jobs and applicants it is shown that any two jobs or any two 
applicants are substitutes. More precisely the increase in the value of the optimal 
assignment when two new jobs (or applicants) are brought in, does not exceed the 
sum of the increases due to each job separately. On the other hand, a pair consisting 
of a job and an applicant act as complements. 

In the present paper we consider a general network model which covers both the 
cases of [l] and [2]. We are concerned with a directed graph &’ in which there are 
upper and lower bounds and a weight assigned to each arc. Thus, given an arc a we 
have a vector qQ= (la, &, w,) where la = ea. The function to be studied is the value 
of the maximum weight circulation on ,K It is easy to see how the two cases 
considered by Shapley can be formulated in this way. The maximum flow problem 
is changed to an equivalent circulation problem by identifying source and sink, and 
assigning a weight of one to all arcs out of the “sdurce-sink” and a weight of zero to 
all other arcs. The assignment problem is, of course, a special case of the transporta- 
tion problem which is converted to a circulation problem in a standard way by intro- 
ducing an addition4 node z. Each sink sj is connected to z by an arc with lower 
bound equal to the den,and at sj, and z is connected to each source si by an arc with 
upper bound equal to the supply at Si. 

The purpose of this paper is to give a complete characterization of when a pair of 
arcs are substitutes or complements in the context of our general model. We say a 
pair of arcs is in parallel if there is no simple undirected cycle in the graph in which 
both arcs have the same direction, i.e., if one traverses any cycle in the graph con- 
taining both of the arcs, one must traverse one arc in the forward, the other in the 
backward direction. Clearly a pair of arcs having heads or tails on a common node 
will have this property. A pair of arcs is in series if there is no simple undirected 
cycle in which the two arcs have opposite directions. This is clearly a generalization 

2 See aiso 431. 
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of the case when the hedd of one arc is the tail of the other. Our main result states 
that arcs in parable! are always substitutes while those in series are always comple- 
ments. The characterization is 66compkte” in that if two arcs are neither in series 
nor in parallel, then they can he either substitutes or complements depending on the 
parameters of the rest of the graph. In fact we will show that for this case it can 
happen that the two arcs are complements over part of their domain and substitutes 
over another. Thus, property (A) of [I] does not generalize to arbitrary weighted 
networks. 

*The final section treats the speci case of the Optimal Assignment Problem when 
we consider the optimal value as a function of some pair of entries in the assignment 
matrix. For this case it is shown that property (A) does hold. The property, 
however, does not generalize even to the simple transportation problem. Counter 
example is given in an appendix. 

2. Networks and Circulations 

A network ,Y consists of a set N of no&s, a set .SX? of arcs and a pair of mappings 
il and t from & to N. For u in .Q! we write t(a) = u and h(a) = w (u is the “tail”, v the 
“head” of a). 

A circulation x is a real valued function on & such that 

c x(a)= c x(a) foraHuinN. 
r(ff,=u Ycr)=u 

(2.1) 

A simple (undirected) path P in & is a sequence of nodes and arcs 

(UO,~O,~l,~I,~~~, u,, a,,, u,+ t) where the u1 are distinct and either 
0) t(ak) = uk, h(ak) = u k+ I in w?Gch case a& is called a forwurd arc of P, or 
(ii) h(tzk) = UkS t(arc) = u k+ 1 and ak is called a backward urc of P. 
A cycle is a path in which u,+ I = uo. 

A pair of arcs is said to be in purallel if there is no simple cycle containing both as 
forward arcs. They are in series if no simple cycle contains one as forward, the other 
as a backward arc. 

With any cycle r we associate a circulation xf by the rule .+(a) = 1 ( - 1) if a is a 
forward (backward) arc of r, and xr(a) = 0 otherwise. We call xr a cycle circulation. 

The following lemma seems to be well known. 

Lemma (Cylic Decomposition Lemma). Any circulation x is a positive linear corn- 
bination of cycle circulations, xri, i = 1, . . . , n, that is 

n 

X= Ck 
i=l 

iXc, kiZ0, 

where 

x@x)x(a) 2 0 for all a in d. (2.2) 
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An easy proof is by induction on the number of arcs of J#. Without loss of 
generality we may suppose X(CT) # 0 for all a in & (i.e., we may ignore all arcs a with 
X(Q) = 0). Starting from some a0 with say x(ao)>O, let ue= t(ao) and u1 = k(tz& 
Then from (2.1) there exists a1 such that either Z(a)) = ~1 and x(at)>O or h(a,) = ul 

and x(q) < 0. Continuing in this way there is a path (~0, ao, . . . , tii, ai,. . .) where NaJ 
is positive or negative according as ai is a forward or backward arc. Eventually one 
gets a repetition of some Ui* say, urn = un, m < n so r= (u,, am, . . . , a,, 1, t4*) is a 
cycle. Let,k = minmciln 1 x(*rXi)l l Then x’ = x - &is a circulation whose value is zero 
on at least one arc of IY By induction, 1~’ is a linear combination of cycle circula- 
tions, r,, . ...&_ I and x=x’+ kxr satisfies (2.2) by construction. 

Our key result is the following 

Corollary (Parallel Decomposition Lemma). u a and /J are in parallel and x is a 
circulation on A and X(CY),X@) > 0, then there e&t circulations XQ and x@ such that 

x=xo+xfl, (2.3) 

. ..( y)#( y) 2 0 for all y in .& m) 

x”(B) = xqa> = 0. (2.5) 

Proof. From the lemma 

n 
X = 

Ck i=I 
iXr, for some cycles ri 

and say x+) > 0 for is r, xrj(cr) = 0 for i> r. Define x0= C i= 1 kixr, and note that 
xf (p) = 0 for is r, for from the lemma x&)rO but if 8 is in r it must be a back- 
ward arc (definition of parallel) so that xr.k) ~0. Thus, fl(jJ) = 0. Letting x8=x-Xq 
we see that xfi((~) = 0 by the construction’of X? Finally (2.4) follows from the (2.2) 
since each xc(y) has the same sign as x(v). Cl 

3. Capacitated, weighted networks 

A network & is capacitated if there are real valued functions I and C on J# such 
that cs e. 

A circulation x on JV is feasible if +xl; C. 
A network is weighted if there is a real valued function w on &. 
The value w(x) of a circulation x is defined by 

w(x)= C w(a)x(a). 
ae d 

The feasible circulation x is called optimal if iw(x) L w(x’) for every feasible circu- 
lation x’ on Jv. 

From now on we will assume all networks are capacitated and weighted. We 
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d-ok by 4 the function from d to R 3 defined by q(y) = cc(y), t!(y), w(y)). We will be 
concerned with the case where q is constant on all arcs except a and @. Let 
&(@,q@) be the value of M optimal circulation for the given values q(@,q@). 

We now state 

M&n Tbaomm. (A) .Ifa and Ip arc in patudlel, then p(q(a),q(jF)) is &modular, 
(B) Jfa and# are in series, then ~(cl(axq@) is sugwmodular, 
(C) In all other cass one can chotxe values q(y) for y + a,/!& so that a and j3 are 

complements ovet one putt of theit domain and substitutes over another. 
In this section we will prove the equivalence of (A) and (B) and will establish (C). 

The proof of (A) will be given in the next section. 
The proof that (A) and (B) are equivalent depends on the following observation: 

if in any network J+’ we replace the arc y by its reverse y’ meaning h(f) = t(y), 
tcv’) = he) and define q(y’) = (- c(vx - c(y), - w(y)), then the set of values W(X) of 
this new network .+ is the same as -that of JV as x ranges over all feasible 
circulations. TO see this note that if x is a feasible circulation on &, then 2; ’ is feasible 
on J(I;e where x’(y’)= -x(y) and x =x’ otherwise. Further, w(x) = w(x’) since 
w’(y’)x’(y’) = ( - w(y))( -x(y)). It follows that P(J+‘) =&Q) where these numbers 
denote the value of an optimal flow on ./ and .+. 

Now from the definitions one sees at once that (r and /J are in parallel if and only if 
a and 8’ are in series. Also q&i?) I 42(B) if and only if q&Y) s q&3’). Suppose then 
ql(a)s qz(a) and qr(ls)sq#). We then have 

If this expression is non-positive, then a and /J are substitutes from (3.2) while a 
and /3’ are complements from (3.3). Thus, if we establish that arcs in parallel are 
substitutes it will follow that arcs in series are complements. 

TO prove (C) note that if a and /3 are neither in series nor in parallel, then there is a 
cycle in which a and j3 are forward arcs and another in which a is forward and /9 is 
backward.. We claim that & must contain a subnetwork “equivalent” to the one 
shown in Fig. 1. 

Fig. 1. 
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To see this, observe that since cat and j? are neither in series nor in parallel there 
must be four paths connecting the heads, the tails and heads to tails of a and /? (e.g., 
since a and B are not in parallel there is a cycle: having a and fl as forward arcs, hence 
a path from h(a) to ?(/?). This path must contain at least one arc since otherwise a 
and /? would be in series). In Fig. 1 these paths have been replaced by single arcs, but 
this is equivalent to selecting one arc out of each path and making all other arcs 
“dummies”, that is giving them zero weight and infinite upper and lower capacities. 
We may suppose the arcs of the figure have the direction shown by the arrows for if 
not they can be replaced by their reverses as described in the preceeding paragraph 
without affecting the sub or super modularity of p(q(a)&)). We set the lower 
capacities of all arcs of Figure 1 equal to zero. The Ai arcs have infinite upper 
capacity and zero weight. Arcs a and j3 have zero weight while y has capacity t 
weight 2 and 6 has capacity 1 and weight 3, as illustrated in Fig. 2. 

Now 

8 

Fig. 2. 

(a) if ca=ep=O, thenp=O, 
(b) if &= 1, Q=O let xa=xv=xA = f givingfl=2, 
(c) if &=O, CD= 1 let xg=x,=xA:= 1 givingh=2, 
(d) if &= ep= f, let xa=xa =x,=x,= I giving p = 5, 

so that cc is supermodular for these values. 
Next 
(e) if CQ=2, Q=O let xa=xy=xA,=2 givingb=4, 
(f) if &=O, eB=2 let xB=xy=xA =2 givingl=4, 
(g) if CU=Cp=2, let xQ:=xy=2, xl =x,=x,= 1 givingp=7, 

so ,U is submodular for these values. ’ 

Of course one needs to show in each case that the given circulation is optimal. For 
this purpose we use the s&ndard. 
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OpUaMy TBcnor~~ A fcuarible circulation x is optimal if and only f there is a 
function P on N such that 

Tk approptkte functiom,“ot the six cass above am 

(8) P,=P2=P3=P4=0. 

4. Proof of the Main Theorem 

It remains to prove part (A) of the Main Theorem. We are given a and /I in 
parallel. Let q be defikd on J and suppose q’(a)rq(a) and q’(/3)rq@). We 
denote by A’=, J@, JV@ respectively the network with q(a) replaced by ~‘(a), with 
Q(p) replaced by q’(p) and with both replacements. The quantities P, cfl, c*B, w”, 
~8, w@ are defined correspondingly. Finally we abbreviate, writing p for 
cc(q(aX q(lO), pa for &q’(a), cr(B)), @ for &q(ab q’(8)) and paB for p(q’(a), #(19)). 
In this notation, we must show for any R which is feasible on Pfl 

w@(Z) +p sp=+pt (4-l) 

Let x* be optimal on JV. 

Case 1. .13(a)sx*(a). Then 

~a)s~(a)s~u)Ix’(a)sr(a)sc=(a) (4.2) 

so that 2 is feasible on @ so 

WQ) I;#? (4.3) 

Also from (4.2) P is feasible on J+ Q so 

wQ(x” ) sy =, 

giving 

wB(2) + wa(x’) I; jP+ pp. 

Now from the definition we have 

w@(2) = wafl(2) + (w(a) -s w’(@))2(a), 

wa(x*) = w(x*) + (w’(a) - w(a)).x*(a). 

(4.4) 

(4.5) 
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wa(x*) + wfl(Z) = waB(2) + w(x*) c (w’(a) - w(a))(x*(a)-Z(u)) 

2 wqz) + w(P) (W 

by Case 1 assumption. Combining (4.6) with (4.5) and noting that w(Iy*) =#, we get 
(4.1). 

The case $(/?) SX* (/I) is proved symmetrically. This leaves 

c”ae 2. fla)>x*(cz), ~(/J)>x*(,@). Letting y=R-x*, we have from the Parallel 
Decomposition Lemma 

y =y”+y@ (4.7) 

where 
y”yprkEo 9 (4.8) 

y"(a)-y(a), YW)=Yu% (4.9) 

since y*(p) =.@(a) = 0. Now let Xa =x* + ya. Then from (4.9) 

P(a)=Z(a) (4.10) 
and 

x”(p) = x*(#3). (4.11) 

Further, from (4.7) and (4.8) we see that y*(y) has the same sign and smaller 
absolute value that y(Y) from which we get either 

x*0) -cx”(Y) WY) or W)=xQW) =x+(Y) 

and in either case 

F(Y)=W)=~(Y) 

so from (4. lo), (4.11) and (4.12) Xa is feasible on b 1 a, hence 

wa(xa) Ipa. 

Symmetrically 

tup(xfl) I$? 
Now 

Xa+x~=X++y~+X++y~=2x*+R-xX'=X++~ 
SO 

but 
w@(x*) + w@(S) = w”8(x*) + wqxa, 

w@(x*) = w(x*) + (w’(a) - w(a))x*(a) + (w’@) - w(p))x*(p) 

w@(x*) = wa(.P) + (w’(p) - w(p))x*(j?) from (4.1 l), 

w*fi(xfl) = wp(xp) + (w'(a) - w(a))x* (a) symmetrically. 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 
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Substituting in (4.15) gives 

W(X’)+~(~)=~(~)+~(~)4~*+~b 

from (4* 13) and (4.14) which gives (4.1). 

5. The optimd assi~amcnt problem 

Although this problem is a special case of our general network problem, it is 
simpler, because of its special structure, to consider it separately. 

Problem. Given an n x n matrix A = (a& choose n entries one in each row and 
column so that the sum of the entries is a maximum. 

If all entries except aU and akl are held f?xed, this maximum value will be denoted 
by N(aii,ak,). We wish to determine whether p is sub or super modular. 

Now if a0 and a&tare in the same row or column, they must clearly be substitutes, 
for since both entries cannot be in any optimal solution it follows that the value 
when both take higher values is the same as when only one of them does. If the 
entries are not in the same row or column, then they may be either substitutes or 
complements. A typical example is shown in Fig. 3. 

Fig. 3. 

The claim is that &y) is sub or super modular according as a is negative or 
positive. We now show that the general case can be reduced to this example. 
Suppose the variable entries are al1 and au. Let pO=p( -00, -a)) and let JJ&Q) be 
the value of the assignment problem with row and column 1 (2) deleted and 
azz(oll) = - Q) and let pcr2 be the value of the problem with rows and column 1 and 2 
deleted. Now for any values of all and aa, it follows that 

This corresponds to the obvious fact that any assignment must contain one, both 
or neither of the entries alI and au. 

Now the modularity of p is not changed by subtracting the constant ~0. If we then 
definex=~l-~o+alr, y=p2-po+az, (5.1) becomes 

any letting a =p12 +po- ccl -g2 we have the same situation as that of the example. 
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Theorem. The entries a1 l and a22 are substitutes (complenrents) if and on& if 

GuI2+PoHPI+c(2)~ w 0, 

Proof. We are considering the function 

and claim it is sub .or super modular as o is negative or positive. The proof consists 
of an analysis of various case and is precisely the same as that given in [l] for 
maximum flows. The reader is referred to that paper. Cl 
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Appendix 

We give here an example of a simple transportation problem, in which two arcs, a 
and 8, are substitutes over part of their domain and complements over another. This 
shows that property (A) (see page 176) which is true for the assignment problem 
does not extend to the transportation problem. 

Remark. The following example is a minimum-cost transportation problem. Costs 
can be considered as negative profits, the latter corresponding to the weights in our 
previous treatment of the model. Increasing the weights is equivalent to decreasing 
the costs, and since our objective function, being the sum of costs, is the negative of 
the sum of profits, the inequalities (1.1) and (1.2) for substitutes and complements 
have to be reversed. 

In the following tableaus the supplies (Si) appear at the first column and the 
demands (d’) at the top row. The left hand entry in each cell is the cost ou, the right 
is the number of units x0 shipped from i toj. If the right entry does riot appear, it is 
assumed to be zero, All blank cells are assumed to have infinite (very big) costs and 
zero flow. The last column and the bottom row show correspondingly the dual 
variables associated with the supplies (pi) and the demands (q-). The optimality of a 
given transportation schedule is verified with the use of the well known optimality 
criterion: 

Qi-PiSQo all i, j 

qj-pi= @ii if +>O. 



(W 

(cl 

(e) 

(d) 

(9 
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The entries to be varied appear at the upper left hand corner and are denoted by tz 
and )3. The total cost of the transportation schedule for the different cases will be 
denoted by ~1, pa, #, pafi in conformity with the notation in the rest of the paper. 

We have for tableaus (a)-(d) the values 
(a) a,=aa=6, then p= 108, 
(b) a,=4, Qa=6, then pa= 106, 
(c) a,=6, aa=4, thenyB=106, 
(d) %z= ap =4, then pa@= 106, 

so that a! and /3 are substitutes fo.l- these values (see previous remark). 
For (e)-(h) 
(e) aa = as= 6, then p = 108 (same as (a)), 
(f) a,= 3, Qa=6, then pa= 104, 
(g) a,=6, aB=3, then ,ufl= 104, 
(h) Qa=qI = 3, then pa@= 98, 

so that a and /3 are complements for these values. 


