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Abstract 

Although it is difficult to differentiate analytic functions defined by continued fractions, it is relatively easy in some 
cases to determine uniform bounds on such derivatives by perceiving the continued fraction as an infinite composition of 
linear fractional transformations and applying an infinite chain rule for differentiation. 

Keywords: Continued fractions; Analytical functions; Derivatives 

AMS classification: 30B70, 40A15 

1. Introduction 

The principal goal of this short paper is to develop an elementary procedure that will give both 
pointwise and uniform bounds on I dF(z)/dzl for certain continued fractions of the form 

Al(z) A2(z) 
F(z) (1.1) 

BI(z) + B2(z) +... 

in terms of the derivatives of {A,(z)} and {B,(z)}. Examples show that in several applications the 
derived bounds are sharp. The approach used here is related to, although different from, that 
employed by Waadeland in several recent papers describing a kind of "Taylor's theorem" for 
certain continued fractions that are close to being limit periodic (see, e.g., I-4]). Waadeland starts 
with the interpretation of a special case of the continued fraction (1.1) as a function of an infinite 
number  of variables, and obtains a derivative formula in terms of these variables. Here we view the 
continued fraction essentially as a function of a single variable and expand the derivative F'(z) 
using the chain rule from multivariable complex calculus. 

Two other fairly straightforward procedures for finding these kinds of bounds involve Cauchy's 
inequality and an extended version of Schwarz's lemma. The former inequality, when routinely 
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applied, gives rather poor results. The latter approach is illustrated by the following inequality for 
a function bounded by M > 0 on I zl < 1 [3]: 

I F'(z)l ~< 
M 2 __ I F(z) I 2 

M(1 -Iz12) " 

Detailed knowledge of the values of F(z) are required in order for this method to be productive. 
The procedure and resulting formulas derived in this paper require no such knowledge. It is not 
necessary to evaluate the continued fraction at any point of its domain - -  only a general bound 
such as the M mentioned above is needed. 

2. The basic theorem 

Theorem 2.1. Suppose w(z) is analytic on a domain D ~_ C with w(D) ~_ D. Given a sequence of 
functions { f.(z,w(z))} analytic on D with f.(D,D) ~_ D, set w := w(z) and form the sequence of analytic 
functions {F.}: 

Fl(z,w):= fl(z,w), F.(z,w):= F,_i(z, f .(z ,w)) for n > 1. 

Set FS.:= FS.(z, w):= FS,_ l (z,f.(z, w)), with F~:= fs(z, w ) and n >>, j. In addition, set Fi :=  Lim.-+oo 
FS,(z, w). Assume F(z, w) = lim._+ oo F,(z, w) exists, with converoence bein9 uniform on compact subsets 
of D. 

Then 

dz k=O c ',.i= 1 OFJ, +1 Oz 

0F~ +x t 9 z  + ~ dzz]" (2.1) 

As n --+ oo, dF,(z, w(z))/dz --+ dF(z, w(z))/dz uniformly on compact subsets of D. I f  w is a constant, we 
have 

k = 0  j = a  

Proof. First, write (2.1) as 

dF.(z,w(z)) Ofl(z,F 2) 
dz 0z ) J 

j :  i OFJ. + 1 L Oz -~ cgw dz J" 
(2.1)* 
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The pat tern  first becomes discernable for n = 3. F r o m  the chain rule one gets 

dF3(z,w) dfx(z, F~(z,w)) 
dz dz 

afx(z,F~) Ofa(z,F~) dF~(z, w(z)) 
- + 

~gz O F ~ dz 

- cgfl(Z'V~)~gz + Ofx(z,F~)oF~ [df2(z,F~(z,w(z)))]dz J 

~i,(z,F~) ~i,(z,F~)p~ie(z,F~) ei~(z,I~)di~(~(z))] 
- ~gz + 3F~ L Oz + c3F] 

2 cgfj(z, FJ3+,)fOf3(z, vl) Of 3(z,w)dw] 
+ lq avA+, L ~ + ~-----7-Tz j j = l  

Next, assume that  (2.1)* is valid for some n and any suitable family {fx,f2, -.. ,f,}. We show that  
(2.1)* holds for n + 1: 

The pat tern of (2.1)* is valid if we employ {f2,f3, ... , f .+ l )  rather than  {f i , f2,  . -- ,f .},  i.e., 
consider {f2,of3 . . . . .  f .+  l} instead o f f l  °f2 . . . . .  f . .  Eq. (2.1)* for n functions then becomes 

t ( i k  I k+2 
n 1 j + l  (Z, fn+l)~ dVZ.+ i(z, w) _ Ofz(z, V3.+ l) OJj(z,F.+ 1)~ OJk+, 

dz Oz + " ~ z--ffY-4-f k = 2 c \ j = z  OV.+l ,] c~z J 

S+ 1 z (z, w) dw-] 
Jr j=2 f i  Of J(Z'FJn*+l)[Ofn+l(''W)~Vn+l'+' L ~z + of.+,ew ~J 

Thus,  

dF, +1 (z, w(z)) 
dz 

df  l (z, VZ, + 1)(z, w(z))) 
dz 

cgfl(z, VZ+a) Ofl(Z, V2,+,) dF2.+i(z,w(z)) 
- + 

Oz 2 OF, + 1 dz 

k=l  j = l  

~n + 1! + (I  ~ + 1 L Oz + s=l <~-,+x Ow dz_~/ 

and the expansions (2.1)* (and (2.1)) are established. 
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Since convergence of {F,(z, w(z))} is uniform on compact subsets of D, Weierstrass' theorem 
implies the analyticity of F(z, w(z)) and furthermore that dF,(z, w(z))/dz ~ dF(z, w(z))/dz uniformly 
on compact subsets of D. 

3. Applications to continued fractions 

Critical to the use of (2.2) in Theorem 1.1 in this regard is knowledge of the approximant 
locations of each of the continued fraction tails F j. Several classical continued fractions where this 
information is readily available will be studied, although these by no means exhaust the possibili- 
ties for applying Theorem 1.1. 

In all the results that follow uniform convergence to F(z) on compact subsets of D is guaranteed 
by the Stieltjes-Vitali theorem. Estimates of derivative bounds are valid, of course, only when the 
absolute series that are derived converge. Information on the various kinds of continued fractions 
described can be found in either [1] or [2]. 

Corollary 3.1 (A special Pringsheim case). The continued fraction 

al(z) a2(z) (3.1) 
bl + bz + - - -  

where each aj(z) is analytic in D and [ aj(z) [ <~ [ bj [ - l for all j converges to F(z) where [ F(z)[ -%< 1. The 
following estimates hold: 

dV(z) ( [aj(z)! ~ da,+ 
( [b j [ -1)2 , ]  ([bk I--1)  k = 0  j = l  +1  

~=o .= I b j l -  1 Ida~+l(z)/dzl 

<~ [dak+ l(z)/dz[. 
k=O \ j = l  

oo k + l  (i) If[bj[ >>. B + 1, B > 1, then [df(z)/dz[ <<. y~k=o(1/B) [dak+l(Z)/dz[ 

(ii) I f  lbjl >>- B + 1 > 1, and l a)(z)l < A for all z in D and all j, then 

dF(z) A 
dz ~< B~- I "  

(iii) I f  aj(z) = ajz p, where [bj[1> B + l, B > I ,  [aj[~<A, p > l ,  and [z[<<.R with R < i n f  
Px/([bj[ - 1)/[ aj[. Then [dF(z)/dz[ <~ ApR p- 1/(B - 1). 

Proof. Since [U[ -%< 1 (see [1], e.g.), for all z in D and all L we have 

( I b j l -  1)2,] I b k + l l -  1 k=o j= l  [bk+l + [ k=O j = l  

from which the results easily follow (the second inequality is used for (i), (ii), and (iii)). Assume 
w = 0 .  [] 
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Example 3.2. 

z - 1  - 1  
F~z)=~' + 2 + 2 ... where  I zl ~ 2 - 1 = 1. 

F(z)  reduces  to the ident i ty  function. Hence  I F'(z)l ~- 1, and  Coro l l a ry  3.1 (i) provides  a sharp  
bound ,  giving precisely the same value. Cauchy ' s  inequal i ty  IF'(z) l ~< 1/(1 - I zl) is p o o r  except  at 
the origin. 

Example 3.3. 

z oF l ( s  + 2;z) z z z 
• s(z) . . . .  

s + l o F l ( s + l ; z )  s + l + s + 2 + s + 3 +  ... 

for s > 1 and I z[ ~< s. ~s(z) is a ra t io  of  hypergeomet r ic  series. It easily fol lows f rom (i) (with B = s) 
that  I d~s ( z ) / d z l  <~ 1/(s - 1) for Izl ~< s. 

Examples 3.4. F r o m  a s t andard  con t inued  fract ion expans ion  of  tan z, 

Z Z 2 Z 2 Z 2 
F(z)  = 1 - -  - 

tan z 3 - 5 - 7 . . . .  

Assume Izl ~< x/2. Then  1 + la~(z)l = 1 + Izl 2 ~< 3 ~< Ibsl for all j. Us ing  the first inequal i ty  in 
Coro l l a ry  3.1 gives 

dE(z) ~< Izl ~ IzlZk 
~ (k + 1)4k(k!) 2" 

k = 0  

Actual  values of  the der ivat ive and  predic ted  b o u n d s  are: 

IF'(1.414)1 
IF'(1.0)[ 
IF'(0.5)l 
IF'(0.05) I 
IF' (0.005) 1 

Examples 3.5. 

(5 + ~)z 3 
F(z) - 6 

W e  have (from (iii)) 

True value Bound 

1.291 1.798 
0.770 1.136 
0.345 0.517 
0.033 0.050 
0.003 0.005 

(5 + ½)z 3 (5 + ½)z 3 

+ 7 + 8 + . . .  

[dF(z ) /dz l  <~ 4.5 for Izl ~ 1. C o m p u t a t i o n s  show IF'(1)[ = 2.41. 

Corol lary  3.6 (The W o r p i t z k y  case). The  con t inued  fract ion 

al(z)  az(z) 

1 + 1 + . . - '  
(3.2) 
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where each aj(z) is analytical in a domain D and I aj(z)l ~ ¼ for all j and all z in D converges to F(z) 
where lF(z)[ <<. ½. In addition 

dF(z) 
dz ~< 

(i) Ifla (z) l 
dF(z) 

dz ~< 

(ii) /f I a (z) l 

dF(z) 
dz ~< 

f (~01 ) dak+l(Z) dz 2 ._. 4 k laj(z) l o 

k = O  

<~ r j < ¼ for all z in D and all j, 

2k~=o4k(j011rjl) dak+ l(z) 
dz ' 

<<. r < ¼ for all z in D and all j, 

/_.~ (4r) k dak + 1 (z) 2 
k = o dz 

Proof. Eq. (2.2) can be written 

dz ~< ~ I~I [aj(z)[ la~,+l(Z)l ' x(z)l + I f i  
lai(z) l "~ lak+ 

k=O ( T ~ ) - 2 , /  ( I  - ½) ' 1 l1 + F k + l [  k=O j=l  

since I FJ I < ½ for each j. Here it is assumed that [ w[ < 1. The remaining two inequalities are easily 
obtained. 

Examples  3.7. 

z - 1  - 1  
4 4 

F(z)=--~  + 1 + 1 + . . . '  

where [z[ ~< 1. F(z) reduces to z/2. Thus, [F'(z)[ - ½, and the first formula in Corollary 3.6 is sharp, 
giving a uniform bound of ½. Without  special knowledge of the value of this continued fraction, 
a routine application of Cauchy's inequality is [F'(z)[ ~< (½)/(1 - [z [), which is accurate only when 
z = 0, and quite inaccurate for larger values of[z  [. 

Example  3.8. 

z t a n h z  z2/3 z2/1.3 z2/3.5 
F ( z ) -  3 - 1 + 1 + 1 + ... 

where ]z[ ~< x/P < x/~/2- Then, from (ii), 

dr(z) ~ (a3p)k l 
dz 

The uniform derivative bound on the set I zl ~< 0.2 from (ii) is approximately 0.281. Computat ion 
shows that IF'(0.2)[ = 0.130. The uniform derivative bound on the set Izl ~< 0.1 from (ii) is 0.135, 
whereas I F'(0.1) I = 0.066. The rather severe restriction on [zl stated above shows a limitation of the 
procedure, for if lzl is larger than described the continued fraction fails to satisfy the Worpitzky 
criteria and the tails of the fraction may not meet the requirement [ F J[ < ½. 
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C o r o l l a r y  3.9 (A special Van Vleck case).The continued fraction 

1 1 
(3.3) 

bl(Z)  -Jr b2(z)  -k- " " '  

where the {b.(z)} are analytic in D, - ½7z + e < argb,(z)  < ½7t - e and Ib.(z)l >i R/> 2 for all z in 
D and all n, converges to F(z), where IF(z) l <<, r with r = ½ (R - ~ - 4) ~< 1. In addition, 

dF(z) db (z) 
dz <~ ~ r2tk+ l) k-~; 

Proof.  Here  R = r + 1/r, and  Corol la ry  4.15 and  T h e o r e m  4.29 [1] insure bo th  convergence  of the 
con t inued  fract ion and  the condi t ion  I FJl ~< r. F r o m  (2.2), 

~ ~ ~ f l  1 Idbk+l(z)/dz[ 

k=O j = l ( I b j ( z ) l - I F J l )  2 (Ibk+~-~----I-ffr-;Xl) 2 

( [ I  1 ) [dbk+l(z)/dzl = ~r2,k+l)ldbk+l(Z)/dzl .  
(r  + ( l / r )  -- r) 2 ( r + ( I / r )  - -  r) 2 k=O 

~< 
k = 0  j = l  

E x a m p l e  3 .10.  

- 1  - 1  - 1  
F ( z )  = - -  

1 +  1 +  1 + ... 
z + -  z + -  z + -  

Z Z Z 

1 1 1 1 (1)+ 1+(1)+ 1 
- -  z +  z + -  - -  z +  z + -  

z z 

= m Z 
1- . . .  

i f 0  < [zl < 21/2 - -  1. 
Hence,  [F'(z)[ ~ 1. Here  [bj(z)[ = [z + 1/zl >~ 1/Iz[ - Izl > 2, and  we assume the condi t ion  on 

the argbj{z) are met.  Suppose,  now, that  0 < z < 21/2 - 1, giving [bj(z)l = z + 1/z. The series 
es t imate  in Coro l la ry  3.9 is then sharp: 

k=0 k=O \Z 2 - 1  ----1. 
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