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Abstract

We study actions of compact quantum groups on type I -factors, which may be interpreted as projective
representations of compact quantum groups. We generalize to this setting some of Woronowicz’s results
concerning Peter–Weyl theory for compact quantum groups. The main new phenomenon is that for general
compact quantum groups (more precisely, those which are not of Kac type), not all irreducible projective
representations have to be finite-dimensional. As applications, we consider the theory of projective repre-
sentations for the compact quantum groups associated with group von Neumann algebras of discrete groups,
and consider a certain non-trivial projective representation for quantum SU(2).
© 2011 Elsevier Inc. All rights reserved.
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0. Introduction

It is well known that for compact groups, one can easily extend the main theorems of the
Peter–Weyl theory to cover also projective representations. In this article, we will see that if one
tries to do the same for Woronowicz’s compact quantum groups, one confronts at least one sur-
prising novelty: not all irreducible projective representations of a compact quantum group have to
be finite-dimensional. On the other hand, one will still be able to decompose any projective rep-
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resentation into a direct sum of irreducible ones, and to determine certain orthogonality relations
between the matrix coefficients of irreducible projective representations.

The main tool we will use in this article are the Galois co-objects which we introduced in [11].
Indeed, we showed there that when one quantizes the notion of a projective representation, this
structure plays the role of a ‘generalized 2-cocycle function’.

In Section 1 of this article, we will develop a structure theory for such Galois co-objects in
the setting of compact quantum groups. A lot of the techniques we use are directly inspired by
the theory of the compact quantum groups themselves.

In Section 2, we will show that such Galois co-objects can be dualized into Galois objects for
their dual discrete quantum groups, a concept which was introduced in [8].

In Section 3, which, except for the last part, is independent from the more technical sec-
ond section, we present a Peter–Weyl theory for projective representations of compact quantum
groups. We also show how projective representations give rise to module categories over the ten-
sor category of the (ordinary) representations, and introduce the notion of fusion rules between
irreducible projective representations and (ordinary) irreducible representations.

In Section 4, we will give some details on the ‘reflection technique’ introduced in [11]. We
showed there that from any Galois co-object for a given compact quantum group, one can create
a (possibly) new locally compact quantum group. We will show that the type of this quantum
group (namely whether it is compact or not) is intimately tied up with the behavior of the Galois
co-object itself.

In Section 5, we will consider the special case of compact Kac algebras. We show that in this
case, all irreducible projective representations will be finite-dimensional, and the theory becomes
essentially algebraic.

In Sections 6 and 7, we further specialize. We first quickly consider the case of finite quan-
tum groups (i.e. finite-dimensional Kac algebras), for which we can mostly refer to the existing
literature. Then we will treat co-commutative compact Kac algebras, which correspond to group
von Neumann algebras of discrete groups. In this case, the projective representations turn out to
be classified by certain special 2-cohomology classes of finite subgroups of the associated dis-
crete group. In particular, we will be able to deduce that the group von Neumann algebra of a
torsionless discrete group admits no non-trivial 2-cocycles. These results will be proven using
only the material in Section 1 and the first part of Section 3.

In Section 8, we give a concrete example of what can happen in the non-Kac case by consider-
ing a particular non-trivial Galois co-object for the compact quantum group SUq(2). We compute
explicitly all its associated projective representations, provide the corresponding orthogonality
relations and calculate the fusion rules.

0.1. Notations and conventions

We will assume that all our Hilbert spaces are separable, and we take the inner product to be
conjugate linear in the second argument. We also assume that all our von Neumann algebras have
separable predual.

By ι, we denote the identity map on a set.
We denote by � the algebraic tensor product between vector spaces, by ⊗ the tensor product

between Hilbert spaces, and by ⊗ the spatial tensor product between von Neumann algebras.
By Σ we denote the flip map between a tensor product of Hilbert spaces:

Σ : H1 ⊗ H2 → H2 ⊗ H1 : ξ1 ⊗ ξ2 → ξ2 ⊗ ξ1.
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When A ⊆ B(H1,H2) and B ⊆ B(H2,H3) are linear spaces of maps between certain
Hilbert spaces, we will denote B · A = {∑n

i=1 biai | n ∈ N0, bi ∈ B, ai ∈ A}.
We use the leg numbering notation for operators on tensor products of Hilbert spaces. E.g., if

Z : H ⊗2 → H ⊗2 is a certain operator, we denote by Z13 the operator H ⊗3 → H ⊗3 acting as
Z on the first and third factor, and as the identity on the second factor.

At certain points, we will need the theory of weights on von Neumann algebras, which is
treated in detail in the first chapters of [30]. When M is a von Neumann algebra, and ϕ : M+ →
[0,∞] is a normal semi-finite faithful (nsf) weight on M , we denote

Nϕ = {
x ∈ M

∣∣ ϕ
(
x∗x

)
< ∞}

for the space of square integrable elements, M +
ϕ for the space of positive integrable elements,

and Mϕ for the linear span of M +
ϕ .

1. Galois co-objects for compact quantum groups

We begin with introducing the following concepts.

Definition 1.1. A von Neumann bialgebra (M,�M) consists of a von Neumann algebra M

and a faithful normal unital ∗-homomorphism �M : M → M ⊗M , satisfying the coassociativity
condition

(�M ⊗ ι)�M = (ι ⊗ �M)�M.

A von Neumann bialgebra (M,�M) is called a compact Woronowicz algebra [26,23] if there
exists a normal state ϕM on M which is �M -invariant:

(ϕM ⊗ ι)�M(x) = (ι ⊗ ϕM)�M(x) = ϕM(x)1 for all x ∈ M.

A compact Woronowicz algebra is called a compact Kac algebra if there exists a normal �M -
invariant tracial state τM on M .

Remarks.

1. Von Neumann bialgebras are also referred to as Hopf–von Neumann algebras in the litera-
ture. However, we prefer the above terminology, as for example a finite-dimensional Hopf–
von Neumann algebra is not necessarily a Hopf algebra. Admittedly, a finite-dimensional
von Neumann bialgebra is also not necessarily a bialgebra, as there could be no co-unit, but
this seems a lesser ambiguity.

2. It is easy to see that a normal �M -invariant state on a von Neumann bialgebra (M,�M),
when it exists, is unique. One can moreover show that this state will automatically be faithful.
We will then always use the notation ϕM for it in the general setting, but use the notation τM

in the setting of compact Kac algebras to emphasize the traciality.
3. Compact Woronowicz algebras can be characterized as those von Neumann bialgebras

arising from Woronowicz’s compact quantum groups in the C∗-algebra setting [37,39],
by performing a GNS-type construction. However, we have decided to focus only on the
von Neumann algebraic picture in this paper.
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Let us also introduce the following notations, which will be constantly used in the following.

Notation 1.2. Let (M,�M) be a compact Woronowicz algebra. We denote by (L 2(M), ,ΛM)

the GNS-construction of M with respect to ϕM . That is, L 2(M) is the completion of M , con-
sidered as a pre-Hilbert space with respect to the inner product structure

〈x, y〉 = ϕM

(
y∗x

)
,

and ΛM is the natural inclusion M ↪→ L 2(M). We then identify M as a von Neumann subalge-
bra of B(L 2(M)) by letting x ∈ M corresponding to the (bounded) closure of the operator

ΛM(M) → L 2(M) : ΛM(y) → ΛM(xy) for all y ∈ M.

We will further denote by ξM the cyclic and separating vector ΛM(1M) in L 2(M), so that
xξM = ΛM(x) for all x ∈ M .

The following two unitaries are of fundamental importance.

Definition 1.3. Let (M,�M) be a compact Woronowicz algebra.
The right regular corepresentation of (M,�M) is defined to be the unitary

V ∈ B(L 2(M))⊗M which is uniquely determined by the formula

V ΛM(x) ⊗ η = �M(x)ξM ⊗ η for all x ∈ M, η ∈ L 2(M).

The left regular corepresentation of (M,�M) is defined to be the unitary W ∈M ⊗B(L 2(M))

which is uniquely determined by the fact that

W ∗η ⊗ ΛM(x) = �M(x)η ⊗ ξM for all x ∈ M, η ∈ L 2(M).

We will in the following always use the above notations for these corepresentations. Note that
establishing the unitarity of these maps requires some non-trivial work! An approach to compact
quantum groups based on the properties of such unitaries can be found in [3], Section 4.

Let us now introduce the notion of a Galois co-object for a compact Woronowicz algebra
(see [11]).

Definition 1.4. Let (M,�M) be a compact Woronowicz algebra. A right Galois co-object
for (M,�M) consists of a Hilbert space L 2(N), a σ -weakly closed linear space N ⊆
B(L 2(M),L 2(N)) and a normal linear map �N : N → N ⊗N , such that the following prop-
erties hold: with Nop denoting the set

Nop := {
x∗ ∣∣ x ∈ N

} ⊆ B
(
L 2(N),L 2(M)

)
,

we should have

1. N · L 2(M) is norm-dense in L 2(N), and Nop · L 2(N) is norm-dense in L 2(M),
2. the space N is a right M-module (by composition of operators),
3. for each x, y ∈ N , we have x∗y ∈ M ,
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4. �N(xy) = �N(x)�M(y) for all x ∈ N and y ∈ M ,
5. �N(x)∗�N(y) = �M(x∗y) for all x, y ∈ N ,
6. �N is coassociative: (�N ⊗ ι)�N = (ι ⊗ �N)�N , and
7. the linear span of the set {�N(x)(y ⊗ z) | x ∈ N, y, z ∈ M} is σ -weakly dense in N ⊗N .

If (N1,�N1) and (N2,�N2) are two Galois co-objects for a von Neumann bialgebra (M,�M),
we call them isomorphic if there exists a unitary u : L 2(N1) → L 2(N2) such that uN1 = N2
and

�N2(ux) = (u ⊗ u)�N1(x) for all x ∈ N1.

Remarks.

1. The previous definition can be shown to be equivalent with the one presented in [11], Def-
inition 0.5. Also remark that the previous conditions can be grouped together as follows:
a Galois co-object is a right Morita (or imprimitivity) Hilbert M-module (conditions 1 to 3)
with a �M -compatible coalgebra structure (conditions 4 and 5 and condition 6) which is
‘non-degenerate’ (condition 7).

2. A trivial example of a right (M,�M)-Galois co-object is (M,�M) itself. Indeed, the final
condition even holds in a stronger form, as it can be shown that already {�M(x)(1 ⊗ y) |
x, y ∈ M} is σ -weakly dense in M ⊗M for compact Woronowicz algebras. It follows that
this stronger condition is then in fact true for all Galois co-objects for compact Woronowicz
algebras.

3. A treatment of Galois co-objects in the setting of Hopf algebras can be found in [6].

One can similarly define the notion of a left Galois co-object. Left Galois co-objects can be
created from right ones in the following way.

Definition 1.5. Let (N,�N) be a right Galois co-object for the compact Woronowicz algebra
(M,�M).

We call the couple (Nop,�Nop), consisting of

Nop = {
x∗ ∣∣ x ∈ N

} ⊆ B
(
L 2(N),L 2(M)

)
,

together with the coproduct

�Nop(x) := �N

(
x∗)∗

, x ∈ Nop,

the opposite (left) Galois co-object of (N,�N). It is a left Galois co-object for the compact
Woronowicz algebra (M,�M).

We call the couple (Ncop,�Ncop), where

Ncop = N ⊆ B
(
L 2(M),L 2(N)

)
and

�Ncop = �
op : N → N ⊗N : x → Σ�N(x)Σ for all x ∈ N,
N
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the co-opposite (right) Galois co-object of (N,�N). It is a right Galois co-object for the compact
Woronowicz algebra (M,�

op
M).

The following notation will be useful.

Notation 1.6. Let (M,�M) be a compact Woronowicz algebra, and (N,�N) a right Galois co-
object for (M,�M). We denote

ΛN : N → L 2(N) : x → xξM.

Remark. By the second condition in Definition 1.4, we know that N is a right M-module, and
then we trivially have that

ΛN(xy) = xΛM(y) for all x ∈ N, y ∈ M.

By the third condition in that definition, together with the faithfulness of ϕM , we see that ΛN is
injective and that 〈

ΛN(x),ΛN(y)
〉 = ϕM

(
y∗x

)
for all x, y ∈ N.

And finally, by the first (and second) condition in that definition, we see that ΛN has norm-dense
range.

One can construct for a Galois co-object (N,�N) certain unitaries which are analogous to
the regular corepresentations for a compact Woronowicz algebra (and coincide with them in case
(N,�N) = (M,�M)).

Proposition 1.7. Let (M,�M) be a compact Woronowicz algebra, and (N,�N) a right Galois
co-object for (M,�M).

1. There exists a unitary

Ṽ : L 2(N) ⊗ L 2(M) → L 2(N) ⊗ L 2(N)

which is uniquely determined by the property that for all η ∈ L 2(M) and x ∈ N , we have

Ṽ ΛN(x) ⊗ η = �N(x)ξM ⊗ η.

Similarly, there exists a unitary

W̃ : L 2(N) ⊗ L 2(N) → L 2(M) ⊗ L 2(N),

uniquely determined by the property that for all η ∈ L 2(M) and x ∈ N , we have

W̃ ∗η ⊗ ΛN(x) = �N(x)η ⊗ ξM.

2. We have Ṽ ∈ B(L 2(N))⊗N and W̃ ∗ ∈ N ⊗B(L 2(N)).



3602 K. De Commer / Journal of Functional Analysis 260 (2011) 3596–3644
3. For x ∈ N , we have

�N(x) = Ṽ (x ⊗ 1)V ∗ = W̃ ∗(1 ⊗ x)W.

4. The following ‘pentagonal identities’ hold:

Ṽ12Ṽ13V23 = Ṽ23Ṽ12

as maps from L 2(N) ⊗ L 2(M) ⊗ L 2(M) to L 2(N) ⊗ L 2(N) ⊗ L 2(N), and

W12W̃13W̃23 = W̃23W̃12

as maps from L 2(N) ⊗ L 2(N) ⊗ L 2(N) to L 2(M) ⊗ L 2(M) ⊗ L 2(N).
5. The following identities hold:

(ι ⊗ �N)Ṽ = Ṽ12Ṽ13,

(�N ⊗ ι)
(
W̃ ∗) = W̃ ∗

23W̃
∗
13.

Proof. The statements for W̃ follow immediately from the ones for Ṽ , by considering the co-
opposite Galois co-object.

We then refer to [11] for the proofs of the first four statements (Proposition 2.3 for the first
and second assertions, Proposition 2.4 for the third and fourth). The fifth statement follows im-
mediately from combining the three preceding ones. �
Remark. Although we referred to [11], we want to stress that these assertions are quite straight-
forward to prove. For example, the surjectivity of Ṽ follows quite immediately from the seventh
condition in Definition 1.4, combined with the surjectivity of V .

Definition 1.8. We call the unitary Ṽ appearing in the previous proposition the right regular
(N,�N)-corepresentation of (M,�M). We call the unitary W̃ the left regular (Nop,�Nop)-
corepresentation of (M,�M) (where we recall that (Nop,�Nop) is the left Galois co-object
opposite to (N,�N), see Definition 1.5).

Remark. The general notion of an ‘(N,�N)-corepresentation’ will be introduced in Section 3.

For the rest of this section, we will fix a compact Woronowicz algebra (M,�M) and a right
Galois co-object (N,�N) for (M,�M). We then further keep denoting by V and W the right
and left regular corepresentations of (M,�M), and by Ṽ and W̃ the right regular (N,�N)- and
left regular (Nop,�Nop)-corepresentation of (M,�M).

Our following lemma improves the second assertion in Proposition 1.7.

Lemma 1.9. The following equalities hold:

N = {
(ω ⊗ ι)(Ṽ )

∣∣ ω ∈ B
(
L 2(N)

)
∗
}σ -weak closure

= {
(ι ⊗ ω)

(
W̃ ∗) ∣∣ ω ∈ B

(
L 2(N)

)
∗
}σ -weak closure

.
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Proof. We will again only prove the first identity, as the second one then follows by symmetry.
For ξ, η ∈ L 2(N), denote by ωξ,η the normal functional on B(L 2(N)) determined by

ωξ,η(x) = 〈xξ, η〉 for x ∈ B(L 2(N)). Then for x, y ∈ N , a straightforward computation shows
that

(ωΛN(x),ΛN (y) ⊗ ι)(Ṽ ) = (ϕM ⊗ ι)
((

y∗ ⊗ 1
)
�N(x)

)
.

It is thus enough to prove that the linear span of such elements is σ -weakly dense in N .
Suppose that this were not so. Then we could find a non-zero ω ∈ N∗ such that

ϕM

(
y∗(ι ⊗ ω)

(
�N(x)

)) = 0 for all x, y ∈ N.

Taking y equal to (ι ⊗ ω)(�N(x)), we would have (ι ⊗ ω)(�N(x)) = 0 for all x ∈ N by faith-
fulness of ϕM . But then also

(ι ⊗ ω)
(
�N(x)(m ⊗ 1)

) = 0 for all x ∈ N, m ∈ M.

Now the set {�M(m1)(m2 ⊗ 1) | m1,m2 ∈ M} has σ -weakly dense linear span in M ⊗M . Then,
by the conditions 2, 4 and 7 in Definition 1.4, it follows that

(ι ⊗ ω)(z) = 0 for all z ∈ N ⊗N,

and so necessarily ω = 0, a contradiction. �
The following result will allow us to obtain a decomposition for W̃ and Ṽ .

Proposition 1.10. Denote by N̂ ⊆ B(L 2(N)) the von Neumann algebra

N̂ = {
x ∈ B

(
L 2(N)

) ∣∣ Ṽ ∗(x ⊗ 1)Ṽ = x ⊗ 1
}
.

Then N̂ satisfies the following properties.

1. The von Neumann algebra N̂ is an l∞-sum of type I -factors.
2. The equality N̂ = {(ω ⊗ ι)(W̃ ∗) | ω ∈ B(L 2(M),L 2(N))∗}σ -weak closure holds.

Remark. In the special case where (N,�N) equals (M,�M) considered as a right Galois co-
object over itself, one denotes the above von Neumann algebra as M̂ .

Proof of Proposition 1.10. Consider the unital normal faithful ∗-homomorphism

AdL : B(
L 2(N)

) → M ⊗B
(
L 2(N)

) : x → ΣṼ ∗(x ⊗ 1)Ṽ Σ.

Then by Proposition 1.7.5, it follows that AdL is a coaction by (M,�M):

(�M ⊗ ι)AdL = (ι ⊗ AdL)AdL .
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Hence N̂ is precisely the set B(L 2(N))AdL of AdL-fixed elements in B(L 2(N)), that is, the
set of elements satisfying AdL(x) = 1 ⊗ x. It is well known (and easy to see) that the map

E : B(
L 2(N)

) → B
(
L 2(N)

) : x → (ϕM ⊗ ι)AdL(x)

is then a normal conditional expectation of B(L 2(N)) onto N̂ . This forces N̂ to be an l∞-direct
sum of type I -factors (see for example Exercise IX.4.1 in [30]).

We now prove the second point. First of all, remark that

Ṽ23W̃
∗
12 = W̃ ∗

12Ṽ23,

which follows from a straightforward computation. From this, it is easy to get that

(ι ⊗ AdL)(W̃ ) = W̃13,

and so all elements of the form (ω ⊗ ι)(W̃ ) with ω ∈ B(L 2(N),L 2(M))∗ lie in N̂ . We next
show that all elements of N̂ can be approximated σ -weakly by such elements.

For ω1,ω2 ∈ N∗, denote

ω1 ∗ ω2 := (ω1 ⊗ ω2) ◦ �N ∈ N∗.

For ξ, η ∈ B(L 2(N)), denote θξ,η for the rank one operator ζ → 〈ζ, η〉ξ on L 2(N), and denote
ωξ,η for the normal functional x → 〈xξ, η〉. Choose b, x, y ∈ N , and denote

a = (ωΛN(x),ΛN (y) ⊗ ι)(Ṽ ) ∈ N, SN(a) = (ωΛN(x),ΛN(y) ⊗ ι)
(
Ṽ ∗) ∈ Nop,

where we recall that Nop = {x∗ | x ∈ N} ⊆ B(L 2(N),L 2(M)). We will prove the identity

E(θΛN(a),ΛN(b)) = ((
ϕM

(
b∗ · ) ∗ ϕM

(
SN(a) · )) ⊗ ι

)(
W̃ ∗), (1)

where E is the conditional expectation defined in the first part of the proof, and where ϕM(b∗ · )
and ϕM(SN(a) · ) are the obvious normal functionals on N . As the linear span of the θΛN(a),ΛN (b)

is σ -weakly dense in B(L 2(N)) by Lemma 1.9, and as E is a normal map with N̂ as its range,
the second point of the proposition will follow from this identity.

To prove the identity (1), choose further c, d ∈ N . It is sufficient to prove then that

〈
E(θΛN(a),ΛN(b)) · ΛN(c),ΛN(d)

〉
= 〈((

ϕM

(
b∗ · ) ∗ ϕM

(
SN(a) · )) ⊗ ι

)(
W̃ ∗) · ΛN(c),ΛN(d)

〉
. (2)

We remark now that a and SN(a) can also be rewritten in the following form, by a simple com-
putation involving only the definition of Ṽ :

a = (ϕN ⊗ ι)
((

y∗ ⊗ 1
)
�N(x)

)
, SN(a) = (ϕM ⊗ ι)

(
�N(y)∗(x ⊗ 1)

)
.
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Using again the definition of Ṽ , the left-hand of Eq. (2) then simplifies to

(ϕM ⊗ ϕM ⊗ ϕM ⊗ ϕM)
((

y∗ ⊗ 1 ⊗ b∗ ⊗ 1
)
�N(d)∗24�N(c)34�N(x)12

)
. (3)

On the other hand, using the definition of W̃ ∗, we get that the right-hand side of Eq. (2) becomes

(ϕM ⊗ ϕM ⊗ ϕM ⊗ ϕM)
((

1 ⊗ b∗ ⊗ 1 ⊗ d∗)�N(y)∗13

(
x ⊗ �

(2)
N (c)

))
, (4)

where �
(2)
N (c) = (ι ⊗ �N)�N(c). In both expressions (3) and (4), we can write

v = (ϕM ⊗ ι)
((

b∗ ⊗ 1
)
�N(c)

)
,

and we then have to prove that

(ϕM ⊗ ϕM ⊗ ϕM)
((

y ⊗ �N(d)
)∗(

�N(x) ⊗ v
))

= (ϕM ⊗ ϕM ⊗ ϕM)
((

�N(y) ⊗ d
)∗(

x ⊗ �N(v)
))

. (5)

Now by the final condition in Definition 1.4 (and the second remark following it), it is enough to
show that these two expressions are equal when we replace x ⊗ v by �N(z)(m ⊗ 1) and y ⊗ d

by �N(w)(n ⊗ 1), where w,z ∈ N and m,n ∈ M . But then the left-hand side of (5) becomes

(ϕM ⊗ ϕM ⊗ ϕM)
((

n∗ ⊗ 1 ⊗ 1
)
�

(2)
M

(
w∗z

)(
�M(m) ⊗ 1

))
,

which by invariance of ϕM collapses to ϕM(n∗w∗zm). A similar computation shows that with this
replacement, also the right-hand side expression in (5) collapses to ϕM(n∗w∗zm). This concludes
the proof. �

Of course, we then also have

N̂ = {
(ω ⊗ ι)(W̃ )

∣∣ ω ∈ B
(
L 2(N),L 2(M)

)
∗
}σ -weak closure

,

which follows immediately by applying the ∗-operation to both sides of the identity in the second
point of the previous proposition.

Notation 1.11. By Proposition 1.10.1, we may identify the center Z (N̂) of N̂ with l∞(IN), for
some countable set IN . Denoting pr the minimal central projection in Z (N̂) associated with the
element r ∈ IN , we may further identify prN̂ with B(Hr ) for some separable Hilbert space Hr .
We also denote

nr := dim(Hr ) ∈ N0 ∪ {∞}.

Proposition 1.12. The unital normal faithful ∗-homomorphism

AdR : N̂ → B
(
L 2(N)

)⊗M : x → ΣW̃(1 ⊗ x)W̃ ∗Σ
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restricts to a ∗-homomorphism N̂ → N̂ ⊗M , and defines in this way a right coaction of (M,�M)

on N̂ .
Moreover, the set of fixed elements for AdR coincides with the center Z (N̂) of N̂ .

Proof. From Proposition 1.10.2, it follows that W̃ ∈ Nop ⊗ N̂ (we may apply the weak slice map
property as Nop is a corner of a von Neumann algebra). Hence AdR(x) ∈ N̂ ⊗M for x ∈ N̂ . By
applying Proposition 1.7.5, we get

(AdR ⊗ι)AdR(x) = (ι ⊗ �M)AdR(x).

Hence the first part of the proposition follows.
If further x ∈ N̂ is a fixed element for AdR , then it follows that (1 ⊗ x)W̃ = W̃ (1 ⊗ x). Again

by Proposition 1.10.2, we deduce that xy = yx for all y ∈ N̂ , i.e. x ∈ Z (N̂). �
Corollary 1.13. Using Notation 1.11 and the notation from the previous proposition, the coaction
AdR restricts to an ergodic coaction

Ad(r)
R : B(Hr ) → B(Hr )⊗M

for each r ∈ IN .

We recall that a coaction α is called ergodic if the only elements satisfying α(x) = x ⊗ 1 are
scalar multiples of the unit element.

Proof of Corollary 1.13. Clearly, as Z (N̂) consists of the fixed points of AdR by the previous
proposition, it is immediate that AdR indeed restricts to B(Hr ). If then x is a fixed element for
Ad(r)

R , we have, again by the previous proposition, that x ∈ Z (N̂) ∩ B(Hr ), and x is a scalar
operator. �

Now as each Ad(r)
R appearing in the previous corollary is ergodic, there exists a unique Ad(r)

R -
invariant state φN,r on B(Hr ), determined by the formula

φN,r (x)1B(Hr ) = (ι ⊗ ϕM)
(
Ad(r)

R (x)
)

for all x ∈ B(Hr ).

Notation 1.14. If Tr is the positive trace class operator associated with the state φN,r on B(Hr )

introduced above, we denote by Tr,0 � Tr,1 � · · · the descending sequence of its eigenvalues,
counting multiplicities. We further fix in Hr a basis er,i , with 0 � i < nr , such that er,i is an
eigenvector for Tr with eigenvalue Tr,i .

We denote by er,ij ∈ N̂ the matrix units associated with the basis er,i , and we denote by ωr,ij

the following normal functionals on N̂ ⊆ B(
⊕

r∈IN
Hr ):

ωr,ij (x) = 〈xer,i , er,j 〉, x ∈ N̂ .

In the special case where (N,�N) equals (M,�M) considered as a right Galois co-object over
itself, we will denote the nr as mr , the Tr,j as Dr,j and the Hr as Kr , but otherwise keep all
notation as above.
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Theorem 1.15. Denote

W̃r,ij = (ι ⊗ ωr,ji)(W̃ ) ∈ Nop ⊆ B
(
L 2(N),L 2(M)

)
.

Then the following statements hold.

1. The unitary W̃ equals the strong∗ convergent sum
∑

r∈IN

∑nr−1
i,j=0 W̃r,ij ⊗ er,ij .

2. For each r ∈ IN and 0 � i, j < nr , we have

nr−1∑
k=0

W̃r,ik · W̃ ∗
r,jk = δi,j 1L 2(M),

nr−1∑
k=0

W̃ ∗
r,ki · W̃r,kj = δi,j 1L 2(N),

both sums converging strongly.
3. For each r ∈ IN and 0 � i, j < nr , we have

�N

(
W̃ ∗

r,ij

) =
nr−1∑
k=0

W̃ ∗
r,ik ⊗ W̃ ∗

r,kj ,

the sum again being a strongly∗ converging one.
4. The following orthogonality relations hold:

ϕM

(
W̃r,ij · W̃ ∗

s,kl

) = δr,sδi,kδj,lTr,j for all r, s ∈ IN , 0 � i, j < nr, 0 � k, l < ns.

Proof. The first point is immediate, and also the second one follows straightforwardly from the
unitarity of W̃ . The third point follows from the identity (�N ⊗ ι)(W̃ ∗) = W̃ ∗

23W̃
∗
13 in Proposi-

tion 1.7.5. In the fourth point, the orthogonality relations for r = s follow from writing out the
identity

(ι ⊗ ϕM)
(
Ad(r)

R (er,ij )
) = φN,r (er,ij ) = δi,j Tr,j .

Thus the only thing left to show is that ϕM(W̃r,ij · W̃ ∗
s,kl) = 0 for r �= s. But also here, we

can use a standard technique (see e.g. [37]). For suppose that this were not so, and choose r �= s

which violate this condition. Consider, for x ∈ B(Hs ,Hr ), the element

F(x) = (ϕM ⊗ ι)
(
W̃r(1 ⊗ x)W̃ ∗

s

) ∈ B(Hs ,Hr ),

where of course

W̃r = (1 ⊗ pr)W̃ =
nr−1∑

W̃r,ij ⊗ er,ij ∈ Nop ⊗B(Hr ).
i,j=0
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By assumption, there must exist an x with F(x) �= 0. Fixing such an x, denote y = F(x). Then
it is easy to see that

W̃r (1 ⊗ y)W̃ ∗
s = (1 ⊗ y),

using Proposition 1.7.5 and the �M -invariance of ϕM . This implies that y∗y, respectively yy∗,
is a fixed element for Ad(s)

R , respectively Ad(r)
R . Since these coactions are ergodic, y∗y and yy∗

must be (identical) scalars, and so we can scale x such that y becomes a unitary u.
We then find that

(1 ⊗ u)W̃s

(
1 ⊗ u∗) = W̃r .

This implies that there exist two non-equal normal functionals ω1 and ω2 on N̂ such that

(ι ⊗ ω1)(W̃ ) = (ι ⊗ ω2)(W̃ ).

As the set {(ω⊗ ι)(W̃ ) | ω ∈ B(L 2(N),L 2(M))} is σ -weakly dense in N̂ by Proposition 1.10.2,
this clearly gives a contradiction. Hence ϕM(W̃r,ij · W̃ ∗

s,kl) = 0 for r �= s. �
Notation 1.16. By the final part of the previous proposition, we have a unitary transformation

L 2(N) ∼=
⊕
r∈IN

Hr ⊗ Hr ,

by means of the map

W̃ ∗
r,ij ξM → T

1/2
r,j er,i ⊗ er,j .

In the following, we will then always identify L 2(N) and
⊕

r∈IN
Hr ⊗ Hr in this way, so that

for example the elements x ∈ N act directly as linear operators⊕
r∈IM

Kr ⊗ Kr →
⊕
r∈IN

Hr ⊗ Hr .

Lemma 1.17.

1. With Ṽr,ij := T
1/2
r,i T

−1/2
r,j W̃ ∗

r,ij , we have the identity

Ṽ =
∑
r∈IN

nr−1∑
i,j=0

er,ij ⊗ Ṽr,ij ,

the sum converging strongly∗.
2. The Ṽr,ij satisfy the following orthogonality relations:

ϕM

(
Ṽ ∗

r,ij Ṽs,kl

) = δr,sδi,kδj,lTr,i for all r, s ∈ IN , 0 � i, j < nr, 0 � k, l < ns.
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3. The following equalities hold:

N̂ ′ = {
(ι ⊗ ω)(Ṽ )

∣∣ ω ∈ N∗
}

= {
x ∈ B

(
L 2(N)

) ∣∣ W̃ ∗(1 ⊗ x)W̃ = 1 ⊗ x
}
.

Proof. Choose r ∈ IN , 0 � i, j < nr and η ∈ L 2(M). Then we compute

Ṽ er,i ⊗ er,j ⊗ η = T
−1/2
r,j Ṽ

(
W̃ ∗

r,ij ξM ⊗ η
)

= T
−1/2
r,j

nr−1∑
k=0

W̃ ∗
r,ikξM ⊗ W̃ ∗

r,kj η

=
nr−1∑
k=0

T
1/2
r,k T

−1/2
r,j er,i ⊗ er,k ⊗ W̃ ∗

r,kj η.

From this, the first point in the lemma follows.
The second point is of course just a reformulation of Theorem 1.15.4.
These orthogonality relations then immediately imply that

N̂ ′ = {
(ι ⊗ ω)(Ṽ )

∣∣ ω ∈ N∗
}
.

Also the second equality of the third point follows straightforwardly: if x ∈ B(L 2(N)) and

W̃ ∗(1 ⊗ x)W̃ = 1 ⊗ x,

then x(ω ⊗ ι)(W̃ ) = (ω ⊗ ι)(W̃ )x for all ω ∈ (Nop)∗. From Proposition 1.10.2, we conclude that
x ∈ N̂ ′. As W̃ ∈ Nop ⊗ N̂ , it is also clear that any x ∈ N̂ ′ satisfies W̃ ∗(1 ⊗ x)W̃ = 1 ⊗ x. �

Recall that we had introduced in Definition 1.5 the notion of the co-opposite Galois co-object(
Ncop,�Ncop

) = (
N,�

op
N

)
.

The following lemma gathers some transfer results between this structure and the original one.

Lemma 1.18.

1. The right regular (N,�
op
N )-corepresentation for (M,�

op
M) equals ΣW̃ ∗Σ , while the left

regular (N,�
op
N )-corepresentation equals ΣṼ ∗Σ .

2. The dual von Neumann algebra (Ncop)∧ equals N̂ ′.

Proof. The two statements are easily verified (the second one follows from Lemma 1.17.3). �
One can also relate the two adjoint coactions on respectively N̂ and N̂ ′, but this result re-

quires some more preparation. We will relegate this investigation to the end of Section 3 (see
Proposition 3.11).

Let us end this section with some remarks on 2-cocycles.
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Definition 1.19. (See [14].) Let (M,�M) be a von Neumann bialgebra. A unitary element Ω ∈
M ⊗M is called a unitary 2-cocycle if Ω satisfies the following identity, called the 2-cocycle
identity:

(Ω ⊗ 1)(�M ⊗ ι)(Ω) = (1 ⊗ Ω)(ι ⊗ �M)(Ω).

Example 1.20. Let (M,�M) be a compact Woronowicz algebra, and Ω a unitary 2-cocycle for
(M,�M). Then if we put L 2(N) = L 2(M), N = M and

�N(x) = Ω�M(x) for all x ∈ M,

the couple (N,�N) is a Galois co-object for (M,�M), called the Galois co-object associated
with Ω .

It is easy to see that if Ω1 and Ω2 are two unitary 2-cocycles for (M,�M), then their associ-
ated Galois co-objects are isomorphic iff the unitary 2-cocycles are coboundary equivalent, that
is, iff there exists a unitary u ∈ M such that

Ω2 = (
u∗ ⊗ u∗)Ω1�M(u).

In particular, the Galois co-object associated with a 2-cocycle Ω on (M,�M) is isomorphic
to (M,�M) as a right Galois co-object iff the 2-cocycle is a coboundary, i.e. is coboundary
equivalent to 1 ⊗ 1.

Definition 1.21. Let (M,�M) be a compact von Neumann algebra, and (N,�N) a Galois co-
object for (M,�M). Then (N,�N) is called cleft if there exists a unitary 2-cocycle Ω for
(M,�M) such that (N,�N) is isomorphic to the Galois co-object associated with Ω .

At the moment, we do not have any examples of non-cleft Galois co-objects for compact
Woronowicz algebras, although these do exist in the non-compact case. For example, in [4],
non-cleft Galois co-objects were (implicitly) constructed for discrete Woronowicz algebras (see
Definition 2.1), the Galois co-object being an l∞-direct sum of rectangular matrix blocks. For
commutative compact Woronowicz algebras, that is, those arising from compact groups, it can
be proven that all Galois co-objects are necessarily cleft (that is, arise from a unitary (measur-
able) 2-cocycle function on the compact group). We will later prove that this is also the case
for co-commutative compact Woronowicz algebras (i.e. group von Neumann algebras of discrete
groups). Finally, we note that also any Galois co-object for a co-commutative discrete Woro-
nowicz algebra, i.e. the dual of a compact group, is cleft [36].

2. Galois objects for discrete Woronowicz algebras

In this section, we will make the connection with the theory of Galois objects from [11].
We first introduce the notion of the dual of a compact Woronowicz algebra.

Definition 2.1. Let (M,�M) be a compact Woronowicz algebra with regular left corepresenta-
tion W . Define
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M̂ = {
(ω ⊗ ι)(W)

∣∣ ω ∈ M∗
}σ -weak closure

.

Then M̂ is a von Neumann algebra which can be endowed with a von Neumann bialgebra struc-
ture by giving it the unique comultiplication �M̂ such that

(ι ⊗ �M̂)(W) = W13W12.

We will call the couple (M̂,�M̂) the discrete Woronowicz algebra dual to (M,�M).

In fact, we had already introduced the notation M̂ in the remark after Proposition 1.10, as it
can be considered to be the space N̂ in the special case where the right Galois co-object (N,�N)

equals (M,�M). We then also remind that we had introduced some special notations for this
case in the Notation 1.14. The following proposition gathers some useful information which can
be found in the literature (for example, see the Remark 1.15 in [33], although we warn the reader
that their comultiplication on M̂ is opposite to ours).

Proposition 2.2. Let (M,�M) be a compact Woronowicz algebra, and (M̂,�M̂) its dual.

1. For all r ∈ IM , the number mr = dim(Kr ) is finite.
2. There exists a left �M -invariant nsf weight ϕM̂ on M̂ : for all normal states on M̂ and all

positive x ∈ M̂+, we have

ϕM̂

(
(ω ⊗ ι)�M̂(x)

) = ϕM̂(x).

A concrete formula for ϕM̂ is given by

ϕM̂(er,ij ) = δi,jD
−1
r,j for all r ∈ IM, 0 � i, j < mr.

3. On the other hand, define ψM̂ to be the unique nsf weight on M̂ such that

ψM̂(er,ij ) = δi,j c
2
r Dr,i ,

where cr = Tr(D−1
r )1/2 (which is known as the quantum dimension of the irreducible corep-

resentation corresponding to the index r ∈ IM ). Then ψM̂ is right �M̂ -invariant: for all
normal states on M̂ and all positive x ∈ M̂+, we have

ψM̂

(
(ι ⊗ ω)�M̂(x)

) = ψM̂(x).

4. The Radon–Nikodym derivative between ψM̂ and ϕM̂ is given by the (possibly unbounded)
positive, non-singular operator

δM̂ =
⊕
r∈IM

c2
r D

2
r ,

and δM̂ is then a group-like element: for all t ∈ R, we have

�M̂

(
δit

M̂

) = δit

M̂
⊗ δit

M̂
.
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The purpose of this section is to show that for an arbitrary Galois co-object (N,�N), the
comultiplication �M̂ can be generalized to a coaction αN̂ of (M̂,�M̂) on N̂ . This coaction then
shares many properties with the actual comultiplication �M̂ .

For the rest of this section, we again fix a compact Woronowicz algebra (M,�M) and a right
Galois co-object (N,�N) for it. We keep using the notation from the previous section.

Notation 2.3. We denote by ϕN̂ the nsf weight on N̂ which is uniquely determined by the fact
that all er,ij ∈ MϕN̂

, with

ϕN̂ (er,ij ) = δi,j T
−1
r,j ,

where the Tr,j were introduced in Notation 1.14. We will then take the GNS-construction for ϕN̂

also inside
⊕

r∈IN
Hr ⊗ Hr , the GNS-map ΛN̂ of ϕN̂ being determined by

ΛN̂(er,ij ) = T
−1/2
r,j er,i ⊗ er,j .

The same notation will be used when (N,�N) equals (M,�M) considered as a right Galois
co-object over itself, taking however into consideration the special notations from Notation 1.14.

Remarks.

1. The fact that there exists a unique nsf weight with the above properties requires in fact
a small technical argument (at least in case the Hr are not finite-dimensional). The main
observations to make are the well-known fact that any nsf weight ψ on a type I -factor is
of the form Tr(S1/2 · S1/2) for some non-singular positive (possibly unbounded) operator S

(see [30], Lemma VIII.2.8), and the fact that if ξ is a vector with ψ(θξ,ξ ) < ∞ (where we
recall that θξ,ξ is the rank one operator associated with ξ ), then ξ ∈ D(S1/2) with ‖S1/2ξ‖2 =
ψ(θξ,ξ ) (this can, for example, be pieced together from the results in [30], Section IX.3).
With this information, it should then be easy to verify that the nsf weight ϕN̂ in the previous
notation is indeed well defined and uniquely determined.

2. It is easy to check, using the orthogonality relations between the W̃r,ij , that for r ∈ IN and
0 � i, j < nr , we have (

ϕM

( · W̃ ∗
r,ij

) ⊗ ι
)
(W̃ ) ∈ NϕN̂

,

with

ΛN̂

((
ϕM

( · W̃ ∗
r,ij

) ⊗ ι
)
(W̃ )

) = W̃ ∗
r,ij ξM.

Hence our identifications of L 2(N) and L 2(N̂) coincide with the ‘usual’ way in which
Pontryagin duality is defined in the setting of (locally) compact quantum groups (see [23]).

Proposition 2.4. Denote by αN̂ the unital normal faithful ∗-homomorphism

αN̂ : N̂ → N̂ ⊗B
(
L 2(M)

) : x → ΣW̃(x ⊗ 1)W̃ ∗Σ.

Then α̂ has range in N̂ ⊗ M̂ , and determines an ergodic coaction of (M̂,� ̂) on N̂ .
N M
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Before giving the proof, we first state a lemma that we will need in the course of it.

Lemma 2.5. Take r ∈ IN arbitrary. Then the linear span of the set{
W̃ ∗

r,ij a
∣∣ 0 � i, j < nr, a ∈ M

}
is σ -weakly dense in N .

Proof. Denote by Ñ the σ -weak closure of the linear span of {W̃ ∗
r,ij a | 0 � i, j < nr, a ∈ M}.

Then clearly Ñ ⊆ N . Now choose r ∈ IN fixed, and take an x ∈ N . By Proposition 1.15.2, we
have

x =
nr−1∑
k=0

W̃ ∗
r,k0(W̃r,k0x),

the sum converging σ -weakly. As W̃r,k0x ∈ M for all 0 � k < nr , the sum on the right-hand side
lies in Ñ . So also N ⊆ Ñ . �
Proof of Proposition 2.4. Take ω ∈ (Nop)∗, and denote x = (ω ⊗ ι)(W̃ ). By the pentagonal
identity for W̃ (Proposition 1.7.4), we easily get that

αN̂ (x) = (ω ⊗ ι ⊗ ι)(W13W̃12) ∈ N̂ ⊗ M̂,

and by an application of the formula (ι ⊗ �M̂)(W) = W13W12, we find

(αN̂ ⊗ ι)αN̂ (x) = (ι ⊗ �M̂)αN̂ (x).

As elements of the form x constitute a σ -weakly dense subspace of N̂ by Proposition 1.10.2, we
have proven that αN̂ is a well-defined coaction.

We now show that it is ergodic. Take an element x ∈ N̂ satisfying αN̂ (x) = x ⊗ 1. Then for
all y ∈ N̂ , we get

(x ⊗ 1)AdR(y) = AdR(y)(x ⊗ 1),

where we recall that AdR(y) = ΣW̃(1⊗y)W̃ ∗Σ . As {(ι⊗ω)AdR(y) | ω ∈ M∗}′′ = N̂ , a general
fact for any coaction of a compact Woronowicz algebra, we find x ∈ Z (N̂), the center of N̂ .

Write then x = ∑
r∈IN

xrpr , where r → xr ∈ l∞(IN) and pr the r-th minimal central projec-
tion of N̂ . Then as αN̂ (x) = x ⊗ 1, we have

x(ι ⊗ ω)
(
W̃ ∗Σ

) = (ι ⊗ ω)
(
W̃ ∗Σ

)
x

for all ω ∈ B(L 2(M),L 2(N))∗. If we take ω = ωaξM,W̃ ∗
r,ij ξM

for some r ∈ IN , 0 � i, j < nr and

a ∈ M , and apply both sides of the above equality to W̃ ∗
r,kj ξM for some 0 � k < nr , we get, by

using the orthogonality relations for the W̃r,ij , that

xW̃ ∗ aξM = xrW̃
∗ aξM.
r,ki r,ki
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As, with r a fixed element of IN , we have that {W̃ ∗
r,kia | a ∈ M} is σ -weakly dense in N , by

the previous lemma, we get that xξ = xrξ for all ξ ∈ L 2(N), so x is a scalar multiple of the
unit. �

Our next goal is to show that αN̂ is nicely behaved with respect to the weight structure on
(M̂,�M̂).

Proposition 2.6. For all x ∈ N̂+ and all normal positive states ω on N̂ , we have

ϕM̂

(
(ω ⊗ ι)αN̂ (x)

) = ϕN̂ (x).

In particular, αN̂ is an integrable coaction.

Remark. The fact that αN̂ is integrable means that there exists a σ -weakly dense subspace of N̂

consisting of elements x for which all expressions (ω ⊗ ι)αN̂ (x) with ω ∈ N̂∗ lie in MϕM̂
.

Proof of Proposition 2.6. We first recall a small technical result from [32], Proposition 1.3.
Namely, as αN̂ is an ergodic coaction, there exists a (not necessarily semi-finite) normal faithful
weight ϕ ′̂

N
on N̂ , determined by the following formula: for all x ∈ N̂+, we have

ϕ ′̂
N

(x) = ϕM̂

(
(ω ⊗ ι)αN̂ (x)

)
,

where ω is any normal state on N̂ . Our job then is to prove that ϕ ′̂
N

= ϕN̂ . By the remark after
Notation 2.3, it is enough to prove that the er,ij are in Mϕ ′̂

N
with

ϕ ′̂
N

(er,ij ) = δi,j T
−1
r,j .

Take r, s ∈ IN and 0 � i, j < nr , 0 � k, l < ns . Then we compute, using the GNS-construction
for ϕN̂ from Notation 2.3 and the functionals ωs,kl introduced in Notation 1.14, that

(ι ⊗ ωs,kl)(W̃ )ΛN̂ (er,ij )

= T −1
r,j W̃s,lkW̃

∗
r,ij ξM

= T −1
r,j

∑
t∈IM

mt−1∑
m,n=0

〈
W̃s,lkW̃

∗
r,ij ξM,

1

‖W ∗
t,mnξM‖W ∗

t,mnξM

〉
1

‖W ∗
t,mnξM‖W ∗

t,mnξM

= T −1
r,j

∑
t∈IM

mt−1∑
m,n=0

ϕM

(
Wt,mnW̃s,lkW̃

∗
r,ij

)
D−1

t,nW ∗
t,mnξM

= T −1
r,j

∑
t∈IM

mt−1∑
m,n=0

ϕM

(
Wt,mnW̃s,lkW̃

∗
r,ij

)
ΛM̂(et,mn),

the latter sums converging in norm.
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On the other hand,

(ωs,kl ⊗ ι)αN̂ (er,ij ) = T −1
r,j (ωs,kl ⊗ ι)αN̂

((
ϕM

( · W̃ ∗
r,ij

) ⊗ ι
)
(W̃ )

)
= T −1

r,j

(
ϕM

( · W̃ ∗
r,ij

) ⊗ ωs,kl ⊗ ι
)
(W13W̃12)

= T −1
r,j

∑
t∈IM

mt−1∑
m,n=0

ϕM

(
Wt,mnW̃s,lkW̃

∗
r,ij

)
et,mn,

where the latter sum now converges in the strong topology.
As ΛM̂ is a strong-norm-closed map from NϕM̂

to L 2(M̂), it follows that

(ωs,kl ⊗ ι)
(
αN̂ (er,ij )

) ∈ NϕM̂
,

with

ΛM̂

(
(ωs,kl ⊗ ι)

(
αN̂ (er,ij )

)) = (ι ⊗ ωs,kl)(W̃ )ΛN̂ (er,ij ).

Again by closedness, these assertions remain true when ωs,kl is replaced by an arbitrary normal
functional on N̂ .

Let now ξr,i,j = er,i ⊗ er,j for r ∈ IN and 0 � i, j < nr . For any finite subset J0 of the set
J = {(r, i, j) | r ∈ IN , 0 � i, j < nr}, denote by PJ0 the orthogonal projection onto the linear
span of the ξn with n ∈ J0. Take an arbitrary state ω ∈ N̂∗ and x = y∗y in the linear span of the
er,ij . We remark then that there exists a unit vector ξ ∈ L 2(N̂) with ω = ωξ,ξ (= 〈 · ξ, ξ 〉). We
can now compute, using the normality of our weights, that

ϕM̂

(
(ω ⊗ ι)αN̂ (x)

) = lim
J0 ⊆

fin
J

ϕM̂

(
(ωξ,ξ ⊗ ι)

(
αN̂ (y)∗(PJ0 ⊗ 1)αN̂ (y)

))
= lim

J0 ⊆
fin

J

∑
n∈J0

ϕM̂

(
(ωξ,ξn ⊗ ι)

(
αN̂ (y)

)∗ · (ωξ,ξn ⊗ ι)(αN̂ )(y)
)

= lim
J0 ⊆

fin
J

∑
n∈J0

∥∥(ι ⊗ ωξ,ξn)(W̃ )ΛN̂ (y)
∥∥2

= ϕN̂

(
y∗y

) = ϕN̂ (x),

by the unitarity of W̃ . From this, it immediately follows that all er,ij are integrable for ϕ ′̂
N

, and
that ϕ ′̂

N
= ϕN̂ on the linear span of the er,ij . This then concludes the proof. �

We have shown so far that αN̂ is an integrable, ergodic coaction. The final property of αN̂ is
that a certain isometry which can be constructed from αN̂ is in fact a unitary.

Proposition 2.7. Take x, y ∈ NϕN̂
. Then αN̂ (y)(x ⊗ 1) ∈ NϕN̂⊗ϕM̂

, and

(ΛN̂ ⊗ ΛM̂)
(
α(y)(x ⊗ 1)

) = ΣW̃Σ ΛN̂(x) ⊗ ΛN̂(y).
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Proof. The claim concerning the square integrability of αN̂ (y)(x ⊗1) follows immediately from
the fact that αN̂ is integrable, with (ι ⊗ ϕM̂)αN̂ = ϕN̂ . Moreover, we can then define an isometry

G̃ : L 2(N) ⊗ L 2(N) → L 2(M) ⊗ L 2(N)

inside B(L 2(N),L 2(M))⊗ N̂ such that precisely

(ΛN̂ ⊗ ΛM̂)
(
α(y)(x ⊗ 1)

) = ΣG̃Σ ΛN̂(x) ⊗ ΛN̂(y)

for all x, y ∈ NϕN̂
. We need to show that G̃ = W̃ .

However, it is easily seen that for all ω ∈ B(L 2(N̂))∗ and x ∈ NϕN̂
, we will have

(ι ⊗ ω)(G̃)ΛN̂ (x) = ΛM̂

(
(ω ⊗ ι)αN̂ (x)

)
.

By the computations made in the previous proposition, it follows that (ι ⊗ ω)(G̃) coincides with
(ι ⊗ ω)(W̃ ) on the linear span of the er,i ⊗ er,j for r ∈ IN , 0 � i, j < nr , and hence G̃ = W̃ . �

The three propositions above immediately show the following.

Theorem 2.8. Let (M,�M) be a compact Woronowicz algebra, (N,�N) a right Galois co-
object for (M,�M). Then the couple (N̂, αN̂ ) makes N̂ into a right Galois object for the discrete
Woronowicz algebra (M̂,�M̂), with corresponding Galois unitary G̃ = W̃ .

For the terminology ‘Galois object’, we refer the reader to [8] (where the notations N and
N̂ are interchanged). In fact, it is simply defined to be an integrable ergodic coaction for which
the map G̃, as we constructed it in the course of the proof the previous proposition, is a unitary.
This map G̃ is in general called the Galois unitary associated with the Galois object, and as
we saw in the previous proposition, it coincides precisely with W̃ in case the Galois object is
constructed from a Galois co-object for a compact Woronowicz algebra. Galois objects can also
be defined as being ergodic, semi-dual coactions (see [32], Proposition 5.12 for the terminology,
and the remark under Proposition 3.5 of [8] for the connection). We further remark that Galois
objects for compact Woronowicz algebras were treated in [4] (where they are termed ‘actions
of full quantum multiplicity’), and for commutative compact Woronowicz algebras, that is for
ordinary compact groups, in [36] and [24] (where they are termed ‘actions of full multiplicity’).
For Galois objects in the Hopf algebra setting, we refer to the overview [29].

We may now use the results from [8], which we gather in the following theorem.

Theorem 2.9. Let (N,�N) be a right Galois co-object for a compact Woronowicz algebra
(M,�M), and let (N̂, αN̂ ) be the associated right Galois object for the dual discrete Woronowicz
algebra (M̂,�M̂). Then the following statements hold.

1. There exists an nsf weight ψN̂ on N̂ , unique up to scaling with a positive constant, which is
αN̂ -invariant: for all states ω ∈ M̂∗ and all x ∈ N̂+, we have

ψN̂

(
(ι ⊗ ω)αN̂ (x)

) = ψN̂(x).



K. De Commer / Journal of Functional Analysis 260 (2011) 3596–3644 3617
2. The Radon–Nikodym derivative δN̂ηN̂ of ψN̂ with respect to ϕN̂ satisfies

αN̂

(
δit

N̂

) = δit

N̂
⊗ δit

M̂
for all t ∈ R.

3. The Radon–Nikodym derivative δN̂ is σ
ϕN̂
t -invariant, where the latter denotes the modular

one-parameter-group associated with ϕN̂ :

σ
ϕN̂
t

(
δis

N̂

) = δis

N̂
for all s, t ∈ R.

Proof. See [8], Theorem 3.18, Proposition 3.15 and Lemma 3.17. �
Notation 2.10. We denote by Ar the non-singular (possibly unbounded) positive operator prδN̂ ∈
B(Hr ), so that

δN̂ =
⊕
r∈IN

Ar .

By the third item in the previous theorem, the operator Ar strongly commutes with Tr . In
particular, this means that Ar is diagonalizable, and that we may choose our er,i ∈ Hr so that
they are also eigenvectors for the Ar . We then write Ar,i for the eigenvalue of Ar with respect to
the eigenvector er,i .

Remark. Let A be the Hopf ∗-algebra associated with (M,�M), consisting of all elements
x ∈ M with �M(x) ∈ M � M , the algebraic tensor product. Then it is well known that A is a
σ -weakly dense sub-∗-algebra of M , closed under the modular automorphism group σ

ϕM
t of ϕM .

Let Br be the sub-∗-algebra of B(Hr ) consisting of all elements x ∈ B(Hr ) with Ad(r)
R (x) ∈

B(Hr ) � A . Again, it is well known that Br is a σ -weakly dense sub-∗-algebra of B(Hr )

(it is the linear span of the coefficients of the spectral subspaces associated with Ad(r)
R , see for

example [4]). Then the operators Ar , introduced in the above notation, turn out to be determined,
up to a scalar, by the formula

Ait
r xA−it

r = (
ι ⊗ ε ◦ σ

ϕM
t

)
Ad(r)

R (x) for all x ∈ Br ,

where ε denotes the co-unit of A . This formula can be derived from the way in which δN̂ was
constructed in [8]. Hence, up to multiplication with a non-singular (possibly unbounded) positive
element in the center of N̂ , the operator δN̂ can be recovered from the knowledge of all the Ad(r)

R .

3. Projective representations of compact quantum groups

Using the results from Section 1, we can easily develop a Peter–Weyl theory for projective
representations of compact quantum groups. We will in the following use again the notation
which we introduced in Section 1.

We first define the notion of a projective representation relative to a fixed Galois co-object.
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Definition 3.1. Let (M,�M) be a compact Woronowicz algebra, (N,�N) a right Galois co-
object for (M,�M). A (left) (N,�N)-corepresentation of (M,�M) on a Hilbert space H
consists of a unitary map G ∈ N ⊗B(H ) such that

(�N ⊗ ι)G = G13 G23.

We call a Hilbert subspace K ⊆ H invariant w.r.t. the (N,�N)-corepresentation when G
restricts to a unitary in N ⊗B(K ).

We call G irreducible if the only invariant Hilbert subspaces are 0 and H , and indecompos-
able when H cannot be written as the direct sum of two non-zero invariant subspaces.

We call two (N,�N)-corepresentations G1 and G2 on respective Hilbert spaces H1 and H2
unitarily equivalent if there exists u ∈ B(H1,H2) such that

G2(1 ⊗ u) = (1 ⊗ u)G1.

Remark. When (N,�N) comes from a 2-cocycle Ω for (M,�M), we will also simply speak of
Ω-corepresentations.

Theorem 3.2. Let (M,�M) be a compact quantum group, (N,�N) a right Galois co-object for
(M,�M). Denote by Ṽ the right regular (N,�N)-corepresentation for (M,�M), and let

Ṽr = (pr ⊗ 1)Ṽ ∈ B(Hr )⊗N

be the components of Ṽ , where the pr denote the minimal projections of Z (N̂).

1. The unitaries ΣṼrΣ are indecomposable left (N,�N)-corepresentations on the Hilbert
spaces Hr .

2. Any indecomposable (N,�N)-corepresentation is unitarily equivalent with a unique ΣṼrΣ .
3. Any (N,�N)-corepresentation splits as a direct sum of indecomposable (N,�N)-corepre-

sentations.
4. Any indecomposable (N,�N)-corepresentation is irreducible.

Proof. As (ι⊗ �N)Ṽ = Ṽ12Ṽ13, we immediately get that the unitaries ΣṼrΣ are left (N,�N)-
corepresentations. By Lemma 1.17.3, the space

{
(ι ⊗ ω)(Ṽr )

∣∣ ω ∈ B
(
L 2(M),L 2(N)

)
∗
}

equals the whole of B(Hr ), from which it immediately follows that ΣṼrΣ is indecomposable,
and even irreducible.

For the second statement, we use that the linear span of the matrix entries of the Ṽr ’s span
a norm-dense subset of L 2(N) when applied to ξM . Hence, if G is an indecomposable left
(N,�N)-corepresentation of (M,�M) on a Hilbert space H , there must exist some r ∈ IN and
an x ∈ B(H ,Hr ) such that

(ϕM ⊗ ι)
(
(ΣṼrΣ)∗(1 ⊗ x)G

) �= 0.
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As in the proof of Theorem 1.15, this forces a scalar multiple of this expression to be a unitary
intertwiner, proving that G is isomorphic to ΣṼrΣ . By the orthogonality relations between the
ΣṼrΣ , these are all pairwise non-isomorphic. Hence the above r for G is uniquely determined.

To prove the third statement, consider the normal faithful unital ∗-homomorphism

α : B(H ) → M ⊗B(H ) : x → G∗(1 ⊗ x)G.

As (�N ⊗ ι)G = G13 G23, we see that α is a coaction. Let Z = B(H )α , the set of fixed points
for α. As in the proof of Proposition 1.10, we have that Z is the range of a normal conditional
expectation on B(H ). Hence Z is a von Neumann algebraic direct sum of type I -factors. Let
then A be an atomic maximal abelian von Neumann subalgebra of Z, and denote by pi the
set of minimal projections in A. Then it is clear that each piH is a fixed subspace for G . The
spaces piH must further be indecomposable: for if not, then we could find a pi and a non-zero
projection p in B(H ) with p strictly smaller than pi and both pH and (pi − p)H invariant
under G . This would imply that p is a fixed element for α, commuting with all x ∈ A. Hence
p ∈ A by maximal abelianness. As pi was a minimal projection in A, this gives a contradiction.

As for the fourth point, we may take our indecomposable (N,�N)-corepresentation to be
some ΣṼrΣ , for which we have already proven irreducibility in the proof of the first point. �
Corollary 3.3. Let (N,�N) be a right Galois co-object for a compact Woronowicz alge-
bra (M,�M). Let Gi , i ∈ I , be a maximal set of non-isomorphic irreducible (N,�N)-
corepresentations on Hilbert spaces Hi . Then I ∼= IN , and N̂ ∼= ⊕

i∈I B(Hi ).

Proof. This follows immediately from the second point of the previous proposition. �
We can now pass to projective representations without reference to a fixed Galois co-object.

Definition 3.4. Let (M,�M) be a compact Woronowicz algebra. A projective (left) corepresen-
tation of (M,�M) on a Hilbert space H consists of a left coaction α of (M,�M) on B(H ),

α : B(H ) → M ⊗B(H ).

Remarks.

1. Interpreting (M,�M) as the space of L ∞-functions on some ‘compact quantum group’
G, the above then corresponds to having a (necessarily continuous) action of G on B(H ).
As Aut(B(H )) ∼= U (H )/S1, this indeed captures the notion of a projective representation
when G is an actual compact group.

2. One similarly has the notion of a projective right corepresentation of (M,�M), for which
we replace the left coaction α above by a right coaction. For example, the coactions AdR and
Ad(r)

R from Section 1 are then projective right corepresentations. At the end of this section,
we will show one can pass from left to right projective representations, so that one may
essentially restrict oneself to the study of projective left corepresentations, as we will do.

3. Some results on (special) coactions of compact Kac algebras on type I -factors appear in [25].
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In [11], we proved that from any projective corepresentation α, one can construct a Galois co-
object (N,�N) together with an (N,�N)-corepresentation G ‘implementing’ α. We will state
the proposition and give a sketch of the proof. For the full proof, we refer the reader to [11].

Proposition 3.5. Let (M,�M) be a compact Woronowicz algebra, H a Hilbert space, and α

a projective corepresentation of (M,�M) on H . Then there exists a right Galois co-object
(N,�N) for (M,�M), together with an (N,�N)-corepresentation G of (M,�M) on H , such
that

G∗(1 ⊗ x)G = α(x) for all x ∈ B(H ).

Sketch of proof. Choose a basis {ei}i∈I of H , and fix an element 0 ∈ I . We can then consider
the Hilbert space L 2(N) = α(e00)(L 2(M) ⊗ H ). We can construct a unitary

G : L 2(M) ⊗ H → L 2(N) ⊗ H : ξ →
∑
i∈I

(
α(e0i )ξ

) ⊗ ei .

Denote by Gij the i, j -th component of G . Then Gij is an operator from L 2(M) to L 2(N). We
define

N = {Gijm | i, j ∈ I, m ∈ M}σ -weakly closed linear span.

It is then possible to construct a map �N : N → N ⊗N , uniquely determined by the properties
that

(�N ⊗ ι)G = G[13]G[23]

(where we have added brackets in the leg numbering notation to distinguish them from the indices
for matrix coefficients of G ) and

�N(xy) = �N(x)�M(y) for all x ∈ N, y ∈ M.

One proves that (N,�N) is a Galois co-object for (M,�M), and then it immediately follows
from the above property that G is a left (N,�N)-corepresentation of (M,�M) on H . Finally,
one proves that G∗(1 ⊗ x)G = α(x) by direct computation. �
Definition 3.6. Let α be a projective corepresentation of a compact Woronowicz algebra
(M,�M) on a Hilbert space H . Denote by (N,�N) the Galois co-object constructed from
α as in the above proposition, and denote by [(N,�N)] its isomorphism class. Then we say that
α is an [(N,�N)]-corepresentation.

It can be proven (see Proposition 3.4 in [11]) that if α is an [(N,�N)]-corepresentation
of (M,�M) on a Hilbert space H , and if there exists a Galois co-object (Ñ,�Ñ ) for
(M,�M) which possesses an (Ñ,�Ñ )-corepresentation on H implementing α, then necessar-
ily [(Ñ,�Ñ )] = [(N,�N)]. One may regard the isomorphism class of such a Galois co-object
as a generalization of the notion of a 2-cohomology class. Also remark that if G ∈ N ⊗B(H )
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is a projective (N,�N)-corepresentation of (M,�M) on a Hilbert space H , then the associated
projective corepresentation

α : B(H ) → M ⊗B(H ) : x → G∗(1 ⊗ x)G

is an [(N,�N)]-corepresentation by the above uniqueness result.
If (N,�N) is a Galois co-object for a compact Woronowicz algebra (M,�M), and an

[(N,�N)]-corepresentation α for (M,�M) is given, then it is in general not true that all
(N,�N)-corepresentations implementing α are isomorphic: consider for example ordinary one-
dimensional representations. We will see a further instance of this in the final section.

Definition 3.7. Let (M,�M) be a compact Woronowicz algebra, α a projective corepresentation
of (M,�M) on a Hilbert space H . We say that α is an irreducible projective corepresentation if
α is ergodic.

Proposition 3.8. Let (N,�N) be a right Galois co-object for a compact Woronowicz algebra
(M,�M), let α be an [(N,�N)]-corepresentation of (M,�M) on a Hilbert space H , and let G
be an (N,�N)-corepresentation implementing α.

Then there is a one-to-one correspondence between the set of α-fixed self-adjoint projections
in B(H ) and the G -invariant subspaces K of H , given by the correspondence

p → K = pH .

In particular, α is irreducible iff G is irreducible.

Proof. By assumption, we have that

α(x) = G∗(1 ⊗ x)G for all x ∈ B(H ).

So if p is a self-adjoint projection in B(H ) with α(p) = 1 ⊗ p, we have

G(1 ⊗ p) = (1 ⊗ p)G,

and hence

G
(
L 2(M) ⊗ pH

) ⊆ L 2(N) ⊗ pH ,

which means pH is a G -invariant subspace.
Conversely, if K is a G -invariant subspace, and p the projection onto K , then also K ⊥ is

G -invariant by Theorem 3.2. Hence we have

G(1 ⊗ p) = (1 ⊗ p)G,

and so α(p) = 1 ⊗ p, i.e. p is an α-fixed projection. �
Remark. We in fact already used the above argument in the course of proving Theorem 3.2.3.
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Our next proposition shows how projective corepresentations and ordinary corepresentations
mesh together.

Proposition 3.9. Let (N,�N) be a right Galois co-object for a compact Woronowicz algebra
(M,�M). Let G be a projective left (N,�N)-corepresentation on a Hilbert space H , and let U

be an ordinary left corepresentation of (M,�M) on a Hilbert space K .
Then the following statements hold.

1. The unitary G12U13 ∈ N ⊗B(H ⊗K ) is a unitary (N,�N)-corepresentation on H ⊗K .
2. If both G and U are irreducible, then G12 U13 is a finite direct sum of irreducible (N,�N)-

corepresentations.

Proof. The fact that G12U13 is a unitary (N,�N)-corepresentation is trivial to verify. If further
G and U are irreducible, then we know already that G12U13 = ⊕

i∈J Gj for a certain set Gj of
irreducible (N,�N)-corepresentations indexed by a parameter set J . We have to prove that J is
finite.

Let α be the projective corepresentation associated with G , so

α(x) = G∗(1 ⊗ x)G, x ∈ B(H ).

By the previous proposition, we know that α is ergodic. Let B be the linear span of the spectral
subspaces inside B(H ), which is a σ -weakly dense sub-∗-algebra of B(H ) (see the remark
following Notation 2.10). If we then denote by Ur , r ∈ IM , a total set of representatives for the
irreducible corepresentations of (M,�M) on Hilbert spaces Kr , we know by [5] that

(B, α) ∼=
( ⊕

r∈IM

Kr ⊗ C
kr ,

⊕
r∈IM

Ur ⊗ 1

)

as a comodule over the Hopf algebra A ⊆ M , where kr < ∞.
Now if β is the projective corepresentation associated with G12U13, then

β(x) = U∗
13(α ⊗ ι)(x)U13 for all x ∈ B(H ) ⊗ B(K ).

Hence if B̃ is the linear span of the spectral subspaces of β , then as a comodule, we have

B̃ ∼= Uc × B × U,

where Uc denotes the contragredient of U and where we denote by × the tensor product of
corepresentations/comodules. But this means that the trivial corepresentation appears in B̃ with
multiplicity

∑
grkr , where gr is the multiplicity of Ur ⊆ U × Uc . Hence the fixed point alge-

bra of β is finite-dimensional, and by the previous Proposition, J will have as its cardinality
the dimension of a maximal abelian subalgebra of the fixed point algebra of β . Hence J is
finite. �

The previous proposition leads to the following considerations. Let (N,�N) be a fixed
right Galois co-object for a compact Woronowicz algebra (M,�M). Then we can make a
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W∗-category D by considering as objects the (N,�N)-corepresentations which are (isomor-
phic to) finite direct sums of irreducible (N,�N)-corepresentations, and as morphisms bounded
intertwiners. Then if we denote by C the tensor W∗-category of finite-dimensional (M,�M)-
corepresentations, we can make D into a right C -module by the natural composition introduced
above:

D × C → D : (G,U) → G12U13,

while the action of morphisms is simply by tensoring. We can then also turn FN := ⊕
r∈IN

Z into
a module over the fusion ring FM := ⊕

r∈IM
Z by means of the fusion rules associated with this

categorical construction.
But in fact, there is another different way in which to obtain these fusion rules, making use of

the theory developed in [31]. In that paper, Wassermann’s multiplicity theory for ergodic com-
pact Lie group actions on C∗- and von Neumann algebras is extended to the setting of compact
Woronowicz algebras. Although the paper works in the C∗-algebraic realm and uses right coac-
tions, the results also apply in the von Neumann algebra setting and with left actions, and we
make the transition without further comment in explaining these ideas.

Let then (M,�M) be a compact Woronowicz algebra with an ergodic coaction α on a
von Neumann algebra A. It is well known that the crossed product

M � A = {
(x ⊗ 1)α(y)

∣∣ x ∈ M,y ∈ A
}′′ ⊆ B

(
L 2(M) ⊗ L 2(A)

)
is a von Neumann algebraic direct sum of type I -factors (see [5]). Let Iα be the set of atoms of
the center of M � A, and let Fα be the free abelian group generated by Iα . Then one can turn Fα

into a right FM -module by the following procedure. Let {ps | s ∈ Iα} be the set of minimal central
projections of M � A, and choose for each s ∈ Iα a minimal projection es � ps in M � A. We
can equip the corners es(B(L 2(M))⊗A)et with a left (M,�M)-coaction αst by the formula

αst (z) = (Σ ⊗ 1)
(
V ∗

12(ι ⊗ α)(z)V12
)
(Σ ⊗ 1).

For each r ∈ IM , s, t ∈ Iα , define M
(r)
st to be the dimension of the set of (M,�M)-intertwiners

between the corepresentation Ur associated with r and αst . Then the action of r ∈ IM on an
element t ∈ Iα is defined as

t · r :=
∑
s∈Iα

M
(r)
ts · s.

Let now (N,�N) be a right Galois co-object for the compact Woronowicz algebra (M,�M).
Choose r ∈ IN . Then we can apply the above ideas to the left coaction αr on B(Hr ), where αr is
the coaction associated with the irreducible projective (N,�N)-corepresentation Gr pertaining
to r . We claim that the resulting right FM -module is independent of the choice of r , and coincides
precisely with the right FM -module as constructed after Proposition 3.9. We will briefly indicate
how this can be proven.

We first observe that M � B(Hr ) equals G∗
r (N̂ ⊗B(Hr ))Gr . Indeed, this follows by the

characterization of N̂ as a fixed point space, by the pentagon identity for Ṽ (and the related
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pentagon identity for Gr ), by the fact that Gr implements αr , and finally by the characterization
of M � B(Hr ) as the set of elements z in B(L 2(M))⊗B(Hr ) satisfying

V12z13V
∗
12 = (ι ⊗ αr)(z).

Hence we already see that Iαr = IN .
Choose then for each s ∈ IN the element

es := es,00 ⊗ er,00 ∈ N̂ ⊗B(Hr ) ∼= M � B(Hr )

as a minimal projection. Then by transporting all structure with the aid of G , one sees that the
corner es(B(L 2(M))⊗B(Hr ))et is isomorphic to es,00B(L 2(N))et,00, equipped with the re-
striction of the coaction AdL (which appears in the proof of Proposition 1.10). This may further
be simplified to the coaction

αst : B(Hs ,Ht ) → M ⊗B(Hs ,Ht ) : x → G∗
s (1 ⊗ x)Gt .

This final coaction may be interpreted as corresponding to the (ordinary) corepresentation
‘Gc

s × Gt ’. A Frobenius-type argument then shows that this corepresentation contains some Uu

with u ∈ IM as much times as Gt is contained in Gs × Uu. This shows that the two mentioned
fusion rules indeed coincide, and ends our sketch of proof.

To end this section, let us come back to comparing the structures of (N,�N) and (N,�
op
N )

which we started in Lemma 1.18. We begin by introducing a certain antipode on a subspace of N .

Proposition 3.10. Let (N,�N) be a right Galois co-object for a compact quantum group
(M,�M). Denote by N the linear span of the Ṽr,ij in N (see Lemma 1.17). Denote by A
the corresponding subspace of M , which coincides with the Hopf ∗-algebra associated with
(M,�M) (see Remark after Notation 2.10). Then the following statements hold.

1. The space N is a right A -module.
2. If we define the anti-linear map

SN( · )∗ : N → N : Ṽr,ij → Ṽr,j i ,

then for all x ∈ N and y ∈ A , we have

SN(xy)∗ = SN(x)∗SM(y)∗,

where SM denotes the antipode of the Hopf ∗-algebra A .
3. For all r ∈ IN and 0 � i, j < nr , we have

ΛN

(
SN(Ṽr,ij )

∗) =
(

Tr,j

Tr,i

)1/2

JN̂ΛN(Ṽr,ij ),

where JN̂ denotes the modular conjugation for N̂ , given by er,i ⊗ er,j → er,j ⊗ er,i .
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Proof. As the Ṽr,ij form a basis of N , it is easy to see that SN( · )∗ is well defined. Moreover,
using the formulas in Lemma 1.17.1, the third statement follows immediately. As for the first
point, this is an immediate consequence of Proposition 3.9.2.

So the only thing left to show is the second statement, which is at least meaningful by the first
part of the proposition.

For ω in the predual of N̂ ′, denote by ω the normal functional x → ω(x∗) on N̂ ′. Let us call
a normal functional on N̂ ′ elementary when it is of the form er,ij → ω(er,ji) for some ω in the
linear span of the ωs,kl (see Notation 1.14). Then with ω elementary, we immediately obtain the
formula

SN

(
(ω ⊗ ι)(Ṽ )

)∗ = (ω ⊗ ι)(Ṽ ). (6)

Choose now normal functionals ω1 and ω2 on respectively B(L 2(N)) and B(L 2(M)) which
restrict to elementary functionals on respectively N̂ ′ and M̂ ′. Then by the pentagonal identity
for Ṽ , we have

(ω1 ⊗ ι)(Ṽ )(ω2 ⊗ ι)(V ) = (ω̃ ⊗ ι)(Ṽ ),

where ω̃ is the functional

x ∈ B
(
L 2(N)

) → (ω1 ⊗ ω2)
(
Ṽ ∗

12(1 ⊗ x)Ṽ12
)
.

By the first part of the proposition, the restriction of ω̃ to N̂ ′ is again elementary. Combining
these statements with Eq. (6) (and the corresponding one for SM ), we see that SN( · )∗ is indeed
right SM( · )∗-linear. �

We can now make the connection between the adjoint coactions of (M,�M) on N̂ and
(M,�

op
M) on N̂ ′ respectively (see Remark after Lemma 1.18). Let us first recall that any com-

pact Woronowicz algebra (M,�M) is endowed with an involutive anti-comultiplicative anti-∗-
automorphism RM , given by the formula

RM(x) = JM̂x∗JM̂ for all x ∈ M.

More concretely, we have RM(Wr,ij ) = Vr,ji for all r ∈ IM and 0 � i, j < mr . We will also
denote

CN̂ : N̂ → N̂ ′ : x → JN̂x∗JN̂ = x∗,

and use the same notation for its inverse.

Proposition 3.11. Let (N,�N) be a right Galois co-object for a compact Woronowicz algebra
(M,�M). Let (N,�

op
N ) be the co-opposite right Galois co-object for (M,�

op
M). Then the right

adjoint coaction of (M,�
op
M) on (Ncop)∧ = N̂ ′ is given by

x → (CN ⊗ RM)AdR

(
CN(x)

)
.
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Proof. Note that the right adjoint coaction on B(Hr ) is, by its definition and by Lemma 1.18.1,
given as

x → Ṽ ∗(x ⊗ 1)Ṽ .

Denote now by JN̂ the modular conjugation for N̂ , which we recall is simply the map

L 2(N) → L 2(N) : er,i ⊗ er,j → er,j ⊗ er,j .

It is then easily seen that the proposition follows once we can prove the following identity:

Ṽ = (JN̂ ⊗ JN̂ )
(
ΣW̃ ∗Σ

)
(JN̂ ⊗ JM̂). (7)

Now piecewise, the identity (7) corresponds to the identities

JN̂ W̃ ∗
r,j iJM̂ = Ṽr,ij for all r ∈ IN , 0 � i, j < nr .

But in [8], it was proven that JN̂xJM̂ ∈ N for x ∈ N (see Remark just before Lemma 4.3 in that
paper). Hence we only have to check if

JN̂ W̃ ∗
r,j iJM̂ξM = Ṽr,ij ξM for all r ∈ IN , 0 � i, j < nr .

This now follows from an easy computation using Lemma 1.17. �
Remark. It seems nicer to treat the right adjoint (M,�

op
M)-coaction on N̂ ′ as a left (M,�M)-

coaction:

AdL : N̂ ′ → M ⊗ N̂ ′ : x → ΣṼ ∗(x ⊗ 1)Ṽ Σ.

These then localize to left adjoint coactions Ad(r)
L on the B(Hr ). Note that the map AdL (as

well as the map SN ) in fact already appeared in the proof of Proposition 1.10, and that the
Ad(r)

L are nothing but the [(N,�N)]-corepresentations of (M,�M) associated with the (N,�N)-
corepresentations ΣṼrΣ from Theorem 3.2.

4. Reflecting a compact Woronowicz algebra across a Galois co-object

In this section, we will consider in the special case of compact Woronowicz algebras a tech-
nique which was introduced in [11]. The following theorem was proven in [11], Proposition 2.1
and Theorem 0.7.

Theorem 4.1. Let (M,�M) be a compact Woronowicz algebra, and (N,�N) a right Galois co-
object for (M,�M). Denote by P ⊆ B(L 2(N)) the von Neumann algebra which is generated by
elements of the form xy∗, where x, y ∈ N . Then P can be made into a von Neumann bialgebra,
the comultiplication �P being uniquely determined by the fact that

�P

(
xy∗) = �N(x)�N(y)∗ for all x, y ∈ N.



K. De Commer / Journal of Functional Analysis 260 (2011) 3596–3644 3627
The von Neumann bialgebra (P,�P ) furthermore admits (not necessarily finite) left and right
�P -invariant nsf weights (i.e. is a von Neumann algebraic quantum group in the terminology
of [23]).

The following theorem gives a concrete formula for the above invariant weights. We will use
the notations introduced in the first three sections (see Notation 1.14 and Notation 2.10).

Theorem 4.2. Let (M,�M) be a compact Woronowicz algebra, (N,�N) a right Galois co-
object for (M,�M), and (P,�P ) the von Neumann bialgebra introduced in Theorem 4.1. Then,
up to a positive scalar, the left invariant nsf weight ϕP satisfies

Ṽr,ij Ṽ
∗
s,kl ∈ MϕP

with

ϕP

(
Ṽr,ij Ṽ

∗
s,kl

) = δr,sδi,kδj,l

Tr,j

Ar,j

,

while the right invariant nsf weight ψP satisfies, again up to a positive scalar,

W̃ ∗
r,ij W̃s,kl ∈ MψP

and

ψP

(
W̃ ∗

r,ij W̃s,kl

) = δr,sδi,kδj,l

Tr,i

Ar,i

.

Proof. For the proof of the theorem, we have to explain first how the invariant weights ϕP and
ψP can be obtained. This goes back to Theorem 4.8 of [8].

Denote by ∇ it
N,M the following one-parameter-group of unitaries on L 2(N):

∇ it
N,M = ∇ it

N̂
JN̂ δit

N̂
JN̂ ,

where ∇N̂ is the modular operator associated with the weight ϕN̂ on N̂ . On basis vectors, this
one-parameter-group is concretely given as

∇ it
N,Mer,i ⊗ er,j = A−it

r,j T it
r,j T

−it
r,i er,i ⊗ er,j .

We can then implement on N a one-parameter-group σ
N,M
t , determined by the formula

σ
N,M
t (x) = ∇ it

N,Mx∇−it
M for all x ∈ N,

where ∇M is the modular operator on L 2(M) associated with ϕM . One verifies that this is well
defined by using the commutation relation(∇ it ⊗ 1

)
W̃

(∇−it ⊗ 1
) = (

1 ⊗ ∇−it
)
W̃

(
1 ⊗ ∇ it δit

)
,
M N,M N̂ N̂ N̂
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proven in Proposition 3.20 of [8] (we remark that the P -operator introduced there coincides with
∇N̂ , as the modular element of (M,�M) is trivial). This commutation relation also immediately
shows that

σ
N,M
t (Ṽr,ij ) = T −it

r,i T it
r,jA

−it
r,j Ṽr,ij ,

using the notation from Lemma 1.17.1.
Now by construction (see the discussion preceding Lemma 4.4 in [8]), all elements x ∈ N

which are analytic with respect to σ
N,M
t will lie in the space of square integrable elements of ϕP ,

by the formula

ϕP

(
xx∗) = ϕM

(
σ

N,M
−i/2 (x)∗σN,M

−i/2 (x)
)
.

By polarity, we get for x, y ∈ N analytic w.r.t. σ
N,M
t that

ϕP

(
xy∗) = ϕM

(
σ

N,M
−i/2 (y)∗σN,M

−i/2 (x)
)
.

Applying this to x = Ṽr,ij and y = Ṽs,kl , and using the orthogonality relations between the Ṽr,ij ,
we immediately get the first formula in the statement of the theorem.

For the second formula, we can use the expression ψP = ϕP ◦ RP , where RP was an involu-
tory anti-automorphism on P determined by the formula

RP (x) = JN̂x∗JN̂ for all x ∈ P

(see Lemma 4.3 in [8]). In fact, the discussion before that lemma states that, for x, y ∈ N , we
have RP (xy∗) = RN(y)∗RN(x), where

RN : N → Nop : x → JM̂x∗JN̂ .

By applying RN(Ṽr,ij )
∗ to ξM , we find that

RN(Ṽr,ij ) = W̃r,j i

(see also the proof of Proposition 3.11). Applying then ϕP ◦ RP to W̃ ∗
r,ij W̃s,kl and using the first

part of the proof, the expression for ψP as in the statement of the theorem follows. �
From the formulas in Theorem 4.2, we can draw the following conclusions.

Proposition 4.3. Let (M,�M), (N,�N) and (P,�P ) be as in the foregoing theorem.

1. If (P,�P ) is a compact Woronowicz algebra (that is, if ϕP and ψP are finite), then all
nr < ∞, i.e. all irreducible (N,�N)-corepresentations of (M,�M) are finite-dimensional.

2. Conversely, if one of the irreducible (N,�N)-corepresentations for (M,�M) is finite-
dimensional, then they all are, and then (P,�P ) is a compact Woronowicz algebra.

3. If (P,�P ) is unimodular (that is, if ϕP is a multiple of ψP ), then there exist positive numbers
dr such that Ar = d2

r T 2
r (where the Ar were introduced in Notation 2.10).
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Remark. If the condition in the third point is satisfied, then one could interpret dr as a (finite!)
relative quantum dimension of the irreducible (N,�N)-corepresentation corresponding to r , in
analogy with the case of ordinary irreducible corepresentations (compare with Proposition 2.2).
Here the relativity refers to one irreducible (N,�N)-corepresentation w.r.t. another, as δN̂ is
only determined up to a positive scalar. Alternatively, one could refer to these numbers as formal
quantum dimensions, in analogy with the situation for square integrable irreducible representa-
tions (see e.g. [13, Section 14.4]). We note that we do not know of any particular examples where
(P,�P ) is not unimodular, so it could well be that this condition is always fulfilled.

Proof of Proposition 4.3. The third point follows immediately from the formulas in the previous
theorem combined with Lemma 1.17, as there then exists a positive number c > 0 such that

Ar,j

Ar,i

= c
T 2

r,j

T 2
r,i

.

If (P,�P ) is moreover compact, then for any r ∈ IN and 0 � i < nr , we get, by using the
unitary of W̃r (and the normality of ψP ), that

ψP (1) = ψP

(
nr−1∑
i=0

W̃ ∗
r,ij W̃r,ij

)

=
nr−1∑
i=0

ψP

(
W̃ ∗

r,ij W̃r,ij

)

= 1

d2
r

nr−1∑
i=0

1

Ti,r

< ∞.

As the Tr,i are summable, the final sum must necessarily be finite, i.e. nr < ∞.
Finally, suppose that (M,�M) has a finite-dimensional irreducible (N,�N)-corepresentation,

say corresponding to the index value r . Then as ψP (1) = ψP (
∑nr−1

i=0 W̃ ∗
r,ij W̃r,ij ), we see that ψP

is finite, and hence (P,�P ) is a compact Woronowicz algebra. By the second point, also all
other irreducible (N,�N)-corepresentations of (M,�M) are finite-dimensional. �
Remarks.

1. In case the irreducible (N,�N)-corepresentations are finite-dimensional, the linear span of
the W̃ ∗

r,ij generates inside N a purely algebraic Galois co-object N for the Hopf algebra A
inside (M,�M). Conversely, if one starts with a Galois co-object for A , satisfying some
suitable relations with the ∗-structure, we can in essence develop the whole theory so far in
an algebraic way, and then necessarily the reflection will correspond to a compact quantum
group (this was essentially already observed in [7]). As it turns out, there do exist interesting
Galois co-objects which are of a non-algebraic type (see the final section), which was part
of the motivation for writing this paper.

2. From the first point of the previous proposition, together with the fact that the dual of ŜUq(2)

is torsion-free (that is, allows no non-trivial finite-dimensional projective representations, see
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[35]), it follows that there are no non-trivial ‘twists’ of L ∞(SUq(2)) into other compact
quantum groups. In particular, the L ∞(SUq(2)) are no cocycle twists of each other for
different values of q . This proves that the pseudo-2-cocycle which appears in [18] is not
a true 2-cocycle.

5. Galois co-objects and projective corepresentations for compact Kac algebras

In this short section, we show that when one deals with compact Kac algebras (see Defini-
tion 1.1), one is always in the algebraic setup (see Remark at the end of the previous section).

Proposition 5.1. Let (N,�N) be a Galois co-object for a compact Kac algebra (M,�M), and let
(P,�P ) be the reflected von Neumann bialgebra as obtained in Theorem 4.1. Then also (P,�P )

is a compact Kac algebra.

Proof. As we recalled in Theorem 2.9, the modular element δit

N̂
satisfies αN̂ (δit

N̂
) = δit

N̂
⊗ δit

M̂
.

However, for a compact Kac algebra, δM̂ = 1. By ergodicity of αN̂ , we then conclude that we
can take δN̂ = 1.

From Theorem 4.2 and the normality of ψP , we then find

ψP (1) = ψP

(
nr−1∑
i=0

W̃ ∗
r,ij W̃r,ij

)

=
nr−1∑
i=0

ψP

(
W̃ ∗

r,ij W̃r,ij

)

=
nr−1∑
i=0

Ti,r = 1,

so that ψP is finite, and (P,�P ) thus a compact Woronowicz algebra.
But then (P,�P ) is in particular unimodular, so that the third point of Proposition 4.3 gives

us that Tr is a scalar matrix, and hence just 1
nr

times the unit matrix on Hr . This shows that

the one-parameter-group ∇ it
N,M , which we introduced in the course of the proof of Theorem 4.2,

is trivial. As σ
ϕP
t (xy∗) = σ

N,M
t (x)σ

N,M
t (y)∗ for all x, y ∈ N (which follows from the fact that

σ
N,M
t is actually the restriction to N of the modular automorphism group of the balanced weight

ϕP ⊕ τM on
(

P N
Nop M

)
), we get that σ

ϕP
t is trivial, and hence ϕP is a trace. This concludes the

proof. �
Combining the previous proposition with Theorem 3.2 and Proposition 4.3, we obtain the

following corollary.

Corollary 5.2. Let (M,�M) be a compact Kac algebra. If H is a Hilbert space, and
α : B(H ) → M ⊗B(H ) a coaction, then the following statements hold.

1. The trace on B(H ) is α-invariant.
2. If α is ergodic, then H is finite-dimensional.
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In particular, this says that the invariant state associated with an ergodic coaction of a compact
Kac algebra on a type I -factor is tracial. Note that this is not true for ergodic coactions of Kac
algebras on arbitrary von Neumann algebras (counterexamples can be found in [4]). It would be
nice to have a more direct proof of the above corollary, but we were not able to produce one.

6. Projective corepresentations of finite-dimensional Kac algebras

In this section, we will briefly review what can be said concerning the situation of finite-
dimensional compact Woronowicz (and hence Kac) algebras.

Proposition 6.1. Let (M,�M) be a finite-dimensional Kac algebra, and (N,�N) a right Galois
co-object for (M,�M). Then N is finite-dimensional with dim(N) = dim(M), and (N,�N) is
cleft.

Proof. Choose r ∈ IN . Then as the right coaction Ad(r)
R of (M,�M) on B(Hr ) is ergodic, it

is easy to see immediately that nr = dim(Hr ) is finite. Then take r ∈ IN fixed. As N is the
σ -weak closure of the set {W̃ ∗

r,ijm | 0 � i, j � nr,m ∈ M} by Lemma 2.5, we see that N is finite-

dimensional. As W̃ ∗ gives a unitary from L 2(N) ⊗ L 2(M) to L 2(N) ⊗ L 2(N), necessarily
dim(N) = dim(M).

Now disregarding the ∗-structure, we get that (N,�N) is a Galois co-object for the Hopf
algebra (M,�M). Then it is well known that (N,�N) is cleft in this weaker form (see for
example the remark following Corollary 3.2.4 in [29]). But this means that N ∼= M as right M-
modules. As M is a direct sum of matrix algebras, it is easy to see that we can in fact find a
unitary u : L 2(N) → L 2(M) such that uN = M . Hence we may identify L 2(N) with L 2(M)

and N with M . We can then consider Ω = �N(1M). By right linearity of �N , we then get
�N(x) = Ω�M(x) for all x ∈ N , and by coassociativity of �N we have that Ω satisfies the
2-cocycle relation. Hence (N,�N) is cleft. �
Remark. Finite Galois co-objects (in the operator algebra context) have also been dealt with in
the papers [14,34] and, in a more general setting [20].

For later purposes, we also introduce the following definition of a non-degenerate 2-cocycle
(see Definition 1.19 for the general notion of a unitary 2-cocycle).

Definition 6.2. Let (M,�M) be a finite-dimensional compact Kac algebra, and Ω a unitary
2-cocycle for (M,�M). We call Ω non-degenerate if the associated Galois object N̂ is a (finite-
dimensional) type I -factor.

This terminology was introduced in [1]. One observes that, as (N̂, αN̂ ) is then in fact also
a projective (right) corepresentation for (M̂,�M̂), we can create from it a Galois co-object for
(M̂,�M̂), which will then necessarily also be cleft. If we denote by Ω̂ ∈ M̂⊗M̂ an implementing
unitary 2-cocycle, then Ω̂ turns out to be non-degenerate again, and the correspondence [Ω] →
[Ω̂] between cohomology classes of non-degenerate 2-cocycles of respectively (M,�M) and
(M̂,�M̂) is a bijection. (For the proof of this result, we refer again to [1].) To give a simple
example, consider a finite abelian group G. Then the bicharacter on Ĝ × G given by evaluation
gives a non-degenerate 2-cocycle function Ω on G× Ĝ by the formula ((g,χ), (h,χ ′)) → χ(h),
and its dual is simply the same construction applied to the evaluation bicharacter on Ĝ × G.
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7. Projective corepresentations of co-commutative compact Kac algebras

As a second special case, we will consider compact Woronowicz algebras (M,�M) which
have a co-commutative coproduct: �

op
M = �M . It is not so difficult to show that (M,�M) is then

Kac, and in fact that M = L (Γ ) for some (countable) discrete group Γ , the coproduct being
given by

�M(λg) = λg ⊗ λg for all g ∈ Γ,

where the λg denote the standard unitary generators in the group von Neumann algebra L (Γ ).
We will in the following denote L (Γ ) as shorthand for (L (Γ ),�L (Γ )), and we denote the
invariant trace by τ . The dual discrete Woronowicz algebra (M̂,�M̂) is then simply the function
space l∞(Γ ), equipped with the coproduct

�M̂ : l∞(Γ ) → l∞(Γ )⊗ l∞(Γ ) ∼= l∞(Γ × Γ )

such that

�M̂(f )(g,h) = f (gh) for all g,h ∈ Γ.

We will in the following write L 2(L (Γ )) = l2(Γ ) of course, and then, with δg being the
Dirac function at the point g ∈ Γ , we have

ΛL (Γ )(λg) = δg.

As group von Neumann algebras are in particular Kac algebras, we know from Corollary 5.2
that they can only act ergodically on type I -factors which are of finite type. Let us give a more
immediate proof of this fact in this particular case.

Lemma 7.1. Let Γ be a discrete group. Let B be a von Neumann algebra, and suppose that we
have given an ergodic coaction

α : B → L (Γ ) ⊗ B.

If we denote by φB the unique α-invariant state on B , then φB is a trace.

Proof. For each g ∈ Γ , denote Bg = {x ∈ B | α(x) = λg ⊗ x}. As α is ergodic, it is easily seen
that each Bg is either zero- or one-dimensional. It is further immediate that Bg · Bh ⊆ Bgh for all
g,h ∈ Γ , and that B∗

g = Bg−1 . Therefore, whenever Bg is not zero-dimensional, we may assume
that Bg = Cug with ug a unitary. We may moreover assume that u∗

g = ug−1 . When Bg = 0, we
will denote ug = 0.

We claim that the linear span of the ug is σ -weakly dense in B . Indeed, if this was not the
case, then we could find a non-zero x ∈ B with φB(xug) = 0 for all g ∈ Γ . But as φB = (τ ⊗ ι)α

by definition, this would imply that

(τ ⊗ ι)
(
α(x)(λg ⊗ 1)

)
ug = 0 for all g ∈ Γ.
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Now an easy computation shows that for all g ∈ Γ , we have

(τ ⊗ ι)
(
α(x)(λg ⊗ 1)

) ∈ B∗
g .

Hence we in fact have

(τ ⊗ ι)
(
α(x)(λg ⊗ 1)

) = 0 for all g ∈ Γ.

This implies α(x) = 0, and so x = 0, which is a contradiction.
It is now enough to prove that φB(uguh) = φB(uhug) for all g,h ∈ Γ . But the left-hand side

is a multiple of φB(ugh), which is zero in case g �= h−1. Similarly, the right-hand side is zero in
case g �= h−1. As both sides equal 1 when g = h−1, we are done. �
Remark. General coactions of group von Neumann algebras (or rather, of the associated group
C∗-algebras), have been studied in the theory of Fell bundles over groups (see for example [28]).
The intuitive connection between these notions is essentially contained the above proof.

Corollary 7.2. Let Γ be a discrete group, H a Hilbert space, and

α : B(H ) → L (Γ )⊗B(H )

an ergodic coaction of L (Γ ) on B(H ). Then the following statements hold.

1. The dimension of H is finite.
2. There exists a finite subgroup H of Γ such that

α
(
B(H )

) ⊆ L (H) ⊗ B(H ),

and such that, denoting by β the coaction α with range restricted to L (H) ⊗ B(H ), the
couple (B(H ), β) is a (left) Galois object for L (H).

Remark. The notion of a Galois object was introduced in the second section. In the finite-
dimensional setting, it may be defined as follows: let A be a finite-dimensional Hopf ∗-algebra
with a left coaction β on a finite-dimensional ∗-algebra B . Then (B,β) is called a left Galois
object for A if the map

B ⊗ B → A ⊗ B : x ⊗ y → β(x)(1 ⊗ y)

is a bijection.

Proof of Corollary 7.2. By the previous lemma, we know that B(H ) admits a tracial state.
Hence H must be finite.

As for the second point, this is rather a corollary of the proof of the previous proposition. For,
using the notation introduced there, denote by H the set of elements g in Γ for which ug �= 0.
As the ug are orthogonal to each other with respect to the α-invariant state, we must have that H

is finite. As ug · uh is a non-zero multiple of ugh, and u∗
g = ug−1 , we must have that H is a finite

group. It is then immediate that indeed α(B(H )) ⊆ L (H) ⊗ B(H ).
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The coaction β of L (H) on B(H ) is then clearly also an ergodic action, with the ordinary
(normalized) trace tr as its invariant state. This implies that the map

L 2(B(H ), tr
) ⊗ L 2(B(H ), tr

) → (
L 2(L (H)

)
, τ

) ⊗ L 2(B(H ), tr
) : x ⊗ y → β(x)(1 ⊗ y)

is isometric and thus injective. As the ug with g ∈ H form an orthonormal basis of B(H ), we
have that the order of H equals the square of the dimension of H . Hence a comparison of
dimensions shows that the above map is also surjective, which proves that (B(H ), β) is a left
Galois object for L (H). �
Proposition 7.3. Let Γ be a discrete group, and let (N,�N) be a right Galois co-object for
L (Γ ). Then there exists a finite subgroup H ⊆ Γ and a non-degenerate 2-cocycle Ω for L (H),
such that (N,�N) is isomorphic to the cleft Galois co-object induced by Ω (considered as a 2-
cocycle for L (Γ )).

Proof. Let (N,�N) be a right Galois co-object for L (Γ ). Using the terminology introduced in
Definition 3.6, choose an irreducible [(N,�N)]-corepresentation

α : B(H ) → L (Γ ) ⊗ B(H )

of L (Γ ) on a Hilbert space H (for example, one of the Ad(r)
L , see the end of Section 3). By the

previous proposition, we know that H is finite-dimensional, and that we can choose a minimal
finite subgroup H ⊆ Γ for which

α
(
B(H )

) ⊆ L (H) ⊗ B(H ).

We moreover know that the corresponding coaction β of L (H) on B(H ) is then a Ga-
lois object. This means that the Galois co-object (NH ,�NH

) which is associated with β

(as a projective corepresentation) may be taken to be equal to (L (H),Ω�L (H)( · )), where
Ω ∈ L (H) ⊗ L (H) is a non-degenerate unitary 2-cocycle (see the final remarks of the previ-
ous section). Denote further (Ñ,�Ñ ) := (L (Γ ),Ω�L (Γ )( · )), which is a cleft Galois co-object
for L (Γ ).

Let then G be a projective (NH ,�NH
)-corepresentation which implements β . As NH =

L (H) ⊆ Ñ = L (Γ ), we may interpret G to be an element of Ñ ⊗ B(H ). It is trivial to see
that G is then an (Ñ,�Ñ )-corepresentation which implements α. Therefore (N,�N) is isomor-
phic to (Ñ,�Ñ ) as a right Galois co-object for L (Γ ) (see Remark after Definition 3.6), which
proves the proposition. �
Corollary 7.4. If Γ is a torsionless discrete group, or more generally, a group with no finite
subgroups of square order, then any Galois co-object for (L (Γ ),�L (Γ )) is isomorphic to
(L (Γ ),�L (Γ )) as a right Galois co-object.

In particular, any unitary 2-cocycle for L (Γ ) is then a 2-coboundary (see Remark after
Example 1.20).

Proof. The statement concerning torsionless discrete groups is of course an immediate conse-
quence of the previous proposition. As for the statement concerning the case when there are no
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finite subgroups of square order, observe that if K is any finite group for which some B(H )

allows a Galois object structure for l∞(K), then necessarily |K| = dim(H)2. �
Remarks.

1. For finite groups, Proposition 7.3 was proven in [27] (see also [15]).
2. In [19], it is shown that for any group Γ , all quasi-symmetric 2-cocycles for L (Γ ), i.e.

cocycles which also satisfy ΣΩΣ = ηΩ for some η ∈ S1, are coboundaries. (The authors
weaken this to allow unitaries satisfying the 2-cocycle condition up to a scalar, but it is
possible to show that, in any compact Woronowicz algebra, such unitaries are automatically
2-cocycles.)

3. One can also easily describe the Galois objects dual to the Galois co-objects appearing in
Proposition 7.3. Namely, if we have given a discrete group Γ , a finite subgroup H and a non-
degenerate 2-cocycle Ω for L (H), let γ : B(H ) → B(H ) ⊗ l∞(H) be the Galois object
for l∞(H) dual to the Galois co-object associated with Ω . Then the dual of the Galois
co-object for L (Γ ) associated with (H,Ω) is the induction of γ to Γ . The underlying
von Neumann algebra of this construction consists of the set of all elements x ∈ B(H ) ⊗
l∞(Γ ) for which

(γ ⊗ ι)(x) = (ι ⊗ βl∞(H))(x),

where βl∞(H) is the coaction associated with the left translation action of H on Γ . The right
coaction α of l∞(Γ ) on this von Neumann algebra is then simply given by right translation,
i.e. α(x) := (ι ⊗ �l∞(Γ ))(x).

The projective corepresentations associated with the Galois co-objects for L (Γ ) can be de-
termined as follows.

Proposition 7.5. Let Γ be a discrete group with a finite subgroup H . Let Ω be a non-
degenerate 2-cocycle for L (H), and let G ∈ L (H) ⊗ B(H ) be the associated irreducible
Ω-corepresentation on some Hilbert space H .

Then with (N,�N) the cleft Galois co-object for L (Γ ) associated with Ω ∈ L (Γ )⊗L (Γ ),
we have IN

∼= H \ Γ , and a maximal set of irreducible non-isomorphic (N,�N)-corepresenta-
tions is given by the set

GHg := G(λs(Hg) ⊗ 1) ∈ L (Γ ) ⊗ B(H ),

where s : H \ Γ → Γ is a fixed section for Γ → H \ Γ .

Remark. As Ω is assumed to be non-degenerate for L (H), the unitary G is indeed the unique
Ω-corepresentation for L (H), up to isomorphism.

Proof of Proposition 7.5. It is immediately seen that the right regular (N,�N)-corepresentation
for L (Γ ) equals Ṽ = ΩV , while the left regular (Nop,�Nop)-corepresentation equals W̃ =
Ω∗ W . For g ∈ Γ , let δHg ∈ B(l2(Γ )) be the indicator function for the coset Hg. Clearly, δHg
H
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commutes pointwise with L (H). Using then the definition of N̂ as a fixed point set (see Propo-
sition 1.10), it is easy to check that δHg ∈ N̂ . Using the second definition of N̂ as the closure of
the right leg of W̃ (see again Proposition 1.10), we get that in fact δHg ∈ Z (N̂), the center of N̂ .

We claim now that IN
∼= H \ Γ , and that the ṼHg := Ṽ (δHg ⊗ 1) are the irreducible compo-

nents of Ṽ . Indeed, as Ṽ = ⊕
gH ṼHg , it is enough to show that each of the sets {(ι ⊗ ω)(ṼHg) |

ω ∈ L (Γ )∗} is a type I -factor. But denoting VH = ∑
h∈H δh ⊗ λh, an easy computation shows

that

ṼHg = (ρg ⊗ 1)ΩVH

(
ρ∗

g ⊗ λg

)
,

where ρg is a right translation operator on l2(Γ ), i.e. ρgδk = δkg for g, k ∈ Γ . As we assumed
that Ω is a non-degenerate 2-cocycle, we know that {(ι ⊗ ω)(ΩVH ) | ω ∈ L (Γ )∗} is a type
I -factor. This proves the claim.

Now the irreducible Ω-corepresentation ΣṼHgΣ of L (Γ ) is immediately seen to be isomor-
phic to the Ω-corepresentation GgH in the statement of the proposition, while ṼH is isomorphic
to G as an Ω-corepresentation for L (H). This then finishes the proof. �
Remarks.

1. With the help of this proposition, one can show that if H and K are two finite subgroups of
Γ , with respective non-degenerate 2-cocycles ΩH and ΩK , then the associated Galois co-
objects (N,�N) and (Ñ,�Ñ ) for L (Γ ) are isomorphic iff there exists g ∈ Γ and a unitary
u ∈ L (H) with g−1Hg = K and

(λg ⊗ λg)Ω2
(
λ∗

g ⊗ λ∗
g

) = (
u∗ ⊗ u∗)Ω1�L (H)(u).

2. One can also be more specific on when the projective corepresentations associated with
two given (N,�N)-corepresentations as above are actually isomorphic. Namely, using the
notation as in the statement of the proposition, let αg be the coaction of L (Γ ) on B(H )

implemented by GHg . We may assume that αe is the ‘extension’ of the coaction β of L (H)

on B(H ) implemented by G . Then we have αg
∼= αe iff gHg−1 = H and Ω is coboundary

equivalent to (λg ⊗ λg)Ω(λ∗
g ⊗ λ∗

g) (inside L (H)).

8. A projective representation for SUq(2)

In this section, we want to consider one special and non-trivial example of a projective repre-
sentation of the compact quantum group SUq(2). This projective representation will be nothing
else but (a completion of) its action on the standard Podleś sphere.

Let us first recall the definition of SUq(2) on the von Neumann algebra level. For the rest of
this section, we fix a number 0 < q < 1.

Definition 8.1. Denote L 2(SUq(2)) = l2(N) ⊗ l2(N) ⊗ l2(Z). Consider on it the operators

a =
∑ √

1 − q2k ek−1,k ⊗ 1 ⊗ 1,
k∈N0
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b =
(∑

k∈N

qkekk

)
⊗ 1 ⊗ S,

where S denotes the forward bilateral shift.
Then the compact Woronowicz algebra (L ∞(SUq(2)),�+) consists of the von Neumann

algebra

L ∞(
SUq(2)

) = B
(
l2(I+)

)⊗1⊗L (Z) ⊆ B
(
L 2(SUq(2)

))
,

equipped with the unique unital normal ∗-homomorphism

�+ : L ∞(
SUq(2)

) → L ∞(
SUq(2)

)⊗L ∞(
SUq(2)

)
which satisfies {

�+(a) = a ⊗ a − qb∗ ⊗ b,

�+(b) = b ⊗ a + a∗ ⊗ b.

Its invariant state ϕ+ is given by the formula

ϕ+
(
eij ⊗ 1 ⊗ Sk

) = δi,j δk,0
(
1 − q2)q2k for all i, j ∈ N, k ∈ Z,

and we may identify L 2(SUq(2)) with the Hilbert space in the GNS-construction for ϕ+ by
putting ξM = √

1 − q2
∑

i∈N
qiei ⊗ ei ⊗ e0.

The definition of the standard Podleś sphere and the associated action of SUq(2) takes the
following form on the von Neumann algebraic level.

Definition 8.2. Define L ∞(S2
q0) to be the von Neumann algebra inside L ∞(SUq(2)) generated

by X = qb∗a and Z = b∗b. Then �+ restricts to a left (ergodic) coaction α of L ∞(SUq(2)) on
L ∞(S2

q0). We say that this coaction corresponds to ‘the action of SUq(2) on the standard Podleś
sphere’.

One can show that L ∞(S2
q0) may be identified with the von Neumann algebra B(l2(N)), in

such a way that

X →
∑
k∈N0

qk
√

1 − q2k ek−1,k,

Z →
∑
k∈N

q2k ekk.

Under this correspondence, the α-invariant state on L ∞(S2
q0) = B(l2(N)) equals

φα(eij ) = δij

(
1 − q2)q2i .
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In the terminology of the present paper, the coaction α is thus an irreducible projective repre-
sentation of SUq(2) on an infinite-dimensional Hilbert space. In [9], we computed the associated
Galois co-object. To introduce it, let us first recall some notations from q-analysis (see [16]).

Notation 8.3. For n ∈ N ∪ {∞} and a ∈ C, we denote

(a;q)n =
n−1∏
k=0

(
1 − qka

)
,

which determines analytic functions in the variable a with no zeroes in the open unit disc.
For n ∈ N and a ∈ C, we denote by pn(x;a,0 | q) the Wall polynomial of degree n with

parameter value a; so

pn(x;a,0 | q) = 2ϕ1
(
q−n,0;qa

∣∣ q, qx
)
,

where 2ϕ1 denotes Heine’s basic hypergeometric function.

Proposition 8.4. Let L 2(N) = l2(Z) ⊗ l2(Z) ⊗ l2(Z). Denote by v the operator S∗ ⊗ 1 ⊗ 1,
where S denotes the forward bilateral shift, and by L0+ the operator such that

L0+(en ⊗ em ⊗ ek) = (
q2n+2;q2)1/2

∞ en ⊗ em ⊗ ek,

so L0+ = u(q2b∗b;q2)
1/2∞ with u the canonical isometric inclusion of l2(N) ⊗ l2(N) ⊗ l2(Z)

into l2(Z) ⊗ l2(Z) ⊗ l2(Z). Denote N for the σ -weak closure of the right L ∞(SUq(2))-
module generated by the elements vnL0+, where n ∈ Z. (One easily shows that N equals the
set B(l2(N), l2(Z))⊗1⊗L (Z).)

Then there exists a unique Galois co-object structure (N,�N) on N for which

�N

(
vnL0+

) = (
vn ⊗ vn

) ·
( ∞∑

p=0

(
q2;q2)−1

p
vpL0+bp ⊗ vpL0+

(−qb∗)p

)
,

the right-hand side converging in norm.
The coaction α of L ∞(SUq(2)) on L ∞(S2

q0) is then an irreducible [(N,�N)]-corepresenta-
tion, and an associated implementing (N,�N)-corepresentation G is determined by the follow-
ing formula: denoting G = ∑

s,t∈N
Gts ⊗ ets ∈ N ⊗B(l2(N)), we have, for 0 � t � s, that

Gts = qt(t−s)

(
(q2;q2)s

(q2;q2)t

)1/2(
q2;q2)−1

s−t
· vs+tL0+bs−t · pt

(
b∗b;q2(s−t),0

∣∣ q2),
while for 0 � s � t , we have

Gts = qs(s−t)

(
(q2;q2)t

(q2;q2)s

)1/2(
q2;q2)−1

t−s
· vt+sL0+

(−qb∗)t−s · ps

(
b∗b;q2(t−s),0

∣∣ q2).
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For the rest of this section, we take (M,�M) to be (L ∞(SUq(2)),�L ∞(SUq (2))), and we fix
the right Galois co-object (N,�N) for (M,�M) introduced above. We then also keep using the
notations introduced above, as well as those from the first four sections.

Our aim now is to describe in more detail the structure of the Galois co-object (N,�N). In
particular, we want to find a complete set of irreducible (N,�N)-corepresentations. This is in
fact not so difficult.

Proposition 8.5. Let (N,�N) be the Galois co-object and G the (N,�N)-corepresentation in-
troduced in Proposition 8.4.

Then the set of unitaries

G(n) := (
vn ⊗ 1

)
G, n ∈ Z

forms a complete set of irreducible (N,�N)-corepresentations for L ∞(SUq(2)).
In particular, the set IN of isomorphism classes of irreducible (N,�N)-corepresentations can

be naturally identified with Z.

Proof. It is trivial to see that the G(n) are indeed irreducible (N,�N)-corepresentations, by the
group-like property of v. We then only need to show that the G(n) are mutually non-isomorphic
and have σ -weakly dense linear span in N .

We first prove that all G(n) are mutually non-isomorphic. As an isomorphism between G(n)

and G(m) would induce an isomorphism between G(0) and G(m−n), it is sufficient to show that
G = G(0) is not isomorphic to G(n) for n �= 0. But for this, it is in turn sufficient to show that
L0+ = G00 is orthogonal to all G(n)

ts , by the orthogonality relations in Lemma 1.17.2 (and Theo-
rem 3.2.2).

Now we remark that ϕ+ satisfies the property that ϕ+(ambk(b∗)l) = 0 whenever m �= 0 and
k �= l, and likewise with a replaced by a∗. Moreover, one easily computes that the commuta-
tion relation v∗L0+ = L0+a∗ holds. Using then the concrete form for the Grs in the previous
proposition, it is easy to see that

ϕ+
(
L∗

0+G(n)
ts

) �= 0 ⇒ s = t and n + 2t = 0.

Hence the only thing left to do is to prove that L0+ is orthogonal to G(−2t)
t t for t ∈ Z0. But suppose

this were not so. Then as G(−2t) and G(0) are irreducible, we would necessarily get that they are
isomorphic, again by the orthogonality relations. As the inner product of L0+ with all G(−2t)

rs

except r, s = t is zero, this would then imply that L0+ must be a scalar multiple of G(−2t)
t t , which

is equivalent with saying that pt(b
∗b;1,0 | q2) is a scalar multiple of the unit. As the spectrum of

b∗b is not finite, and pt (x;1,0 | q2) is a non-constant polynomial in x, we obtain a contradiction.
Hence the G(n) are mutually non-isomorphic.

We end by showing that the G(n)
ts have a σ -weakly dense linear span in N . Consider,

for k, t ∈ N, the element G(−2t−k)
t,t+k . Then, up to a non-zero constant, this equals the element

L0+bkpt (b
∗b;q2k,0 | q2). As the pt (x;q2k,0 | q2) are polynomials of degree t , we conclude

that the linear span of the G(−2t−k)
t,t+k contains all elements of the form L0+bk+t (b∗)t . A similar

argument shows that the G(−2s−k) contain all elements of the form L0+bs(b∗)s+k . Hence the
s+k,s



3640 K. De Commer / Journal of Functional Analysis 260 (2011) 3596–3644
linear span of all G(n)
ts contains all elements of the form L0+bs(b∗)t for s, t ∈ N. As this lin-

ear span is closed under left multiplication with powers of v, we conclude that this linear span
contains all elements of the form vnL0+bs(b∗)t where n ∈ Z, s, t ∈ N. As we can σ -weakly
approximate elements of the form err ⊗ 1 ⊗ Sk by elements in the linear span of the bs(b∗)t ,
it follows immediately that the σ -weak closure of the linear span of the G(n)

ts indeed equals
N = B(l2(N), l2(Z))⊗1⊗L (Z). �
Corollary 8.6.

1. Up to isomorphism, there is only one irreducible [(N,�N)]-corepresentation of
L ∞(SUq(2)).

2. The von Neumann algebra N̂ (cf. Proposition 1.10) can be identified with
⊕

r∈Z
B(l2(N)).

Proof. The first statement follows immediately from the previous proposition, Theorem 3.2.2
and Proposition 3.8, as any G(n) clearly implements the same irreducible [(N,�N)]-corepresen-
tation. The second statement follows from Corollary 3.3. �
Proposition 8.7. Denote M = L ∞(SUq(2)). The elements 1

qt
√

1−q2
G(n)

ts ξM form an orthonor-

mal basis of L 2(N), and, under the identification L 2(N) → ⊕
n∈Z

(l2(N) ⊗ l2(N)) by sending
1

qt
√

1−q2
G(n)

ts ξM to en,t ⊗ en,s , the element

∑
n∈Z

∞∑
i,j=0

1 ⊗ en,ts ⊗ G(n)
ts ∈ N̂ ′ ⊗N

equals Ṽ .

Proof. Remark first that ϕ+((G(n)
ts )∗G(n)

ru ) = ϕ+(G∗
ts Gru). But as we have that

α(eij ) =
∑
k,l∈N

G∗
ik Gj l ⊗ ekl

and (ϕ+ ⊗ ι)α = φα , it follows immediately that ϕ+(G∗
ik Gj l) = δklδij (1−q2)q2i . Combined with

the previous proposition, this proves that the 1
qt

√
1−q2

G(n)
ts ξM form an orthonormal basis.

Now

Ṽ G(n)
ij ξM ⊗ ξM =

∑
k∈N

G(n)
ik ξM ⊗ G(n)

kj ξM.

On the other hand, denoting Ṽ ′ = ∑
n∈Z

∑∞
i,j=0 1 ⊗ en,ts ⊗ G(n)

ts , we have

Ṽ ′ G(n)
ij ξM ⊗ ξM

∼= qi
√

1 − q2
∑
k∈N

en,i ⊗ en,k ⊗ G(n)
kj ξM

∼=
∑
k∈N

G(n)
ik ξM ⊗ G(n)

kj ξM.

As ξM is separating for N , this shows that Ṽ = Ṽ ′. �
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One may deduce from this that the ordinary matrix units en,ts in N̂ = ⊕
n∈N

B(l2(N)) are of
the form we required in Section 1, namely their corresponding vectors en,t ∈ l2(N) are eigenvec-
tors for the trace class operator T implementing φα (it should be remarked that we are implicitly
using Proposition 3.11 here).

We now remark that in [9], we had already computed that the reflection of L ∞(SUq(2))

across (N,�N) (see Section 4 for the terminology) may be identified with Woronowicz’s quan-
tum group L ∞(Ẽq(2)) (see [38]), which has as its associated von Neumann algebra

L ∞(
Ẽq(2)

) = B
(
l2(Z)

)⊗1⊗L (Z) ⊆ B
(
L 2(N)

)
.

Now it is known (see [2]) that this is a unimodular quantum group, with its invariant nsf weight
ϕ0 determined by

ϕ0
(
eij ⊗ Sk

) = δij δk,0q
2i .

Proposition 8.8. The modular element δN̂ (see Theorem 2.9.2) equals
⊕

n∈Z
q2nT 2 ∈ N̂ , where

T ∈ B(l2(N)) is the operator T ei = q2iei .

Proof. Denote again by An the n-th component of δN̂ in N̂ . Then by Proposition 4.3.3, we know
that An = d2

nT 2 for some dn > 0. Moreover, by Proposition 8.7 and Theorem 4.2, we know

that ϕ0(G(n)
00 (G(n)

00 )∗) = 1
(1−q2)d2

n
. So to know dn, we should compute ϕ0(v

nL0+L∗
0+(v∗)n). But

as σ
ϕ0
t (v) = q−2it v, we have that ϕ0(v

nL0+L∗
0+(v∗)n) = q−2nϕ0(L0+L∗

0+). As the dn are only
determined up to a fixed scalar multiple anyway, we see that we may take dn = qn, which ends
the proof. �
Proposition 8.9. For all m,n ∈ Z and i, j, k, l ∈ N, we have

ϕ0
(

G(n)
ij

(
G(m)

kl

)∗) = δmnδikδjl

1

q2n+2j
.

Proof. By Proposition 4.2 and the previous proposition, we have that

ϕ0
(

G(n)
ij

(
G(m)

kl

)∗) = δmnδikδjl

c

q2n+2j

for a certain constant c. This constant is precisely the number ϕ0(L0+L∗
0+) which we neglected

to compute in the previous proposition. But

ϕ0(L0+L0+) =
∑
k∈Z

q2k
(
q2k+2;q2)

∞

= (
q2;q2)

∞
∑
k∈N

q2k

(q2;q2)k

= 1,

by the q-binomial theorem. �
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Remark. These orthogonality relations can also be written out in terms of the Wall polynomi-
als pn. Then one would simply get back the well-known orthogonality relations between these
polynomials (see e.g. [22], Eq. (2.6)), from which the above orthogonality relations can also be
directly deduced.

As a final computation, let us determine the fusion rules between the G(n) and the irreducible
corepresentations Ur of L ∞(SUq(2)) (where r ∈ 1

2N).

Proposition 8.10. For all n ∈ Z and r ∈ 1
2N, we have

G(n) × Ur
∼=

2r⊕
i=0

G(n−2r+2i).

Proof. By multiplying to the left with powers of v, it is easy to see that the fusion rules are
invariant under translation of n. We may therefore restrict to the case n = 0.

It is then well known that if we consider L ∞(S2
q0) as an L ∞(SUq(2))-comodule, the coac-

tion α splits as
⊕

s∈ 1
2 N

U2s . From the proof of Proposition 3.9 and the remark preceding it, we

obtain that G × Ur will then split as a direct sum of less than 2r + 1 corepresentations. By the
orthogonality relations between the G(n)

ij , it then suffices to find in each G(2i−2r), with 0 � i � 2r ,
a component which has non-trivial scalar product with a matrix element of G × Ur .

By looking at the border of Ur , and by using G
(0)
00 = L0+, we find in G × Ur the el-

ements L0+aib2r−i (up to a non-zero scalar), where i ∈ N with i � 2r . It is then enough
to find inside G(2i−2r) some element which has non-trivial scalar product with L0+aib2r−i .
But by an easy computation, we have L0+a = vL0+(1 − b∗b), and then by induction
L0+aib2r−i = viL0+(q−2ib∗b;q2)ib

2r−i . On the other hand, G(2i−2r)
0,2r−i equals viL0+b2r−i , up

to a scalar. As (q−2ib∗b;q2)i(b
∗b)2r−iL∗

0+L0+ is a non-zero positive operator, we find that

indeed ϕ+((G(2i−2r)
0,2r−i )∗L0+aib2r−i ) �= 0, which then finishes the proof. �

Remarks.

1. By the discussion following Proposition 3.9, we could also have deduced these fusion rules
directly from [31], as the multiplicity diagram of the ergodic coaction of SUq(2) on the
standard Podleś sphere is explicitly computed there.

2. In [12], we discussed the ‘reflection technique’ (cf. Section 4) with respect to another action
of SUq(2) on a type I factor, namely the von Neumann algebraic completion of its action on
the ‘quantum projective plane’ (see e.g. [17]). We showed that the reflected quantum group
in this case was the extended S̃Uq(1,1) quantum group of Koelink and Kustermans [21].
This shows in particular that the Galois co-object (Ñ,�Ñ ) constructed from the quantum
projective plane action is different from the one we considered in this section. In fact, as the
multiplicity diagram of this action was explicitly computed in [31], we see that the (Ñ,�Ñ )-
projective representations of SUq(2) are labeled by the forked half-line {0+,0−}∪N0 (again
by the discussion following Proposition 3.9). Now it can be shown that the quantum group
S̃Uq(1,1) contains only two group-like unitaries. By Proposition 3.5 of [11], this implies that
the associated [(Ñ,�˜)]-projective corepresentations still form a (countably) infinite family
N
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(which in fact will be parametrized by N, as obtained from {0+,0−} ∪ N0 by identifying 0+
with 0−). This family of ergodic actions is discussed from an algebraic viewpoint in [10].
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