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A partial t-spread in a projective space P is a set of mutually skew t-dimensional subspaces
of P. In this paper, we deal with the question, how many elements of a partial spread & can be
contained in a given d-dimensional subspace of P. Our main results run as follows. If any
d-dimensional subspace of P contains at least one element of &, then the dimension of P has
the upper bound d—1+(d/t). The same conclusion holds, if no d-dimensional subspace
contains precisely one element of &. If any d-dimensional subspace has the same number m >0
of elements of &, then & is necessarily a total t-spread. Finally, the ‘type’ of the so-called
geometric t-spreads is determined explicitely.

1. Introduction

Denote by P =PG(r, q) the finite projective space of dimension r=3 and order
g, where q =p" is a power of the prime p. A partial t-spread of P is a set & of
t-dimensional subspaces of P such that any point of P is incident with at most one
element of &. The partial t-spread & of P is called a t-spread, if any point of P
lies on a (unique) element of <.

Partial t-spreads have been investigated thoroughly. In particular, one is
interested in the cardinality of maximal partial t-spreads; see for instance [5, 6, 8,
15, 18].

Recently, the notion of ‘type’ and ‘class’ of a partial t-spread was introduced by
Tallini [22]. Denote by & a partial t-spread of P =PG(r,q), and let d be an
integer with t<d=<r. We say that & is of type (T),;, where T is a set of
non-negative integers, if the following conditions hold:

(i) For any d-dimensional subspace U of P, the number of elements of &
contained in U is a number of T.

(i1) For any number m € T, there exists a d-dimensional subspace U of P such
that U has exactly m elements of &.

* Communicated at XII Congresso UMI, Perugia, September 1983.
t This paper was written while the first author was as a visiting professor at the Universita degli
Studi in L’ Aquila, Italy. He wants to thank the C.N.R. for the support.
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If & is a partial t-spread of type (T), then & is said to be of class [C],, for any
set C of non-negative integers with T < C.

If T={m,,...,m,} (or C={m,,...,m,}), we say also that & is of type
(my,...,my)4 (or class [m,,...,mp]s), if ¥ is of type (T); (or of class [C],,
respectively).

Up to now, only partial t-spreads of type (T),., (or class [Cl,.;) have been
considered. The study of these structures was initiated by Tallini [22, 23] in the
case t=1, and continued by de Finis and de Resmini [12], and, for t>1, by
Berardi [4] and Eugeni [16].

The aim of this paper is to investigate partial t-spreads of type (T),; and class
[Cly for an arbitrary integer d. In Section 3 we shall prove the following
surprising theorem. Denote by & a non-empty partial t-spread of class [C]; in
PG(r,q). If 0¢C or 1¢C, then r=<d—1+(d/t). In other words: If r>d—1+
(d/t), then 0,1eC.

In Section 4, partial t-spreads of type (m),; with m# 0 are studied. It turns out
that those partial t-spreads are exactly the (total) ¢-spreads.

In Sections 5 and 6 we shall deal with partial t-spreads of type (0, n), and
(1, n)4 in PG(r, q). We shall show that under certain assumptions it follows that
d=r—1.

Finally, in the last section, we shall construct many examples illustrating our
theorems. In particular, we shall determine the type (T), of a geometric 1-spread
in PG(r, q) for any integer d with 1<d=<r.

2. Preliminary definitions and results

Throughout this paper we shall use the terminology of Dembowski [13]. For
any two integers d and r with 0 =<d =<r and for any prime-power q we define the
following numbers, which are known as the ‘g-analoguous’ to the binomial
coeflicients (see for example [1, 10, 19]).

6.(a°)= 2 q%, 6,=0,(q) 0.,=0, (2.1)
i=0
r 07—1 e n 60
= . s 2.2
[d]a 04_1°°°6000,_4_,-- 6 (22
4 9, [r+ 1 ]
= =t . 2.3

It is well known that 6,(q) is the number of points in PG(r, q), and [7], is the
number of (d — 1)-dimensional subspaces in PG(r—1, q).

Result 2.1 (Segre [20]). The projective space PG(r, q) contains a t-spread if and
only if r+1=(a+1)(t+1) for a positive integer a. For any t-spread & of
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PG((a+1)(t+1)—1, q) we have
|#|=6,/6, = 6,(q"*"). (2.4)

For any two distinct elements V, V' of a partial spread &, denote by (V, V') the
subspace generated by V and V’'. We say that & induces a partial t-spread in
(V, V'), if any element of & having a point in common with (V, V') is contained in
(V, V'), & is called geometric (cf. [2]), if for any two distinct elements V, V' of &,
& induces a partial t-spread in (V, V’). The following result is well known.

Result 2.2 (Serge [20]). The projective space PG(r,q) contains a geometric
t-spread if and only if t+1 divides r+1.

For a geometric t-spread & of P =PG(r, q), let P(¥) = (&, B) be the following
incidence structure. The points are the elements of &, the blocks are the sets of
elements of & belonging to the subspaces (V, V’) for any two distinct elements V,
V' of &. Then the following result is true.

Result 2.3 (Serge [20]). If & is a geometric t-spread of PG(r,q) with r+1=
(a+1)(t+1), then the incidence structure P(¥) is a projective space of dimension
a and order q***.

For a generalization of this result see Theorem 5.1 in [6]. We present now some
easy lemmas.

Lemma 2.4. Denote by & a partial t-spread of P=PG(r,q) with r+1=
(a+1)(t+1). Then & is a t-spread if and only if any hyperplane of P contains
exactly 6,_,(q**") elements of &.

Proof. Consider a hyperplane H and denote by s the number of elements of ¥
which are subspaces of H. Since any element of & which is not contained in H
intersects H in a subspace of dimension ¢—1, the number n of points of H which
are incident with an element of & equals

n=s-0,+(%—-s5)0_,=s-q"'+|¥ 6,_,.
Since |¥|=<0,(g"""), it follows
n<s-q'+6,_,-q" - 6,1(q"").
Therefore, s = 0,_,(q"*") if and only if n = 6,_4(q), i.e. if and only if any point of

H is incident with an element of &.

Now the assertion of our lemma follows easily. If any hyperplane has 6,_,(q**")
elements of &, then any point is incident with an element of &, and so, ¥ is a
t-spread. On the other hand, if & is a t-spread, then n=46,_,(q) for any
hyperplane H; hence H contains exactly 6,_,(q"*") elements of &¥. [0

Denote by ged(s, t) the greatest common divisor of the positive integers s and t.
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Lemma 2.5. Let q be a prime-power, and let s and t be two positive integers.
Moreover, define vy by y+1=gcd(s+1,t+1). Then gcd(6,, 6,)= 6.,

Proof. The following fact is well known (see for example [7, p. 105]):
6,6, if and only if u+1|v+1.

A repeated application of this assertion proves the lemma. [

3. Non-existence theorems

In this section we shall prove a rather restrictive non-existence theorem for
partial t-spreads of type (T);. We shall apply this result to partial ¢-spreads of
class [=1], and [0, =2],. This result says in particular that for any partial t-spread
& in PG(r,q) with r>d—1+(d/t), there is a d-dimensional subspace which
contains no element of ¥ and a d-dimensional subspace which contains exactly
one element of &.

Lemma 3.1. Denote by & a partial t-spread of type (T), in P=PG(r, q). Suppose
that there exists a u-dimensional subspace U of P with u<d—t—1 in which &
induces a partial spread ¥; having exactly s elements. If s¢ T, then r<d —1+(d/t).

Proof. If h denotes the smallest number in T which is greater than s, then
m :=h—s>0. In particular, any d-dimensional subspace through U contains at
least m elements of & —9’,,. We claim: Any subspace of dimension d +i through
U contains at least mq“*?! elements of ¥ — %,.

Namely: We have already observed that the assertion holds for i =0. Suppose
now i =1 and assume that the assertion is true for i — 1. Consider a subspace W of
dimension d + i through U. By induction, any hyperplane of W through U has at
least s5;_;:= mq®* V¢ elements of ¥ —Fy. Denote by s; the number of elements
of ¥— %, in W. Counting the number of pairs (V, H), where V is an element of
F—-Fy, in W and H is a hyperplane of W through U and V we obtain

) . t+1)G—1
Si* Ogsi—u——2Z044iy mq( X )’

hence

@+1)GE—-1) | -+

s =mq g '=m-q

(@+1)i

It follows in particular | — $Fy|=m - q**P¢ %, Since |¥|=<6,/6, <q"**/q", we have

q(t+1)(r—-d) . qt <m- q(t+1)(r—-d) . qt <qr+1,

thus, ¢+ 1)(r—d)+t<r+1. O
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A partial t-spread & of P is said to be of class [=1],, (or, of class [0, =2],) if
no d-dimensional subspace of P contains no element of & (or, exactly one
element of &, respectively). As corollaries of Lemma 3.1 we have the following

theorems which generalize the results given in [16] in the cases d =2t+1 and
d=2t+2.

Theorem 3.2. Denote by d and r two positive integers with d <r. If & is a partial
t-spread of class [=1]; in P =PG(r, q), then r<d—1+(d/t).

Proof. Put U=¢. O

Theorem 3.3. Denote by & a partial t-spread of P =PG(r, q) of class [0, =2], with
2t+1sd<r. If $# 0, then r<d—1+(d/t).

Proof. Let U be an element of . [

Corollary 3.4. Denote by & a non-empty partial t-spread in P =PG(r, q) of class
[=1),.41 or of class [0, =2],,., With r>2t+1.

(@) If t=1, then r<5.

(b) If t>1, then r=2t+2.

Proof. If d=2t+1, Theorems 3.2 and 3.3 reduce to r<d-1+(d/t)=
2t+24+(1/t). O

The remainder of this section is devoted to examples which show that the above
bounds are best possible. In Section 7 we shall prove that a geometric 1-spread in
PG(2d -1, q) is always of class [=1]; (see Corollary 7.4).

Proposition 3.5. For any positive integer t and any prime-power q there exists a
partial t-spread of class [=1]; in PG(2t+2, q).

Proof. Example 1. Denote by H a hyperplane of P, and let & be a t-spread of H.
Then, by Result 2.1, & is a partial t-spread of type (1, @"**+1),,,, of P. (Any
hyperplane H'# H intersects H in a 2¢-dimensional subspace which contains ex-
actly one element of & (see Lemma 2.4).)

Example 2. Embed P as a hyperplane in 3 =PG(2t+3,q) and consider a
(t+1)-spread ¥ of 3. Denote by F, the element of ¥ in P. We define

P={FNP|FeF—{Fy}}

and ¥’ =FU{S,}, where S, is an arbitrary ¢-dimensional subspace of F,. Clearly,
&' is a partial t-spread of P (cf. [6, Theorem 4.2]; see also [16]). We claim that &'

is of type (1’ q, q+ 1)2t+1’
In order to show this, consider a hyperplane W of P. There are exactly q
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hyperplanes Hy, . .., H, of 3 through W with H;# P. Each of these hyperplanes
contains exactly one element of &. If F,c W, then this element is in any case F,,.
On the other hand, if F, & W, then these q elements of ¥ are mutually distinct.
Thus, W contains exactly q elements of &. It may be that W contains also S,.
Therefore, &' is of type (1,9, q+1)24;. O

If we consider the partial spread & of P again, we see immediately

Proposition 3.6. For any positive integer t and any prime-power q there exists a
partial t-spread of type (0, q)2.1 in PG(2t+2, q).

We remark that this was proved in [4] in the case t=1 and in [16].

The authors do not know an example of a non-empty partial 1-spread of class
[0, =2], in PG(2d —1, q). However, in Section 7 we shall see (cf. Theorem 7.3)
that for any integer d=3 and any prime-power g, a geometric 1-spread in
PG(2d -3, q) is of class [0, =2],.

4. Partial t-spreads of singular type

Throughout this section, we denote by & a partial t-spread in P =PG(r, q) of
type (m), with 2t+1<sd<r. If m =0, then ¥ =0. So, we may also suppose that
m =1. The main result of this Section is a precise description of all partial
t-spreads of P of type (m); (see Theorem 4.7).

Lemma 4.1. Let h be a positive integer with d+h<r, and denote by U a
(d + h)-dimensional subspace of P. If m,, denotes the number of elements of & in U,

then
d+h—t] _ [d+h+1]
my, [ h q—m d+1 q. (4.1)

In other words, & is of type (M) 4.h

Proof. Counting the pairs (S, W), where S is an element of ¥ in U and Wiis a
d-dimensional subspace of U containing S we obtain (4.1). It follows in particular
that m, is independent from the choice of the (d+ h)-dimensional subspace
Uu. 0O

Corollary 4.2. Suppose d<r—1. Then & is of type (n),_, with
n= mor—l e er—t——lled et ad—t-l = Iyl ' or—t—llor- (4-2)
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Proof. By Lemma 4.1, & is of type (m,_4_,),—, with

SRSl Y ]
ne= Mg =M d+1 q r—-1-d q'

Counting the pairs (S, W), where S € ¥ and W is a hyperplane of P with S < W we
get 6, -n=\¢0,_,_,. O
Denote by a and b the uniquely defined positive integers with
r=a(t+1)+b and 1<b=<t+1.

Lemma 4.3. Define the integer g by g +1=gcd(t+1, b+1). Then 6, divides 0,_,_,,
and 6,_,_,/6, is a divisor of the above defined number n.

Proof. Since g+1 divides (a—1)(t+1)+b+1(=r—t),by Lemma 2.4, 0,_,_,is a
multiple of 6,. Moreover,
ged(t+1,r—t)=ged(r+1,t+1)=ged(b+1,t+1)=g+1.
Again using Lemma 2.4 we have ged(8,, 6,—,_,) = 6,. In view of (4.2), the assertion
follows. [
Corollary 4.4. We have g>0 and b=<t.
Proof. Assume g =0. Then Lemma 4.3 implies that 6,_,_, divides n. In particular,
0,_.—1=<n. On the other hand, n=<46,_,/6, Thus,
or—t—l * 6: = 07—-13
a contradiction.
If b=1t+1, then g = 0. But we have already shown that this is impossible. O
Theorem 4.5. We have that & is a (total) t-spread of P.
Proof. Since 0, divides 6,_,_,, 6,/0, is a divisor of 6,/0,_,_,. Therefore, Corollary
4.2 implies that 6,/6, divides |#|. In particular we have
646, <|¥|.
On the other hand, clearly, |#|=<6,/6,. Since g=<b and b=t it follows
6,/6,<86,/6,<|¥|=<6,6.
Therefore, |#| = 6,/6,. This means that & is a (total) t-spread of P. (O

Lemma 4.6. Denote by F a t-spread in P =PG(r, q). Then F is not of type (m),_,.

Proof. Assume to the contrary that & is of type (m),_, for a positive integer m.



248 A. Beutelspacher, F. Eugeni

Counting the pairs (S, W), where S€ ¥ and W is an (r—2)-dimensional subspace
of P through S, we get

or ) or—l tm= |g| ) 0r—t—1 ) 0r—t—2'
Since ¥ is a t-spread, we have |%|=6,/6, and so
0: ‘ or-—l tm= er—t-l ‘ 0r—t—2'

Since r=a(t+1)—1, we have ged(r, r—t—1) = 1. Therefore, 6,_, divides 0,_,_,, a
contradiction. [

In the following theorem, we determine all partial ¢-spreads of singular type.

Theorem 4.7. A partial t-spread in P =PG(r, q) is of type (m), (m# 0) if and only
if it is a (total) t-spread of P and we have d =r—1. Moreover, in this situation,
m= 0,._t_1/0t.

Proof. By Lemma 2.4, any ¢-spread of P is of type (0,_,_,/6,),_;.

Suppose on the other hand that & is a partial ¢t-spread of type (m), in P. Then,
by Corollary 4.2, & is of type (n),_,. Now, Theorem 4.5 implies that & is a
t-spread of P. Finally, Lemma 4.6 in connection with Lemma 4.1 shows d =
r—1. O

5. Partial spreads of type (0, m),

Throughout this section, we denote by & a partial ¢t-spread of type (0, m), in
P =PG(r, q) with 2t +1=<d <r. Without loss in generality, we can suppose |¥|=2.
We shall prove that under these hypotheses we have necessarily d =r—1.

Consider a subspace U of P with d + 1<dim(U) <r. Then the elements of & in
U form a partial ¢t-spread of type (0, m), of U. Therefore, it suffices to show that
the assumption r = d +2 yields a contradiction. We shall work under this assump-
tion.

Lemma 5.1. Under the above assumptions, we have
(L?I - 1)0d—2t - 0d.—2t—1 = 0d——t+1 ) od—t : (m - 1) (51)
Proof. Fix V,e¥. We count the pairs (V, H), where Ve ¥$—{V,} and H is a

d-dimensional subspace through V and V,. Since any of these d-dimensional
subspaces H contains precisely m elements of ¥, the assertion follows. [

Denote by a and b the uniquely defined integers with
d+2=r=a(t+1)+b and 1<b=t+1. (5.2
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Lemma 5.2. If we define

vi+1=gcd(t+1,b+1), vo+1=gcd(t,a+b—1),
vs+1=gcd(b+2—a,t+2), Yo+ 1=gcd(t+1,d),
then

=ged(04-2 0a—¢11) = 0., g2:=ged(04_2, 04-.) = 0,
ng(od—2t 15 0d—t+1) 'y3, 84:= ng(od_zt-l, od-—r.) = 0.,,4.
Moreover, gcd(gl, g)=1.

Proof. Using Lemma 2.4, this follows by elementary calculations. [

Corollary 5.3. Either 0,_,., - 04_,/8:8283 Or 04_,.1 " 0,_,/2-8384 is a divisor of
|#1-

Proof. In view of Lemma 5.2, this follows by Lemma 5.1. [
Corollary 5.4. d<t+3+y,+ y3+max{y,, v}

Proof. If we put M:=max{g,8,83, €288}, it follows by Corollary 5.3
0d—t+l d—t = (lyl 1)M

Since
|#1 = 1=<(0442—0)/0.=q""" - 04:41-46,
we have
0, 0,<q" M
Therefore,
q*™ - q'<q"' - max{q""q"" g, g g g,
and so

d—t+t<t+1+vy,+vys+max{y, vs. O

Corollary 5.5. d <4:+2.

Proof. By Lemma 5.2, max{y,, v4 <t Clearly, y,<t—1 and y;=<t+1. Thus, by
the preceeding corollary, it follows d <4t +3.

Assume d =4t+3. Then a=4 and b= 1. Consequently, i1, y,=<3, y3=
t+1, v4=0, and so 4t+3=d=<t+3+3+t+1+1. Thus, 2¢t=<S5. But in the cases
t=1 and t=2, a contradiction follows easily. [J

The following assertion turns out to be very useful.
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Proposition 5.6. a = 3.
Proof. Since d=4t+2, we have a=<3. Clearly, a=2. (Otherwise, d=1+
t+1+b—-2=<2t—1.) Assume a =2. Then
v1+1=ged(t+1,b+1), v2+1=ged(t, b+1),
v3+1=gcd(b, t+2), vo+1=gcd(t+1,b).
So, v;+v,=<b and y3+vy,<b—1. Therefore, Corollary 5.4 implies
2(t+1)+b—-2=d=<t+3+b+b—1,
and so b=t—2. Assume first b=t+1. Then (5.1) yields
(L1- 1@+ - +1)= (@ *2+- - -+ D@+ D(m—1).
Therefore, (¢ *?+- - - +1)(g"**+ 1) divides |¥|—1 contradicting
(LI -1=<q"*"(g**?+---+1).
In the cases b=t, b=t—1 and b =t—2 we get similarly

(F1-D@ 7+ -+ D =(q"""+1)(g*+- - -+ 1(m - 1),

(#1-D(@* >+ -+ 1) =(g*+---+1)(g" +1)(m-1),
and

(A-1)G" 2+ -+ 1)@ >+ - +1)
= (@ 1+ -+ D@ 2%+---+1D(m- 1).

In any case, a contradiction fbllows. O
Lemma 5.7. b#t+1, t.
Proof. If b=1t+1, then v,=0, y,=ged(t,t+3)-1=<2, yz3=gecd(t, t+2)—1=<1,
v4=t. Thus,
4t+2=3(t+1)+b-2<t+3+2+1+¢,

hence 2t=<4, ie. t<2. If t=2, then y=0, y3=1; if t=1, then y,=0=+,. In
both cases we get a contradiction.

Suppose now b=t It follows +y;=t vy,=gecd(t,t+2)—1<1, ;3=
ged(t—1,t+2)—-1=<2, v,=0. So, 3t+1+t=<t+3+t+1+2, therefore t<2. But
this contradicts (5.1). O

In a similar way, one can prove the following
Lemma 5.8. b#t—1, t—2.

Proof. One has to note that in the case b=t—1 we have 1<b=t—1, so t=2.
Similarly, if b=t—-2, then t=3. O
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We can now get a final contradiction.

Theorem 5.9. Denote by & a partial t-spread of class [0, m], in P=PG(r, q) with
2t+1<d<r If |¥|=2, thend=r—1.

Proof. Lemmas 5.7 and 5.8 imply in particular y,#t; so y,;<[(t+1)/2]-1.

Similarly, y,<[3t]-1, vs<[3(t+2)]-1, v,<[3(t+1)]-1. By Corollary 5.4 we
have

t+2 t+1 5t
d<t+3+§—1+'2——1 5 —-1= 2

But, by Proposition 5.6 we have d=3(t+1)—1=3t+2. Together, we get a
contradiction. [

In Section 7 we shall construct a class of partial t-spreads of type (0, m),.
Another class of examples can be found in [16].

Proposition 5.10. Suppose that in P=PG(r, q) there exists a partial t-spread & of
type (0, m),_, with |#|=2. Then
6,2 | (m—-1)8,_._, and |¥|=1+(m—-1)6,_,_,/0, 5 ».

Moreover,

m=6,_,/6, and m- 0r-—2t—2' qr—2t—1 ' et(mqr_zt-l -0, — 0r——t—-1)~

Proof. If we count the incident pairs (S, H), where S€ ¥ and H is a hyperplane
of P, we get

(|y| - l)or—2t—2= er—t-—l ° (m - 1) (|

6. On partial spreads of class [1, n],

In this section we shall prove that—under certain assumptions—the existence of
a partial t-spread of type (1, n); in PG(r, q) implies r = d + 1. By similar methods
as in the last section, we can prove a little more, namely the following theorem,
which applies in particular to partial t-spreads of type (1, n),.

Theorem 6.1. Denote by & a partial t-spread in P =PG(r, q). Suppose that there
exists a subspace U of dimension 2t+1 in which & induces a partial t-spread &,
with u elements, such that any subspace of dimension d through U contains exactly
u+ k> u elements of &. Suppose moreover d > 4t+3. Then either r=d+1, or one
of the following cases occurs:

¢ d)=Q1,7), (2,11), (3, 15), (5, 25), (8, 40).
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Proof. Suppose r=d +2. Then, without loss in generality, r = d + 2. Counting the
incident pairs (V, W) with Ve -, where W is a d-dimensional subspace
through U and V, we get

(1~ u) - 04301 04-32=04_2" 04 21"k (6.1)
Put d+2=a(t+1)+b with 1<b=<t+1. Then
vi+1:=gced(d—-3t,d—-2t+1)=gcd(t+1,b+1),
v2+1:=ged(d—3t,d—2t)=ged(t,a+b—2),
v3+1l:=ged(d—3t—1,d—-2t+1)=ged(t+2,b+3—a),
vat1l:=ged(d—3t—1,d—2t) = ged(t+1, b).

In particular, y;+ v,=max{y;, v.} <max{b, t}. If we define g;:=0, (i=1,2,3,4),
it follows by (6. 1) that either Od_ztﬂd__z,_l/ g18-83 O od_zted_zt_ll £28384 is a divisor
of |#|—u. Since ¥ -y, is a partial t-spread of P— U, we have

lg,|_ u S|P— Ul/Ot = q2t+2 * 042,06,
Hence, if p denotes the maximum of g,g,g; and g,g38,4, then
04—z - Oa—oe 1/ <|F|—u=<q®*2- 0,,/0,

and therefore

04-2:-1° 0, <q**? - max{g,8,83, 828384}

Hence, d—2t—1+t<2t+2+3+y,+y3+max{y,, v}, i.e. d<s3t+5+vy,+y;+
max{y;, y4}.

Since max{y,, y4=<b, ¥,<t—1 and vy;<t+1, it follows in particular
a(t+1)+b—2=d<3t+5+(-1)+(+1)+b, and so a(t+1)<5t+7=
5+1)+2.

We claim a <5. (Assume a=6. Then a=6 and 2=b=1t+1. But then we have
v3 =0, a contradiction.) On the other hand,

a(t+1)+b-2=4t+3, (6.2)

which means a=4. Thus, 4<a=<5. We consider first the case a=5. In this
situation we have

Yo<b+2, Ysst+1, max{y,, Yat<b—1,

and so (b+2)+(t+1)+(b—1)=2¢t+2+b, i.e. b=t But in these cases we have
v>+v3=<35, which implies ¢t = 1. This yields a contradiction.
Thus, a =4. Therefore,
t+b+3<vy,+vy;+max{y,, vi}
Moreover,
vi=ged(t+1,b+1)—1, vo=ged(t, b+2)-1<b+1,
vya=ged(t+2,b—-1)—-1, va=ged(t+1, b)—1.
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Let us first consider the cases b=t+1, ¢, t—2. If b=1t, then y,+vy;=<3 and
max{y;, vat=t So, t+b—3=<3+1t i.e. b=<6, But these values of b (and t) are
impossible by (6.1).

Consider now the case b=t—2. Then t=b+2=3 and vy,;<1, y,=t—1,
v3€{0, 4} and y,=<2. Therefore, 2t—5=t+b—-3=<(t—1)+4+2, and so t=<10.
The values t=10, 9, 7, 6, 4 can be excluded immediately, but the cases
(t,d)=(1,7), 2,11), (3, 15), (5, 25), (8, 40) yield no contradiction.

Let us now suppose b#t+1,tt—2. Then

t+1 t—1 t t—2 t+1 t—1

ns—-1=—=

=—— < =
2 2 rSpTIETT msTmolEs
Since d >4t+3, we have b> 1. Therefore, y;<b—2. It follows

t—2 t—1
t+b-3<—+b—-2+——
2 2’

a final contradiction. [J

Corollary 6.2. Let & be a partial t-spread of type (1, m); in P=PG(r, q) with
4t+3<d<r. Suppose that there is a (2t+1)-dimensional subspace U of P such
that & induces a partial t-spread in U. Then r=d + 1 or one of the following cases
occurs:

td)=Q1,7), (2,11), (3, 15), (5,25), (8, 40).

Proof. Since there exists a d-dimensional subspace of P which does not contain
all elements of & in U, there exists an element of & outside U. Consequently, any
d-dimensional subspace through U contains exactly m —u elements of & outside
U, where u is the number of elements of & in U. Now, the assertion follows by
the above theorem. O

Remarks. (1) In Proposition 7.6 we shall construct partial 1-spreads &' in
P =PG(7, q) with the following property: There is a 3-dimensional subspace U of
P such that any subspace of dimension 5 through U has exactly q(q— 1) elements
of &'. This example shows that the assumption ‘d =4t + 3’ of Theorem 6.1 cannot
be weakened very much.

(2) For any prime-power q, there exists a partial 1-spread of type (1,q+1); in
PG(4, q°). Cf. de Finis and de Resmini [12].

7. Examples. The type of a geometric spread

Denote by & a geometric t-spread in P =PG(r, q), where r+1=(a+1)(t+1),
a=2. By Lemma 2.4, any hyperplane of P contains exactly 0,_.(q"*") elements of

g, i.e. 0,_4(q"*") points of a hyperplane of the associated projective space P(¥)
defined in Section 2.
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Proposition 7.1. In P=PG((a+1)(t+1)—1, q), any geometric t-spread & has
type (0a—2(q"""), 0a-1(q""))s—2-

Proof. Denote by W a subspace of dimension r—2, and let H be a hyperplane
through W. Since H intersects & in the points of a hyperplane of P(¥), there is a
subspace V of dimension a(t+1)—1 of H such that any element of & in H is in
V.

If W contains V, then W has exactly 6,_,(q"*") elements of &. If W does not
contain V, then the hyperplane W of H intersects V in a hyperplane U of V. By
Lemma 2.4, u contains exactly 6,_>(q'*") elements of ¥. O

A maximal {k; n}-arc (cf. Barlotti [3]) in a projective plane P of order q is a
non-empty set X of points of P such that any line of P intersects ¥ in O or exactly
n points. Any maximal {k; n}-arc has precisely k = (q+ 1)(n — 1)+ 1 points. These
structures have been investigated in detail; see for example [3,9, 11, 14,17, 24~
26].

Proposition 7.2. (a) In P=PG((a+1)(t+1)—1, q) there exists a partial t-spread
of type (0, q“ VD), ;.

(b) Suppose that the desarguesian projective plane of order q**' contains a
maximal {(g"**+1)(n—1)+1, n}-arc. Then, in PG(3t+2, q), there exists a partial
t-spread Of type (O, n)3t+1'

1

Proof. (a) Consider a geometric ¢t-spread & of P. Remove from & the points of a
hyperplane of P(¥). Since any hyperplane of P intersects & in the points of a
hyperplane of P(%¥), the assertion follows.

(b) Consider a maximal {(g"**+1)(n—1)+1; n}-arc in the projective plane
P(¥), where & is a geometric t-spread of PG(3t+2,q). O

The most important result of this section is the following.

Theorem 7.3. Denote by & a geometric 1-spread in P=PG(2a + 1, q). Moreover,
let s be an integer with 0<s<a. Then any (a+s)-dimensional subspace of P
contains at least 6,_,(q°) elements of &.

Proof. By induction on s. The case s =0 is trivial. Suppose s=1 and suppose
moreover that the assertion is true for s—1.

Denote by U a subspace of dimension a + s and assume that U has fewer than
6,_1(q® elements of &. Since ¥ is geometric, by induction, U has exactly 6,_,(q?
elements of &. Moreover, the elements of ¥ in U form a spread &%, of a
(2s —3)-dimensional subspace U, of U. (Note that &, is the point set of an
(s —2)-dimensional subspace of P(¥).)

Consider now the 0, — 0,,_3=q**" V- 0,_., clements of ¥ which intersect U
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in exactly one point. Each of these lines generates together with &, an (s—1)-
dimensional subspace of P(¥). Consider the corresponding (2s — 1)-dimensional
subspaces V,,...,V, of P. Each of these subspaces V, intersects U in a
(2s —2)-dimensional subspace. So, the number b of these subspaces V; equals

b = q2(s—1) : 0a—s+?jq28_2 = 6a-—-s+2-

We claim that for any two distinct subspaces V,, V; we have (U, V;)# (U, V).
(Otherwise, {V;, V;) would be contained in the subspace X =(U, V;)=(U, V;) of
dimension a +s+ 1. Since & is geometric, it induces a spread &' in (V,, V;) with
|%'| = 6,(q®). Therefore, the hyperplane (V,, V)N U of (V,, V;) would contain
exactly 6,_,(q® elements of &', a contradiction to our assumption.)

Consequently, there are at least 6,_,., subspaces of dimension a + s + 1 through
U. But the exact number of these subspaces is 6,_,. This is a contradiction. [

In view of Theorem 3.2, the above theorem implies in particular

Corollary 7.4. Let & be a geometric 1-spread in PG(2a + 1, q). Then & is of class
[=1], if and only if d=a + 1.

Corollary 7.5. Let & be a geometric 1-spread in P=PG(2a +1, q), and denote by
U an a-dimensional subspace of P containing no element of &. Define &' to be the
set of lines of & which do not intersect U. If s is an integer with 1<s=<a, then any

subspace of dimension a + s through U contains exactly 6,_,(q®)—6,_, elements of
g

Proof. Denote by V a subspace of dimension a +s through U. Then, by Theorem
7.3, V contains at least 6,_,(q%) elements of .

Step 1. V contains exactly 6,_,(q? elements of &.

Assume to the contrary that V has more than 6,_,(q? elements in common with
&. Then V contains at least 6,(q>) elements of &. Since & is geometric, there exists
a (2s + 1)-dimensional subspace Y of V in which & induces a geometric spread $y.
Since

dm(YNU)=2s+1+a—(a+s)=s+1,
by Corollary 7.4, YN U contains at least one element of ¥y, a contradiction.

Step 2. V contains exactly 6,_,(q%)— 6,—, elements of &'.

For: By Step 1, there is a (2s — 1)-dimensional subspace W of V such that any
element of & in V is in W. Moreover,

dim(WNU)=2s—1+a—(a+s)=s—1.

But dim(WNU)=s is impossible, since otherwise (by Theorem 7.3), VNU
would contain an element of &¥. Thus, dim(WNU)=s~—1. Consequently, V
contains exactly 0,_,(q%)— 6,_, elements of ¥'. O
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Clearly, a geometric 1-spread of PG(2a+1,q) is of class
[0, 1, 6:(q>), ..., 0,(g]: In the remainder of this section we shall determine the
type of & for any d with 0<d=<2a+1.

Proposition 7.6. Let & be a geometric 1-spread in P=PG(2a+1, q). Denote by s
an integer with 0<s<a—1. Then for any i€{-1,0,1,...,a—1—5} there is a
subspace U of dimension 2s+2+i such that U has exactly 6,(q®) elements in
common with &.

Proof. Let &' be the point set of an s-dimensional subspace of P(¥), and denote
by W’ the subspace of dimension 2s+1 in which & induces the spread &'.

Let &’ be the point set of a complement of P(¥’) in P(¥). This means that
P(¥") has dimension a —s— 1 and that &” has no element in common with &'. If
W” denotes the subspace of dimension 2(a —s—1)+1 of P in which & induces the
spread &, then W’ and W” are complementary subspaces of P.

By Corollary 7.4, for any integer ie{—1,0,1,...,a—s—1}, there is an i-
dimensional subspace V of W” which has no element in common with &".

Then U :=(V, W') is a subspace of dimension 2s+2+i of P. It remains to show
that the only elements of & in U are the elements of &'. Indeed, if U would
contain a line e ¥—-¢', then ¥ would induce a spread in (I, W’), and (I, W’)
would intersect W” non-trivially, a contradiction. []

Theorem 7.7. Let & be a geometric 1-spread in P=PG(2a+1, q).

(@) If h is an integer with 0<h<a, then & has type (0,1, 0,(g?, . .., 6.(@))n
where u is defined by u=[3(h—1)].

(b) If h is an integer with 1<h<a, then & has type (0,_1(q>, ..., 0.(d%))gsn
where u is defined by u=[3(a+h—-1)].

Proof. (a) Fix a number s with 0<s=<u, and define i=h—-2s—2. It follows
-1=<isa-2s—2=<a-s—1. So, by the above proposition, there is a subspace of
dimension 2s+2+i = h which has exactly 6,(g>) elements in common with ¥.
(b) Fix a number s with h—1<s=<u and define i=a+h—-2s—2. Since s=
h—1,wehave i<a+h—(h—1)—s—2=a~s—1. Moreover, s<u=[3a+h—-1)]
implies that i =—1. Now, the assertion follows in view of Proposition 7.6. []
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