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A partial t-spread in a projective space P is a set of mutually skew t-dimensional subspaces 
of P. In this paper, we deal with the question, how many elements of a partial spread Sf can be 
contained in a given d-dimensional subspace of P. Our main results run as follows. If any 
d-dimensional subspace of P contains at least one element of 9', then the dimension of P has 
the upper bound d - l + ( d / t ) .  The same conclusion holds, if no d-dimensional subspace 
contains precisely one element of 9'. If any d-dimensional subspace has the same number m > 0 
of elements of 5e, then So is necessarily a total t-spread. Finally, the 'type' of the so-called 
geometric t-spreads is determined explicitely. 

1. Introduction 

Denote by P = PG(r, q) the finite projective space of dimension r >I 3 and order 

q, where q = p" is a power of the prime p. A partial t-spread of P is a set 9' of 
t-dimensional subspaees of P such that any point of P is incident with at most one 
element of 5e. The partial t-spread 5/' of P is called a t-spread, if any point of P 
lies on a (unique) dement  of ft. 

Partial t-spreads have been investigated thoroughly. In particular, one is 
interested in the cardinality of maximal partial t-spreads; see for instance [5, 6, 8, 
15, 18]. 

Recently, the notion of ' type' and 'class' of a partial t-spread was introduced by 
TaUini [22]. Denote by 5e a partial t-spread of P = PG(r, q), and let d be an 
integer with t<---d<---r. We say that 5¢ is of type (T)d, where T is a set of 
non-negative integers, if the following conditions hold: 

(i) For any d-dimensional subspace U of P, the number of elements of 5e 
contained in U is a number of T. 

(ii) For any number m e T, there exists a d-dimensional subspace U of P such 
that U has exactly m dements  of 5e. 

* Communicated at XII Congresso UMI, Perugia, September 1983. 
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If 3' is a partial t-spread of type (T)d, then 3' is said to  be of class [C]d, for any 
set C of non-negative integers with T ~ C. 

If T = { m t , . . . ,  ma} (or C = { m t , . . . ,  rob}), we say also that 3' is of type 
( m l , . . . ,  ma)d (or class [ m l , . . . ,  rob]d), if 3" is of type (T)d (or of class [C]d, 
respectively). 

Up to now, only partial t-spreads of type (T)2t+~ (or class [C]2,+1) have been 
considered. The study of these structures was initiated by Tallini [22, 23] in the 
case t = 1, and continued by de Finis and de Resmini [12], and, for t >  1, by 
Berardi [4] and Eugeni [16]. 

The aim of this paper is to investigate partial t-spreads of type (T)d and class 
[C]d for an arbitrary integer d. In Section 3 we shall prove the following 
surprising theorem. Denote by 3' a non-empty partial t-spread of class [C]d in 
PG(r,q). If 0 ¢ C  or 1¢C,  then r<~d- l+(d / t ) .  In other words: If r > d - l +  
(d/t), then 0, 1 E C. 

In Section 4, partial t-spreads of type (m)d with m ~ 0 are studied. It turns out 
that those partial t-spreads are exactly the (total) t-spreads. 

In Sections 5 and 6 we shall deal with partial t-spreads of type (0, n)d and 
(1, n)d in PG(r, q). We shall show that under certain assumptions it follows that 
d = r - 1 .  

Finally, in the last section, we shall construct many examples illustrating our 
theorems. In particular, we shall determine the type (T)d of a geometric 1-spread 
in PG(r, q) for any integer d with 1 <~ d ~< r. 

2. ~ dehitiom and results 

Throughout this paper we shall use the terminology of Dembowski [13]. For 
any two integers d and r with 0 ~< d ~< r and for any prime-power q we define the 
following numbers, which are known as the 'q-analoguous' to the binomial 
coefficients (see for example [1, 10, 19]). 

1" 

o,(q')= o,=o,(q) (2.1) 
i = O  

[:]. 
,~ Od-l" " " OoO,-d-l" " " 0o' (2.2) 

I~ 0,_,=[r+1] 
"Y,,d = Od--~ d + 1 i=O q" 

(2.3) 

It is well known that O,(q) is the number of points in PG(r, q), and [~]q is the 
number of ( d -  1)-dimensional subspaces in P G ( r - 1 ,  q). 

Remit  2.1 (Segre [20]). The projective space PG(r, q) contains a t-spread ff and 
only if r + l  = ( a + l ) ( t + l )  for a positive integer a. For any t-spread 3" of 
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PG((a  + 1)(t + 1 ) -  1, q) we have 

13"1-- 0d0, -- 0a(q'÷l) .  (2.4) 

For any two distinct elements V, V' of a partial spread 3", denote by (V, V') the 
subspace generated by V and V'. We say that  3" induces a partial t-spread in 
(V, V'), if any element of 3" having a point in common with (V, V') is contained in 
(V, V'); 3" is called geometric (cf. [2]), if for any two distinct elements V, V' of Se, 
~' induces a partial  t-spread in (V, V'). The following result is well known. 

Result  2.2 (Serge [20]). The projective space PG(r, q) contains a geometric 
t-spread if and only if t + 1 divides r + 1. 

For a geometric t-spread 3" of P = PG(r, q), le t  P(3") = (3,  ~ )  be the following 
incidence structure. The points are the elements of 3", the blocks are the sets of 
elements of 3" belonging to the subspaces (V, V') for any two distinct demen t s  V, 
V' of 3". Then  the following result is true. 

Result  2.3 (Serge [201/. If 3" is a geometric t-spread of PG(r, q) with r +  1 = 
(a + 1)(t + 1), then the incidence structure P(3") is a projective space of dimension 
a and order  q,+X. 

For a generalization of this result see Theorem 5.1 in [6]. We present now some 
easy lemmas. 

Lemma 2.4. Denote by 3' a partial t-spread of P=PG(r,q)  with r + l =  

(a + 1)(t + 1). Then 3" is a t-spread if and only if any hyperplane of P contains 
exactly Oa_l(q '+x) elements of 3". 

Proof.  Consider a hyperplane H and denote by s the number  of elements of 5e 
which are subspaces of H. Since any element of So which is not contained in H 
intersects H in a subspace of dimension t -  1, the number  n of points of H which 
are incident with an element of 3" equals 

n--- s -  o, + (13"1-s)O,_l--  s .  q' + 13"10,-1. 

since 13"1  it follows 

n ~ S • qt  + Or-l-- q t .  Oa_l(Clt+l). 

Therefore,  s = 0o_x(q '+1) if and only if n = O,-x(q), i.e. if and only if any point of 
H is incident w i th  an d e m e n t  of 3". 

Now the assertion of our lemma follows easily. If any hyperplane has 0,_l(q '÷1) 
elements of 3", then any point is incident with an element  of 3", and so, ,9' is a 
t-spread. On the other hand, if 3" is a t-spread, then n = 0,-l(q) for any 
hyperplane H ;  hence H contains exactly Oo_a(q ,+x) d e m e n t s  of 3". I"1 

Denote  by gcd(s, t) the greatest common divisor of the positive integers s and t. 
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Lcmma 2.5. Let q be a prime-power, and let s and t be two positive integers. 
Moreover, define ~/by ~/+ 1 = ged(s + 1, t + 1). Then ged(0s, 0,) = 0~. 

Proof. The following fact is well known (see for example [7, p. 105]): 

0~10~ if and only if u + l ] v + l .  

A repeated application of this assertion proves the lemma. [] 

3. Non-ezletence theorem~ 

In this section we shall prove a rather restrictive non-existence theorem for 
partial t-spreads of type (T)a. We shall apply this result to partial t-spreads of 
class [~>l]a and [0, ~>2]a. This result says in particular that for any partial t-spread 
3" in PG(r, q) with r > d - l + ( d / t ) ,  there is a d-dimensional subspace which 
contains no element of 3" and a d-dimensional subspace which contains exactly 
one element of 3". 

Lemma 3.1. Denote by 5t' a partial t-spread o[ type (T)d in P = PG(r, q). Suppose 

that there exists a u-dimensional subspace U of P with u <<- d -  t -  1 in which 3' 
induces a partial spread 3"0 having exactly s elements. I[ s~ T, then r <<-d- 1 + (d/t). 

ProoL If h denotes the smallest number in T which is greater than s, then 
m : =  h - s  > 0. In particular, any d-dimensional subspace through U contains at 
least m elements of 3"-S~u . We claim: Any subspace of dimension d + i  through 
U contains at least mq (t+l)i elements of 3"-3"u. 

Namely: We have already observed that the assertion holds for i = 0. Suppose 
now i ~ 1 and assume that the assertion is true for i - 1. Consider a subspace W of 
dimension d + i through U. By induction, any hyperplane of W through U has at 
least s~_~:= mq ('+t)(i-x) elements of 3"-3"0. Denote by s~ the number of elements 
of 3 " -  3"0 in W. Counting the number of pairs (V, H),  where V is an element of 
5/ '-3"o in W and H is a hyperplane of W through U and V we obtain 

hence 

S i • 0 d + i _ u _ t _ 2  ~ 0d+i--u-- 1 • mq(t+l) ( i -1) ,  

Si >I m q  ( t+ l ) ( i -1)  • q t + l  = m • q( t+ l ) i .  

It follows in particular IS/'- 3"uI >-- m • qO+l)(v-d).  S i n c e  I~P[ ~ Or/O t < qr+llq,, we have 

qO+ lX r - -d ) ,  q t  ~ m • q ( t+ l ) ( r -d )  • q t  ~ q r + l ,  

thus, (t + 1 ) ( r -  d) + t < r + 1. [ ]  
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A partial t-spread ,9 of P is said to be of class [ >~ 1]a, (or, of class [0, ~>2]a) if 
no d-dimensional subspace of P contains no element of ,9 (or, exactly one 
element of ,9, respectively). As corollaries of Lemma 3.1 we have the following 
theorems which generalize the results given in [16] in the cases d =2t+ 1 and 
d = 2 t + 2 .  

Theorem 3.2. Denote by d and r two positive integers with d < r. I f  ,9 is a partial 
t-spread of class [>~l]d in P =PG(r,q) ,  then r<-d-  l +(d/t). 

lProof. Put U = O. []  

Theorem 3.3. Denote by ,9 a partial t-spread of P = PG(r, q) of class [0, >---2]d with 
2 t + l ~ < d < r .  If  ,9~O, then r<~d- l+(d / t ) .  

Proof. Let U be an element of ,9. []  

Corollary 3.4. Denote by ,9 a non-empty partial t-spread in P = PG(r, q) of class 
[>~l]zt+l or of class [0, ~>2]zt+l with r > 2 t + l .  

(a) If t = 1, then r <<- 5. 

(b) If  t > l, then r= 2t + 2. 

Proof. If d = 2 t + l ,  Theorems 3.2 and 3.3 reduce to r ~ d - l + ( d / t ) =  
2 t + 2 +  (l/t). [] 

The remainder of this section is devoted to examples which show that the above 
bounds are best possible. In Section 7 we shall prove that a geometric 1-spread in 
P G ( 2 d -  1, q) is always of class [~>l]d (see Corollary 7.4). 

Proposition 3.5. For any positive integer t and any prime-power q there exists a 
partial t-spread of class [~l ]d  in PG(2t+2,  q). 

Proof. Example 1. Denote by H a hyperplane of P, and let ,9' be a t-spread of H. 
Then, by Result 2.1, ,9' is a partial t-spread of type (1, q,+l+ 1)2t+t of P. (Any 
hyperplane H ' ¢  H intersects H in a 2t-dimensional subspace which contains ex- 
actly one element of `9 (see Lemma 2.4).) 

Example 2. Embed P as a hyperplane in £ =PG(2 t+3 ,  q) and consider a 
(t + 1)-spread ~ of £. Denote by Fo the dement  of ~F in P. We define 

`9= {F n P I F ~ ~- iFo}}  

and `9'= `9 U {So}, where So is an arbitrary t-dimensional subspace of Fo. Clearly, 
`9' is a partial t-spread of P (cf. [6, Theorem 4.2]; see also [16I). We claim that ,9' 
is of type (1, q, q + 1)2,+ 1. 

In order to show this, consider a hyperplane W of P. There are exactly q 
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hyperplanes H i , . . . , / - ~  of £ through W with Hi ¢ P. Each of these hyperplanes 
contains exactly one element of 3~. If Fo ~ W, then this element is in any ease F0. 
On the other hand, if Fo ~ W, then these q dements  of ~r are mutually distinct. 
Thus, W contains exactly q elements of 3,. It may be that W contains also So. 
Therefore, 3,' is of type (1, q, q + 1)2,+1. [] 

If we consider the partial spread 3, of P again, we see immediately 

Proposition 3.6. For any positive integer t and any prime-power q there exists a 

partial t-spread of type (0, q)2t+l in PG(2t + 2, q). 

We remark that this was proved in [4] in the case t = 1 and in [16]. 

The authors do not know an example of a non-empty partial 1-spread of class 
[0, >~2]a in P G ( 2 d - 1 ,  q). However, in Section 7 we shall see (el. Theorem 7.3) 
that for any integer d ~>3 and any prime-power q, a geometric 1-spread in 
P G ( 2 d -  3, q) is of class [0, ~>2]a. 

4. Partial t-spreads of singular type 

Throughout this section, wedeno te  by 3'  a partial t-spread in P = PG(r, q) of 
type (m)a with 2 t +  1 ~< d < r. If m = 0, then 3, = 0. So, we may also suppose that 
m ~> 1. The main result of this section is a precise description of all partial 
t-spreads of P of type (m)a (see Theorem 4.7). 

Lemma 4.1. Let h be a positive integer with d+ h < r, and denote by U a 
( d + h )-dimensional subspace of P. I f  mh denotes the number of elements of 3, in U, 
then 

mh- = m .  (4.1) 
q d + l  q" 

In other words, 3' is of type (mh)d+h. 

Proof. Counting the pairs (S, W), where S is an element of 3, in U and W is a 
d-dimensional subspaee of U containing S we obtain (4.1). It follows in particular 
that m h is independent from the choice of the (d + h)-dimensional subspace 
U. D 

ComBary 4.2. Suppose d<-r - 1. Then 5/' is of type (n),-x with 

n = • • • o . , - , - x  = 1 3 , 1 "  o , _ , _ 1 / o , -  (4.2) 
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Proof. By l_emma 4.1, 3 '  is of type ( m r _ d _ l ) r _  1 with 

[ ' 1/1"-1-"1 
n ' = m , _ d _ l  = m • d + l J q / L r - l - d J q "  

Counting the pairs (S, W), where S ~ 3'  and W is a hyperplane of P with S ~ W we 

g e t  O,- n = 13"10,_,_1. [ ]  

Denote  by a and b the uniquely defined positive integers with 

r = a ( t + l ) + b  and l ~ < b ~ < t + l .  

Lemma 4.3. Define the integer g by g + 1 = gcd(t + 1, b + 1). Then Og divides 0,-,-1, 
and O,-t-llOg is a divisor of the above defined number n. 

Proof. Since g + 1 divides (a - 1)(t + 1) + b + 1 ( = r -  t), by l_emma 2.4, 0,-t-1 is a 
multiple of Og. Moreover, 

gcd(t + 1, r -  t) = ged(r + 1, t + 1) = ged(b + 1, t + 1) = g + 1. 

Again using Lemma 2.4 we have gcd(0~, 0,_,_~) = Og. In view of (4.2), the assertion 
follows. []  

Corollary 4.4. We have g > 0 and b <-t. 

ProoL Assume g = 0. Then  L e m m a  4.3 implies that O,-t-i divides n. In particular, 
0,-,-1 ~< n. On the other hand, n ~< 0,_1/0,. Thus, 

0 , - , - 1  • 0, 0 , -1 ,  

a contradiction. 

If b = t + 1, then g = 0. But we have already shown that this is impossible. []  

Theorem 4,5. We have that 3" is a (total) t-spread of P. 

Proof. Since 0g divides 0,-,-1, 0,/0g is a divisor of 0,/O,_,_x. Therefore,  Corollary 

4.2 implies that O~/0g divides 13"1. In particular we have 

oJo  I,.71. 
On the other hand, clearly, ]3"1 ~< 0,/0,. Since g ~< b and b ~< t it follows 

odob <~odog<~lyl<-odo,. 

Therefore,  13"1= 0~/0,. This means  that 3" is a (total) t-spread of P. [ ]  

Lemma 4.6. Denote by ~; a t-spread in ]P = PG(r, q). Then ~: is not of type (re)r-2. 

PreoL Assume to the contrary that ~ is of type (re)r-2 for a positive integer m. 
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Counting the pairs (S, W), where S ~ ~r and W is an ( r -  2)-dimensional subspace 
of P through S, we get 

Or. O,_l.m = I~1" 0r--t--1 " 0r--t--2" 

Since ~r is a t-spread, we have I~1--oJo,, and so 

O, • 0 , -1"  m = 0 , - , - 1  • 0 , - , - 2 .  

Since r = a(t + 1) - 1, we have god(r, r -  t -  1) = 1. Therefore, 0,-1 divides 0,-,-1, a 
contradiction. [] 

In the following theorem, we determine all partial t-spreads of singular type. 

Theorem 4. / .  A partial t-spread in P = PG(r, q) is of type (m)a (m¢  O) if and only 
if it is a (total) t-spread of P and we have d = r -  1. Moreover, in this situation, 
m = 0 , - , - 1 1 0 , .  

Proo| .  By Lemma 2.4, any t-spread of P is of type (0,-t-1/0,),-1. 
Suppose on the other hand that 5e is a partial t-spread of type (m)a in P. Then, 

by Corollary 4.2, 5e is of type (n),-1. Now, Theorem 4.5 implies that 5e is a 
t-spread of P. Finally, Lemma 4.6 in connection with Lemma 4.1 shows d = 
r - 1 .  []  

5. Partial ~rq~ds of type ( 0 ,  m ) d  

Throughout this section, we denote by 5e a partial t-spread of type (0, m)a in 
P = PG(r, q) with 2t + 1 ~< d < r. Without loss in generality, we can suppose IS~l >I 2. 
We shall prove that under these hypotheses we have necessarily d = r -  1. 

Consider a subspace U of P with d + 1 ~< dim(U) < r. Then the elements of 5e in 
U form a partial t-spread of type (0, m)d of U. Therefore, it suffices to show that 
the assumption r = d + 2 yields a contradiction. We shall work under this assump- 
tion. 

S.L Under the above assumptions, we have 

(Isel- 1)0a-2t • 0a-2,-1 = 0a-,+l • 0a-," (m - 1). (5.1) 

ProoL Fix V0~Se. We count the pairs (V, H),  where V~Se-{Vo} and H is a 
d-dimensional subspace through V and Vo. Since any of these d-dimensional 
subspaces H contains precisely m dements  of 5e, the assertion follows. !"3 

Denote by a and b the uniquely defined integers with 

d + 2 = r = a ( t + l ) + b  and l~<b~<t+ l .  (5.2) 
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I m m m a  5.2.  I f  we  d o n e  

w + 1 = gcd(t + 1, b + 1), 

3'3+ 1 = gcd(b + 2 -  a,  t + 2 ) ,  

then 

gl := gcd(Od-2t, Oa-t+l) = O.v,, 

g3:  = g e d ( 0 a - 2 t - 1 ,  Od-t+l) = O.y3, 

Moreover,  gcd(g~, g2)= 1. 

"Y2 + 1 = gcd(t, a + b - 1), 

3"4 + 1 = gcd(t + 1, b), 

g2: = gcd( O a-2t, Oa-t) = O~ 2, 

g4 := gcd(Oa-2t_l,  Oa-,) = Or,. 

Proof .  Using Lemma 2.4, this follows by elementary calculations. [ ]  

Corollary 5.3. Either  O d - ,  + l 

Isel- 1 
• Oa-dglg2g3 or 0a-,+l"  0a-dg2gag4 is a divisor o f  

0a-t " 0, ~ < q , + l .  M.  

Therefore,  

and so 

d - t + t < t + l + 3"2 + */a + max{3"~, ~'4}. 

Corollal'y S.S. d<~4 t+2 .  

we have 

I 1- 1 --< (Oa+2- O,)/g = q,+l 

Since 

• Od+l-JOt, 

qd--t . q, < q,+l.  max{q.y~+lq~2+lq.~3+1, q-~2+lq%+1q~,+1}, 

[] 

Proof .  By Lemma 5.2, max{~h, */4} ~< t. Clearly, 3"2 ~< t - 1 and ~/3 ~ t + 1. Thus, by 

the preceeding corollary, it follows d ~< 4t + 3. 
Assume d = 4 t + 3 .  Then a = 4  and b = l .  Consequently,  ~ , ~ 1 ,  3,2<~3, 3,a<~ 

t + l ,  3,4=0, and so 4 t + 3 = d < ~ t + 3 + 3 + t + l + 1 .  Thus, 2t~<5. But  in the cases 
t = 1 and t = 2, a contradiction follows easily. [ ]  

The following assertion turns out  to be very useful. 

Proof .  In view of Lemma 5.2, this follows by Lemma 5.1. [ ]  

Corollary S.4. d ~ t + 3 + 7 2 + T a + m a x { 3 ' l ,  74}. 

Proof .  If we put  M : =  max{glg2g3, g2g3g4}, it follows by Corollary 5.3 

O d - , + l  " 1)M. 
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lhmposition 5.6. a = 3. 

Proof .  Since d <~4t + 2, we have  a ~< 3. Clearly, a >~ 2. (Otherwise, 
t + 1 + b - 2 <~ 2t - 1.) Assume a = 2. Then 

3q+ 1 = g o d ( t +  1, b +  1), T2+ 1 = god(t, b + 1), 

T3+ 1 = god(b, t+2 ) ,  T4 + 1 = gcd(t + 1, b). 

So, Tx+T2~<b and T 3 + T 4 ~ < b - 1 .  Therefore,  Corollary 5.4 implies 

2(t+ l ) + b - 2 = d < ~ t +  3 + b + b - 1 ,  

and so b >~ t - 2 .  Assume first b = t + 1. Then (5.1) yields 

(lYl- 1)(q  '+~ + " "  + 1) = (q2,+2 + . . .  + 1 ) (q ,+ ,  + 1 ) ( m  - 1). 

Therefore,  ( q 2 , + 2 + . . .  + 1)(q,+l+ 1) divides 15"1- 1 contradicting 

15t'1- 1 ~ q t + X ( q 2 t + 2  + .  . . + 1). 

In the cases b = t, b = t -  1 and b = t - 2  we get similarly 

a n d  

( [Yl -1 ) (q ' -~  + "" "+ 1 )=  (q'+~ + 1)(q 2' + - - .  + 1 ) ( m - 1 ) ,  

(15 '1-1)(q ' -2+ "" "+ 1 ) = ( q  2' + ' "  "+ 1)(q' + 1 ) ( m -  1), 

d = l +  

( Ig ' ] -  1) (q ' -2+ -" "+ 1) (q ' -3+  -- -+ 1) 
= (q2,-~ + . . . +  1 ) ( q 2 , - 2 + . . . +  1 ) ( m -  1). 

In any case, a contradiction follows. [ ]  

L e m m a  5.7. b # t + l ,  t. 

]Proof .  If b = t + 1, t h e n  T1 = O, T2 = gcd(t ,  t + 3 ) -  1 <~ 2,  T3 = gcd(t ,  t + 2 ) -  1 <~ 1, 

T4 = t. T h u s ,  

4t+ 2= 3(t+ l )+b-2<~t  + 3+ 2+ l +t, 

hence 2t<~4, i.e. t~<2. If t = 2 ,  then T = 0 ,  T 3 = l ;  if t = l ,  then "Y2=0='Y3. In 
both cases we get a contradiction. 

Suppose now b = t .  It follows T l = t ,  T 2 = g c d ( t , t + 2 ) - l ~ < l ,  T3= 

g c d ( t - 1 ,  t + 2 ) - 1 ~ < 2 ,  3,4=0. So, 3 t + l + t < ~ t + 3 + t + l + 2 ,  therefore t~<2. But 
th i s  con t rad ic t s  (5 .1) .  [ ]  

In a similar way, one can prove the following 

l.mmma $.8. b #  t -  1, t - 2 .  

P r o o f .  O n e  h a s  to  n o t e  that  in  t h e  c a s e  b = t - 1  w e  h a v e  1 ~< b = t - 1 ,  so  t >~ 2.  

S imi lar ly ,  i f  b = t - 2 ,  t h e n  t ~> 3.  [ ]  
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We can now get a final contradiction. 

Theorem $.9. Denote by 3" a partial t-spread of class [0, m ]a in P = PG(r, q) with 
2 t + l ~ < d < r .  I f  13"1>--2, then d = r - 1 .  

ProoL Lemmas 5.7 and 5.8 imply in particular , h # t ;  so ~ h ~ < [ ( t + l ) / 2 ] - l .  

Similarly, 3,2<~[½t] - 1, ~/3 ---< [½(t + 2)] - 1, 3t4~[½(t+ 1)] -  1. By Corollary 5.4 we 
have 

t t + 2  1+ t + l ~ -  1 =--5t 
d ~ < t + 3 + 2  - 1 4  2 2 2 

But, by Proposition 5.6 we have 
contradiction. [] 

d ~> 3(t + 1 ) -  1 = 3t + 2. Together, we get a 

In Section 7 we shall construct a class of partial t-spreads of type (0, m)a. 
Another  class of examples can be found in [16]. 

P r o ~ n  5.10. Suppose that in P = PG(r, q) there exists a partial t-spread 3" of 
type (0, m),_~ with 13"1>- 2 Then 

and 13"1 = 1 + ( m -  1)0r-,-d0,-2,-2. 

m-  0,-2,-21 q,-2,-t  . Ot(mq,-2,-l. Or- 0,-,-t) .  

0,-2,-21 (m - 1)0,_,_1 

Moreover, 

m <- OH-dO, and 

Proof. If we count the incident pairs (S, H),  where S ~ 3" and H is a hyperplane 
of P, we get 

(13"1-1)0,_2,_2--- 0,_,_1.  (m - 1). [ ]  

6. On partial ~reads of dam [1, nld 

In this section we shall prove tha t - -under  certain assumptions---the existence of 
a partial t-spread of type (1, n)a in PG(r, q) implies r = d + 1. By similar methods 
as in the last section, we can prove a little more, namely the following theorem, 
which applies in particular to partial t-spreads of type (1, n)a. 

Theorem 6.1. Denote by 3' a partial t-spread in P = PG(r, q). Suppose that there 
exists a subspace U of dimension 2t + 1 in which 3" induces a partial t-spread 3"tr 
with u elements, such that any subspace of dimension d through U contains exactly 
u + k > u elements of 3". Suppose moreover d > 4t + 3. Then either r = d + 1, or one 
of  the following cases occurs: 

(t, d )= (1 ,7 ) ,  (2, 11), (3, 15), (5, 25), (8,40). 
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Suppose r I> d + 2. Then ,  wi thout  loss in generali ty,  r = d + 2. Count ing  the 

a d -d imens iona l  subspace 

P roo f .  

inc ident  pairs (V, W) with V ~  5e-5err , where  W is 

t h rough  U and  V, we get 

([,-~[- U )  " Od--at-- 1 " Od--3t-- 2 = Od--2t  " Od--2t-- 1 " k .  (6.1) 

Put d+2=a(t+l)+b with l < ~ b ~ < t + l .  T h e n  

3'1 + 1 := gccl(d - 3t, d - 2t  + 1) = gcd(t + 1, b + 1), 

3'2+ 1 :=  gcd(d - 3t, d - 2t) = god(t, a + b - 2), 

3"3+ 1 :=  gccl(d - 3 t -  1, d - 2 t +  1) = gcd(t + 2, b + 3 - a ) ,  

3"4+ 1 :=  gcd(d - 3 t -  1, d-2t)  = gcd(t + 1, b). 

In  part icular ,  3"1+ 3"4 = max{3'z, 3"4}-.-<max{b, t}. If we define gi :=  O,~, (i = 1, 2, 3, 4), 

it follows by (6.1) that  e i ther  O d _ 2 t O d _ 2 t _ l / g l g 2 g  3 o r  O c l _ 2 t O d _ 2 t _ l / g 2 g 3 g  4 is a divisor 
of  ISal- u. Since 5 e - 5 e  u is a part ial  t - spread of P - U ,  we have 

I el- u < - I P -  u I I o ,  = q2,+2 . od_2,1o,. 

Hence, i f  ~ denotes the maximum of glg2g3 and g2gzg4, then 

Oa-2, " Oa-2,-ll  " o _=do. 

and  the re fo re  

0a-2,-1 • 0, ~< q2,+2, max{glg2g3, g2g3g4}. 

Hence ,  d-2t-l+t<2t+2+3+3"2+3"3+max{3"1,3"4}, i.e. d<----3t+5+3,2+3,3 + 

max{3,1, 3,,}. 

Since max{3,1,~/4}~<b, 3,2--..<t-1 and  3~3~<t+1, it follows in part icular  

a(t+l)+b-2=d<~3t+5+(t-1)+(t+l)+b,  and  so a(t+l)<-5t+7 = 
5 ( t + 1 ) + 2 .  

W e  claim a <~ 5. (Assume a ~> 6. T h e n  a = 6 and  2 = b = t + 1. But  then  we have 

3,3 = 0, a contradict ion.)  On  the  o ther  hand ,  

a(t+ 1 ) + b - 2 > ~ 4 t + 3 ,  (6.2) 

which  means  a >14. Thus,  4<~a <~5. W e  consider  first the  case a = 5. In this 

s i tua t ion  we have  

3,2----< b + 2, 3"3----< t + 1, max{3"1, 3"4}--.-< b - 1, 

and  so  (b + 2) + (t + 1) + (b - 1) I> 2t  + 2 + b, i .e.  b >t t. But  in these  cases  w e  have  

3"2 + 3'3 ~< 5, which implies t = 1. This yields a contradict ion.  

Thus ,  a = 4. Therefore ,  

t + b + 3"-< 3,2+ 3,3 + max{3,t,  3"4}- 

M o r e o v e r ,  

3'1 = gcd(t + 1, b + 1 ) -  1, ~2 = ged(t, b + 2) - 1 ~< b + 1, 

313 = gcd(t + 2, b - 1 ) -  1, ~4 = gcd(t + 1, b) - 1. 
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Let us first consider the cases b = t+  1, t, t - 2 .  If b >I t, then 72+ Y3~<3 and 
max{7~, 3'4} = t, So, t +  b - 3  ~< 3+  t, i.e. b ~<6. But these values of b (and t) are 
impossible by (6.1). 

Consider now the case b = t - 2 .  Then t = b + 2 ~ 3  and 7~<~1, 3/2=t--1, 
V3~{0,4} and V,t~<2. Therefore, 2 t - 5 = t + b - 3 < ~ ( t - 1 ) + 4 + 2 ,  and so t~<10. 
The values t =  10, 9, 7, 6, 4 can be excluded immediately, but the cases 
(t, d) = (1, 7), (2, 11), (3, 15), (5, 25), (8, 40) yield no contradiction. 

Let us now suppose b ~ t + 1, t, t -  2. Then 

t + l  t - 1  t t - 2  t + l  t - 1  
3,1 ~< ~ - 1 = ~ ,  : - 1 = ~ ,  V3<~ - 1 =  

2 2 ~ 2 ~ 2  2 2 2 

Since d > 4 t + 3 ,  we have b > l .  Therefore, 73<~b-2.  It follows 

t - 2  t - 1  
t + b - 3 ~  + b - 2 + ~  

2 2 

a final contradiction. []  

Corollary 6.2. Let  ,5" be a partial t-spread of type (1, m)a in P =PG(r,  q) with 
4t + 3 < d < r. Suppose that there is a (2t + 1)-dimensional subspace U of P such 
that ,5" induces a partial t-spread in U. Then r = d + 1 or one of the following cases 
occurs"  

(t, d ) = ( 1 , 7 ) ,  (2, 11), (3, 15), (5, 25), (8,40). 

Proof. Since there exists a d-dimensional subspace of P which does not contain 
all elements of 5e in U, there exists an element of ~e outside U. Consequently, any 
d-dimensional subspace through U contains exactly m - u  elements of ~e outside 
U, where u is the number of elements of 5/' in U. Now, the assertion follows by 
the above theorem. []  

Remarks. ( 1 ) I n  Proposition 7.6 we shall construct partial 1-spreads 5e' in 
P = PG(7, q) with the following property: There is a 3-dimensional subspace U of 
P such that any subspace of dimension 5 through U has exactly q(q - 1) elements 
of 5e'. This example shows that the assumption 'd ~ 4t + 3' of Theorem 6.1 cannot 
be weakened very much. 

(2) For any prime-power q, there exists a partial 1-spread of type (1, q + 1)3 in 
PG(4, q2). Cf. de Finis and de Resmini [12]. 

7. Examples. The type of a geometric spread 

Denote by 5¢ a geometric t-spread in P = P G ( r ,  q), where r+ 1 = ( a  + 1)(t+ 1), 
a ~> 2. By Lemma 2.4, any hyperplane of P contains exactly O,,_x(q '+I) elements of 
~e, i.e. 0a_l(q t+1) points of a hyperplane of the associated projective space P(~) 
defined in Section 2. 
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P r o p o d t b n  7.1. In P = PG((a + 1)(t + 1 ) -  1, q), any geometric t-spread 3" has 
type (0~_2(q'+~), 0~_1(q'+1)),_2. 

ProoL Denote by W a subspace of dimension r - 2 ,  and let H be a hyperplane 
through W. Since H intersects 3" in the points of a hyperplane of P(3"), there is a 
subspace V of dimension a(t + 1 ) - 1  of H such that any element of 3" in H is in 
V. 

If W contains V, then W has exactly Oa_x(q '+x) dements  of 3". If W does not 
contain V, then the hyperplane W of H intersects V in a hyperplane U of V. By 
Lemma 2.4, u contains exactly O,,_2(q t+~) dements of 3". []  

A maximal {k; n}-arc (of. Barlotti [3]) in a projective plane P of order q is a 
non-empty set Yf of points of P such that any line of P intersects ~ in 0 or exactly 
n points. Any maximal {k; n}-arc has precisely k = (q + 1)(n - 1) + 1 points. These 
structures have been investigated in detail; see for example [3, 9, 11, 14, 17, 24-- 
26]. 

l ~ l ~ i t i o n  7.2. (a) In P = PG((a + 1)(t+ 1 ) - 1 ,  q) there exists a partial t-spread 
of type (0, q(a-1)t '+ l ) ) r_ 1. 

(b) Suppose that the desarguesian projective plane of order q,+l contains a 
maximal {(q,+l + 1)(n - 1) + 1, n}-arc. Then, in PG(3t + 2, q), there exists a partial 
t-spread of type (0, n)3,+1. 

ProoL (a) Consider a geometric t-spread 3" of P. Remove from 3" the points of a 
hyperplane of P(3"). Since any hyperplane of P intersects 3" in the points of a 
hyperplane of P(3"), the assertion follows. 

(b) Consider a maximal {(q,+X+ 1 ) ( n - 1 ) +  1; n}-arc in the projective plane 
P(3"), where 3" is a geometric t-spread of PG(3t + 2, q). []  

The most important result of this section is the following. 

Theorem 7.3. Denote by 3" a geometric 1-spread in P = PG(2a + 1, q). Moreover, 
let s be an integer with 0 <<- s <~ a. Then any (a + s)-dimensional subspace of P 
contains at least Os_~(q 2) elements of 3". 

PreoL By induction on s. The case s = 0 is trivial. Suppose s >~ 1 and suppose 
moreover that the assertion is true for s -  1. 

Denote  by U a subspace of dimension a + s and assume that U has fewer than 
Os_l(q 2) elements of 3". Since 3" is geometric, by induction, U has exactly 0s_2(q 2) 
elements of 3'. Moreover, the elements of 3" in U form a spread 3'0 of a 
(2s-3)-dimensional  subspace Uo of U. (Note that 3"0 is the point set of an 
( s -  2)-dimensional subspace of P(3").) 

Consider now the 0a+, - 02~-3 = q2CS-1). 0a-s+e elements of 3" which intersect U 
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in exactly one point. Each of these lines generates together with 9"0 an ( s - 1 ) -  
dimensional subspace of P(9"). Consider the corresponding (2 s -  1)-dimensional 
subspaees V t , . . . ,  Vb of P. Each of these subspaces V~ intersects U in a 
( 2 s -  2)-dimensional subspace. So, the number b of these subspaces V~ equals 

b = q 2 ( S - 1 )  . Oa_s+2/q2s-2= Oa--s+2. 

We claim that for any two distinct subspaces V~, Vj we have (U, V~)~: (U, Vj). 
(Otherwise, (Vi, Vj) would be contained in the subspace X =  (U, Vi)= (U, V i) of 
dimension a + s + 1. Since 9" is geometric, it induces a spread 9" in (V~, Vj) with 
[9"tl=Os(q2 ). Therefore, the hyperplane (Vt, Vi )NU of (V~, Vi) would contain 
exactly Os_~(q 2) elements of 9", a contradiction to our assumption.) 

Consequently, there are at least Oa-~÷2 subspaces of dimension a + s + 1 through 
U. But the exact number of these subspaces is Oa_s. This is a contradiction. [] 

In view of Theorem 3.2, the above theorem implies in particular 

Corolhry 7.4. Let  9" be a geometric 1-spread in PG(2a + 1, q). Then 9" is of  class 
[ >~ l ]d if and only if  d >I a + 1. 

Corollary 7.5. Let  9' be a geometric 1-spread in P = PG(2a + 1, q), and denote by 
U an a-dimensional subspace of P containing no element of  9". Define 9" to be the 
set of  lines of  9' which do not intersect U. I f  s is an integer with 1 <~ s <~ a, then any 
subspace of dimension a + s through U contains exactly 0s_l(q 2)- 0~_~ elements of  
9"t. 

Proof. Denote by V a subspace of dimension a + s through U. Then, by Theorem 
7.3, V contains at least 0s_l(q 2) elements of 9". 

Step I. V contains exactly 0s_l(q 2) elements of 9". 
Assume to the contrary that V has more titan 0,_t(q 2) dements in common with 

9'. Then V contains at least 0s (q2) dements of 9". Since Se is geometric, there exists 
a (2s + 1)-dimensional subspaee Y of V in which 9' induces a geometric spread 9"y. 
Since 

dim(Y N U) ~>2s + l + a - ( a + s )  = s+ 1, 

by Corollary 7.4, Y f'l U contains at least one dement  of 9"x,, a contradiction. 

Step 2. V contains exactly 0,_t(q 2)-  0s-t dements of 9". 
For: By Step 1, there is a (2s - 1)-dimensional subspace W of V such that any 

dement of 9" in V is in W. Moreover, 

d i m ( W n  U)>~2s -  t + a - ( a  + s) = s -  1. 

But dim(WNU)~s is impossible, since otherwise (by Theorem 7.3), V N U  
would contain an element of 9". Thus, dim(Wt'l U ) =  s - 1 .  Consequently, V 
contains exactly 0~_1(q2) - 0~-1 elements of 9". []  
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Clearly,  a geometr ic  1-spread of P G ( 2 a  + 1, q) is of  class 

[0, 1, Ox(q2) , . . . ,  Oa(q2)]d. In the  r ema inde r  of this section we shall de t e rmine  the 

type of  ~ for any d with 0 ~< d ~< 2a  + 1. 

P ropos i t ion  7.6.  Let  S¢ be a geometric 1-spread in P = P G ( 2 a  + 1, q). Denote  by s 

an integer with 0 <~ s <~ a - 1. Then  for any i c { -  1, O, 1 , . . . ,  a - 1 - s} there is a 

subspace U of  dimension 2 s + 2 + i  such that U has exactly Os(q 2) elements in 

c o m m o n  with ,9'. 

Proof .  Let  5e' be the  po in t  set of  an s -d imensional  subspace of P(Ae), and  deno te  

by W'  the subspace of  d imens ion  2s + 1 in which ~e induces the spread  ,9". 

Le t  5e" be  the  po in t  set of  a complemen t  of P(Se') in P(Se). This  m e a n s  that  

P(Se") has d imens ion  a - s -  1 and  tha t  5e" has no e lement  in c o m m o n  wi th  5e'. If 

W" denotes  the  subspace of d imens ion  2 (a  - s - 1) + 1 of P in which 5e induces  the 

spread 5e", then  W' and  W" are complementa ry  subspaces of P. 

By Corol lary  7.4, for  any  in teger  i ~ { - 1 ,  0, 1 , . . . ,  a - s - 1 } ,  there  is an i- 

d imens iona l  subspace V of W "  which has no e lement  in c o m m o n  with 5e". 

T h e n  U :=  (V, W')  is a subspace of d imens ion  2s + 2 + i of P. It  remains  to show 

tha t  the  only  e lements  of 5e in U are the e lements  of Se'. Indeed,  if U would 

conta in  a l ine l ~ S e - S e ' ,  t hen  Se would induce a spread in (l, W'), and  (l, W')  

would  intersect  W" non-tr ivial ly ,  a contradict ion.  [ ]  

T h e o r e m  7.7.  Le t  b" be a geometric 1-spread in P = P G ( 2 a  + 1, q). 

(a) I f  h is an integer with O<~h <~a, then 5/' has type (0, 1, 0 1 ( q 2 ) , . . . ,  O,,(q2))h, 

where u is 

(b) Ifh 
where u is 

defined by u = [½(h - 1) ]. 
is an integer with 1 <<-h <~ a, then 5/' has type (Oa_ l (q2) , . . . ,  O,,(q2))o+,, 

defined by u = [½(a + h - 1) ]. 

~ o o f .  (a) Fix a n u m b e r  s wi th  0<~s ~< u, and define i - - h - 2 s - 2 .  I t  follows 

- 1 <~ i ~< a - 2s - 2 ~< a - s - 1. So, by the  above  proposi t ion,  there  is a subspace of 

d imens ion  2 s + 2 + i  = h which has  exactly 0s(q 2) e lements  in c o m m o n  with  S¢. 

(b) Fix a n u m b e r  s with h - 1 ~< s <~ u and  define i = a + h - 2s - 2. Since s 

h - 1, we have  i <~ a + h - (h - 1) - s - 2 = a - s - 1. Moreover ,  s ~< u = [~(a + h - 1)] 

implies that  i >~-1.  Now, the  asser t ion follows in view of Propos i t ion  7.6. [ ]  
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