ON THE TYPE OF PARTIAL \boldsymbol{t}-SPREADS IN FINTTE PROJECTIVE SPACES*

Albrecht BEUTELSPACHER \dagger
Fachbereich Mathematik der Universität, D-6500 Mainz, Fed. Rep. Germany
Franco EUGENI
Istituto di Matematica Applicata, Facoltàdi Ingegneria, L'Aquila, Italy

Received 5 November 1984

Abstract

A partial t-spread in a projective space \boldsymbol{P} is a set of mutually skew \boldsymbol{t}-dimensional subspaces of \boldsymbol{P}. In this paper, we deal with the question, how many elements of a partial spread \mathscr{S} can be contained in a given d-dimensional subspace of \boldsymbol{P}. Our main results run as follows. If any d-dimensional subspace of \boldsymbol{P} contains at least one element of $\mathscr{\mathscr { P }}$, then the dimension of \boldsymbol{P} has the upper bound $d-1+(d / t)$. The same conclusion holds, if no d-dimensional subspace contains precisely one element of $\mathscr{\mathscr { C }}$. If any d-dimensional subspace has the same number $m>0$ of elements of \mathscr{S}, then \mathscr{S} is necessarily a total t-spread. Finally, the 'type' of the so-called geometric t-spreads is determined explicitely.

1. Introduction

Denote by $\boldsymbol{P}=P G(r, q)$ the finite projective space of dimension $r \geqslant 3$ and order q, where $q=p^{h}$ is a power of the prime p. A partial t-spread of \boldsymbol{P} is a set \mathscr{S} of t-dimensional subspaces of \boldsymbol{P} such that any point of \boldsymbol{P} is incident with at most one element of \mathscr{S}. The partial t-spread \mathscr{S} of \boldsymbol{P} is called a t-spread, if any point of \boldsymbol{P} lies on a (unique) element of \mathscr{S}.

Partial t-spreads have been investigated thoroughly. In particular, one is interested in the cardinality of maximal partial t-spreads; see for instance $[5,6,8$, 15, 18].

Recently, the notion of 'type' and 'class' of a partial t-spread was introduced by Tallini [22]. Denote by \mathscr{S} a partial t-spread of $\boldsymbol{P}=\mathrm{PG}(r, q)$, and let d be an integer with $t \leqslant d \leqslant r$. We say that \mathscr{S} is of type $(T)_{d}$, where T is a set of non-negative integers, if the following conditions hold:
(i) For any d-dimensional subspace U of \boldsymbol{P}, the number of elements of \mathscr{S} contained in U is a number of T.
(ii) For any number $m \in T$, there exists a d-dimensional subspace U of \boldsymbol{P} such that U has exactly m elements of \mathscr{S}.

[^0]If \mathscr{S} is a partial t-spread of type $(T)_{d}$, then \mathscr{S} is said to be of class $[C]_{d}$, for any set C of non-negative integers with $T \subseteq C$.

If $T=\left\{m_{1}, \ldots, m_{a}\right\}$ (or $C=\left\{m_{1}, \ldots, m_{b}\right\}$), we say also that \mathscr{S} is of type $\left(m_{1}, \ldots, m_{a}\right)_{d}$ (or class $\left[m_{1}, \ldots, m_{b}\right]_{d}$), if \mathscr{S} is of type $(T)_{d}$ (or of class $[C]_{d}$, respectively).

Up to now, only partial t-spreads of type ($T)_{2 t+1}$ (or class [$\left.C\right]_{2 t+1}$) have been considered. The study of these structures was initiated by Tallini [22, 23] in the case $t=1$, and continued by de Finis and de Resmini [12], and, for $t>1$, by Berardi [4] and Eugeni [16].

The aim of this paper is to investigate partial t-spreads of type $(T)_{d}$ and class $[C]_{d}$ for an arbitrary integer d. In Section 3 we shall prove the following surprising theorem. Denote by \mathscr{S} a non-empty partial t-spread of class $[C]_{d}$ in $\mathrm{PG}(r, q)$. If $0 \notin C$ or $1 \notin C$, then $r \leqslant d-1+(d / t)$. In other words: If $r>d-1+$ (d / t), then $0,1 \in C$.

In Section 4, partial t-spreads of type $(m)_{d}$ with $m \neq 0$ are studied. It turns out that those partial t-spreads are exactly the (total) t-spreads.

In Sections 5 and 6 we shall deal with partial t-spreads of type $(0, n)_{d}$ and $(1, n)_{d}$ in $\operatorname{PG}(r, q)$. We shall show that under certain assumptions it follows that $d=r-1$.

Finally, in the last section, we shall construct many examples illustrating our theorems. In particular, we shall determine the type ($T)_{d}$ of a geometric 1-spread in $\operatorname{PG}(r, q)$ for any integer d with $1 \leqslant d \leqslant r$.

2. Preliminary definitions and results

Throughout this paper we shall use the terminology of Dembowski [13]. For any two integers d and r with $0 \leqslant d \leqslant r$ and for any prime-power q we define the following numbers, which are known as the ' q-analoguous' to the binomial coefficients (see for example [1, 10, 19]).

$$
\begin{align*}
& \theta_{r}\left(q^{s}\right)=\sum_{i=0}^{r} q^{s i}, \quad \theta_{r}=\theta_{r}(q) \quad \theta_{-1}=0, \tag{2.1}\\
& {\left[\begin{array}{c}
r \\
d
\end{array}\right]_{q}=\frac{\theta_{r-1} \cdots \theta_{0}}{\theta_{d-1} \cdots \theta_{0} \theta_{r-d-1} \cdots \theta_{0}}} \tag{2.2}\\
& \gamma_{r, d}=\prod_{i=0}^{d} \frac{\theta_{r-i}}{\theta_{d-i}}=\left[\begin{array}{l}
r+1 \\
d+1
\end{array}\right]_{q} \tag{2.3}
\end{align*}
$$

It is well known that $\theta_{r}(q)$ is the number of points in $\operatorname{PG}(r, q)$, and $\left[\begin{array}{r}r \\ d\end{array}\right]_{q}$ is the number of $(d-1)$-dimensional subspaces in $\operatorname{PG}(r-1, q)$.

Result 2.1 (Segre [20]). The projective space $\operatorname{PG}(r, q)$ contains a t-spread if and only if $r+1=(a+1)(t+1)$ for a positive integer a. For any t-spread \mathscr{S} of
$\operatorname{PG}((a+1)(t+1)-1, q)$ we have

$$
\begin{equation*}
|\mathscr{S}|=\theta_{r} \mid \theta_{\mathfrak{t}}=\theta_{a}\left(q^{t+1}\right) \tag{2.4}
\end{equation*}
$$

For any two distinct elements V, V^{\prime} of a partial spread \mathscr{S}, denote by $\left\langle V, V^{\prime}\right\rangle$ the subspace generated by V and V^{\prime}. We say that \mathscr{S} induces a partial t-spread in $\left\langle V, V^{\prime}\right\rangle$, if any element of \mathscr{P} having a point in common with $\left\langle V, V^{\prime}\right\rangle$ is contained in $\left\langle V, V^{\prime}\right\rangle ; \mathscr{S}$ is called geometric (cf. [2]), if for any two distinct elements V, V^{\prime} of \mathscr{S}, \mathscr{S} induces a partial t-spread in $\left\langle V, V^{\prime}\right\rangle$. The following result is well known.

Result 2.2 (Serge [20]). The projective space $\operatorname{PG}(r, q)$ contains a geometric t-spread if and only if $t+1$ divides $r+1$.

For a geometric t-spread \mathscr{S} of $\boldsymbol{P}=\mathrm{PG}(r, q)$, let $\boldsymbol{P}(\mathscr{P})=(\mathscr{P}, \mathscr{B})$ be the following incidence structure. The points are the elements of \mathscr{S}, the blocks are the sets of elements of $\mathscr{\mathscr { L }}$ belonging to the subspaces $\left\langle V, V^{\prime}\right\rangle$ for any two distinct elements V, V^{\prime} of \mathscr{S}. Then the following result is true.

Result 2.3 (Serge [20]). If \mathscr{S} is a geometric t-spread of $\operatorname{PG}(r, q)$ with $r+1=$ $(a+1)(t+1)$, then the incidence structure $\boldsymbol{P}(\mathscr{Y})$ is a projective space of dimension a and order q^{t+1}.

For a generalization of this result see Theorem 5.1 in [6]. We present now some easy lemmas.

Lemma 2.4. Denote by \mathscr{S} a partial t-spread of $\boldsymbol{P}=\operatorname{PG}(r, q)$ with $r+1=$ $(a+1)(t+1)$. Then \mathscr{S} is a t-spread if and only if any hyperplane of \boldsymbol{P} contains exactly $\theta_{a-1}\left(q^{t+1}\right)$ elements of \mathscr{S}.

Proof. Consider a hyperplane H and denote by s the number of elements of \mathscr{S} which are subspaces of H. Since any element of \mathscr{S} which is not contained in H intersects H in a subspace of dimension $t-1$, the number n of points of H which are incident with an element of \mathscr{S} equals

$$
n=s \cdot \theta_{t}+(|\mathscr{S}|-s) \theta_{t-1}=s \cdot q^{t}+|\mathscr{S}| \theta_{t-1}
$$

Since $|\mathscr{P}| \leqslant \theta_{a}\left(q^{t+1}\right)$, it follows

$$
n \leqslant s \cdot q^{t}+\theta_{r-1}-q^{t} \cdot \theta_{a-1}\left(q^{t+1}\right)
$$

Therefore, $s=\theta_{a-1}\left(q^{t+1}\right)$ if and only if $n=\theta_{r-1}(q)$, i.e. if and only if any point of H is incident with an element of \mathscr{P}.

Now the assertion of our lemma follows easily. If any hyperplane has $\theta_{a-1}\left(q^{t+1}\right)$ elements of \mathscr{P}, then any point is incident with an element of \mathscr{S}, and so, \mathscr{S} is a t-spread. On the other hand, if \mathscr{S} is a t-spread, then $n=\theta_{r-1}(q)$ for any hyperplane H; hence H contains exactly $\theta_{a-1}\left(q^{t+1}\right)$ elements of \mathscr{S}. \square

Denote by $\operatorname{gcd}(s, t)$ the greatest common divisor of the positive integers s and t.

Lemma 2.5. Let q be a prime-power, and let s and t be two positive integers. Moreover, define γ by $\gamma+1=\operatorname{gcd}(s+1, t+1)$. Then $\operatorname{gcd}\left(\theta_{s}, \theta_{t}\right)=\theta_{\gamma}$.

Proof. The following fact is well known (see for example [7, p. 105]):

$$
\theta_{u} \mid \theta_{v} \text { if and only if } u+1 \mid v+1
$$

A repeated application of this assertion proves the lemma.

3. Non-existence theorems

In this section we shall prove a rather restrictive non-existence theorem for partial t-spreads of type $(T)_{d}$. We shall apply this result to partial t-spreads of class $[\geqslant 1]_{d}$ and $[0, \geqslant 2]_{d}$. This result says in particular that for any partial t-spread \mathscr{S} in $\operatorname{PG}(r, q)$ with $r>d-1+(d / t)$, there is a d-dimensional subspace which contains no element of \mathscr{S} and a d-dimensional subspace which contains exactly one element of \mathscr{S}.

Lemma 3.1. Denote by \mathscr{S} a partial t-spread of type $(T)_{d}$ in $\boldsymbol{P}=\operatorname{PG}(r, q)$. Suppose that there exists a u-dimensional subspace U of \boldsymbol{P} with $u \leqslant d-t-1$ in which \mathscr{S} induces a partial spread \mathscr{S}_{U} having exactly s elements. If $s \notin T$, then $r \leqslant d-1+(d / t)$.

Proof. If h denotes the smallest number in T which is greater than s, then $m:=h-s>0$. In particular, any d-dimensional subspace through U contains at least m elements of $\mathscr{S}-\mathscr{S}_{\mathbf{U}}$. We claim: Any subspace of dimension $d+i$ through U contains at least $m q^{(t+1) i}$ elements of $\mathscr{S}-\mathscr{S}_{\mathrm{U}}$.

Namely: We have already observed that the assertion holds for $i=0$. Suppose now $i \geqslant 1$ and assume that the assertion is true for $i-1$. Consider a subspace W of dimension $d+i$ through U. By induction, any hyperplane of W through U has at least $s_{i-1}:=m q^{(t+1)(i-1)}$ elements of $\mathscr{S}-\mathscr{S}_{\mathrm{U}}$. Denote by s_{i} the number of elements of $\mathscr{S}-\mathscr{S}_{U}$ in W. Counting the number of pairs (V, H), where V is an element of $\mathscr{S}-\mathscr{S}_{U}$ in W and H is a hyperplane of W through U and V we obtain

$$
s_{i} \cdot \theta_{d+i-u-t-2} \geqslant \theta_{d+i-u-1} \cdot m q^{(t+1)(i-1)}
$$

hence

$$
s_{i} \geqslant m q^{(t+1)(i-1)} \cdot q^{t+1}=m \cdot q^{(t+1) i}
$$

It follows in particular $\left|\mathscr{P}-\mathscr{S}_{U}\right| \geqslant m \cdot q^{(t+1)(r-d)}$. Since $|\mathscr{P}| \leqslant \theta_{r} / \theta_{t}<q^{r+1} / q^{t}$, we have

$$
q^{(t+1)(r-d)} \cdot q^{t} \leqslant m \cdot q^{(t+1)(r-d)} \cdot q^{t}<q^{r+1}
$$

thus, $(t+1)(r-d)+t<r+1$.

A partial t-spread \mathscr{S} of \boldsymbol{P} is said to be of class $[\geqslant 1]_{d}$, (or, of class $[0, \geqslant 2]_{d}$) if no d-dimensional subspace of \boldsymbol{P} contains no element of \mathscr{S} (or, exactly one element of $\mathscr{\mathscr { S }}$, respectively). As corollaries of Lemma 3.1 we have the following theorems which generalize the results given in [16] in the cases $d=2 t+1$ and $d=2 t+2$.

Theorem 3.2. Denote by d and r two positive integers with $d<r$. If \mathscr{S} is a partial t-spread of class $[\geqslant 1]_{d}$ in $\boldsymbol{P}=\operatorname{PG}(r, q)$, then $r \leqslant d-1+(d / t)$.

Proof. Put $\mathrm{U}=\emptyset$.
Theorem 3.3. Denote by \mathscr{S} a partial t-spread of $\mathbf{P}=\mathrm{PG}(r, q)$ of class $[0, \geqslant 2]_{d}$ with $2 t+1 \leqslant d<r$. If $\mathscr{C} \neq \emptyset$, then $r \leqslant d-1+(d / t)$.

Proof. Let U be an element of \mathscr{S}.
Corollary 3.4. Denote by \mathscr{S} a non-empty partial t-spread in $\boldsymbol{P}=\mathrm{PG}(r, q)$ of class $[\geqslant 1]_{2 t+1}$ or of class $[0, \geqslant 2]_{2 t+1}$ with $r>2 t+1$.
(a) If $t=1$, then $r \leqslant 5$.
(b) If $t>1$, then $r=2 t+2$.

Proof. If $d=2 t+1$, Theorems 3.2 and 3.3 reduce to $r \leqslant d-1+(d / t)=$ $2 t+2+(1 / t)$.

The remainder of this section is devoted to examples which show that the above bounds are best possible. In Section 7 we shall prove that a geometric 1 -spread in $\operatorname{PG}(2 d-1, q)$ is always of class $[\geqslant 1]_{d}$ (see Corollary 7.4).

Proposition 3.5. For any positive integer t and any prime-power q there exists a partial t-spread of class $[\geqslant 1]_{d}$ in $\operatorname{PG}(2 t+2, q)$.

Proof. Example 1. Denote by H a hyperplane of \boldsymbol{P}, and let \mathscr{S} be a t-spread of H. Then, by Result 2.1, \mathscr{S} is a partial t-spread of type ($\left.1, q^{t+1}+1\right)_{2 t+1}$ of \boldsymbol{P}. (Any hyperplane $H^{\prime} \neq H$ intersects H in a $2 t$-dimensional subspace which contains exactly one element of \mathscr{S} (see Lemma 2.4).)
Example 2. Embed \boldsymbol{P} as a hyperplane in $\Sigma=\operatorname{PG}(2 t+3, q)$ and consider a $(t+1)$-spread \mathscr{F} of $\boldsymbol{\Sigma}$. Denote by \boldsymbol{F}_{0} the element of \mathscr{F} in \boldsymbol{P}. We define

$$
\mathscr{S}=\left\{F \cap \boldsymbol{P} \mid F \in \mathscr{F}-\left\{F_{0}\right\}\right\}
$$

and $\mathscr{S}^{\prime}=\mathscr{S} \cup\left\{S_{0}\right\}$, where S_{0} is an arbitrary t-dimensional subspace of F_{0}. Clearly, \mathscr{S}^{\prime} is a partial t-spread of \mathbf{P} (cf. [6, Theorem 4.2]; see also [16]). We claim that $\mathscr{S}^{\prime \prime}$ is of type $(1, q, q+1)_{2 t+1}$.
In order to show this, consider a hyperplane \boldsymbol{W} of \boldsymbol{P}. There are exactly q
hyperplanes H_{1}, \ldots, H_{q} of Σ through W with $H_{i} \neq \boldsymbol{P}$. Each of these hyperplanes contains exactly one element of \mathscr{F}. If $F_{0} \subseteq W$, then this element is in any case F_{0}. On the other hand, if $F_{0} \nsubseteq W$, then these q elements of \mathscr{F} are mutually distinct. Thus, W contains exactly q elements of \mathscr{S}. It may be that W contains also S_{0}. Therefore, \mathscr{P}^{\prime} is of type $(1, q, q+1)_{2 t+1}$.

If we consider the partial spread \mathscr{S} of \boldsymbol{P} again, we see immediately

Proposition 3.6. For any positive integer t and any prime-power q there exists a partial t-spread of type $(0, q)_{2 t+1}$ in $\operatorname{PG}(2 t+2, q)$.

We remark that this was proved in [4] in the case $t=1$ and in [16].

The authors do not know an example of a non-empty partial 1 -spread of class $[0, \geqslant 2]_{d}$ in PG($2 d-1, q$). However, in Section 7 we shall see (cf. Theorem 7.3) that for any integer $d \geqslant 3$ and any prime-power q, a geometric 1 -spread in $\operatorname{PG}(2 d-3, q)$ is of class $[0, \geqslant 2]_{d}$.

4. Partial t-spreads of singular type

Throughout this section, we denote by \mathscr{S} a partial t-spread in $\boldsymbol{P}=\operatorname{PG}(r, q)$ of type $(m)_{d}$ with $2 t+1 \leqslant d<r$. If $m=0$, then $\mathscr{S}=\emptyset$. So, we may also suppose that $m \geqslant 1$. The main result of this section is a precise description of all partial t-spreads of \boldsymbol{P} of type $(m)_{d}$ (see Theorem 4.7).

Lemma 4.1. Let h be a positive integer with $d+h<r$, and denote by U a $(d+h)$-dimensional subspace of \boldsymbol{P}. If m_{h} denotes the number of elements of \mathscr{S} in U, then

$$
m_{h} \cdot\left[\begin{array}{c}
d+h-t \tag{4.1}\\
h
\end{array}\right]_{q}=m \cdot\left[\begin{array}{c}
d+h+1 \\
d+1
\end{array}\right]_{q} .
$$

In other words, \mathscr{S} is of type $\left(m_{h}\right)_{d+h}$.

Proof. Counting the pairs (S, W), where S is an element of \mathscr{S} in U and W is a d-dimensional subspace of U containing S we obtain (4.1). It follows in particular that m_{h} is independent from the choice of the $(d+h)$-dimensional subspace U.

Corollary 4.2. Suppose $d \leqslant r-1$. Then \mathscr{G} is of type $(n)_{r-1}$ with

$$
\begin{equation*}
n=m \theta_{r-1} \cdots \theta_{r-t-1} / \theta_{d} \cdots \theta_{d-t-1}=|\mathscr{P}| \cdot \theta_{r-t-1} / \theta_{r} . \tag{4.2}
\end{equation*}
$$

Proof. By Lemma 4.1, \mathscr{S} is of type $\left(m_{r-d-1}\right)_{r-1}$ with

$$
n:=m_{r-d-1}=m \cdot\left[\begin{array}{c}
r \\
d+1
\end{array}\right]_{q} /\left[\begin{array}{c}
r-1-t \\
r-1-d
\end{array}\right]_{q} .
$$

Counting the pairs (S, W), where $S \in \mathscr{S}$ and W is a hyperplane of \boldsymbol{P} with $S \subseteq W$ we get $\theta_{r} \cdot n=|\mathscr{\mathcal { S }}| \theta_{r-t-1}$.

Denote by a and b the uniquely defined positive integers with

$$
r=a(t+1)+b \quad \text { and } \quad 1 \leqslant b \leqslant t+1
$$

Lemma 4.3. Define the integer g by $g+1=\operatorname{gcd}(t+1, b+1)$. Then θ_{g} divides θ_{r-t-1}, and $\boldsymbol{\theta}_{\mathrm{r}-\mathrm{t}-1} / \boldsymbol{\theta}_{\mathrm{g}}$ is a divisor of the above defined number n.

Proof. Since $g+1$ divides $(a-1)(t+1)+b+1(=r-t)$, by Lemma 2.4, θ_{r-t-1} is a multiple of $\boldsymbol{\theta}_{\mathbf{g}}$. Moreover,

$$
\operatorname{gcd}(t+1, r-t)=\operatorname{gcd}(r+1, t+1)=\operatorname{gcd}(b+1, t+1)=g+1
$$

Again using Lemma 2.4 we have $\operatorname{gcd}\left(\theta_{\mathrm{t}}, \theta_{r-t-1}\right)=\boldsymbol{\theta}_{\mathbf{g}}$. In view of (4.2), the assertion follows.

Corollary 4.4. We have $g>0$ and $b \leqslant t$.

Proof. Assume $g=0$. Then Lemma 4.3 implies that θ_{r-t-1} divides n. In particular, $\theta_{r-t-1} \leqslant n$. On the other hand, $n \leqslant \theta_{r-1} / \theta_{r}$. Thus,

$$
\theta_{r-t-1} \cdot \theta_{t} \leqslant \theta_{r-1}
$$

a contradiction.
If $b=t+1$, then $g=0$. But we have already shown that this is impossible.
Theorem 4.5. We have that \mathscr{S} is a (total) t-spread of \boldsymbol{P}.
Proof. Since θ_{g} divides $\theta_{\mathrm{r}-\mathrm{t}-1}, \theta_{\boldsymbol{\gamma}} / \theta_{\mathrm{g}}$ is a divisor of $\theta_{\boldsymbol{r}} / \theta_{\mathrm{r}-\mathrm{t}-1}$. Therefore, Corollary 4.2 implies that $\theta_{\|} / \theta_{\mathbf{g}}$ divides $|\mathscr{G}|$. In particular we have

$$
\theta_{r}\left|\theta_{\mathbf{g}} \leqslant|\mathscr{S}|\right.
$$

On the other hand, clearly, $|\mathscr{P}| \leqslant \theta_{r} / \theta_{\boldsymbol{r}}$. Since $g \leqslant b$ and $b \leqslant t$ it follows

$$
\theta_{r}\left|\theta_{b} \leqslant \theta_{r}\right| \theta_{\mathrm{g}} \leqslant|\mathscr{P}| \leqslant \theta_{r} \mid \theta_{\tau} .
$$

Therefore, $|\mathscr{Y}|=\theta_{r} / \theta_{\boldsymbol{r}}$. This means that \mathscr{S} is a (total) t-spread of \boldsymbol{P}.
Lemma 4.6. Denote by \mathscr{F} a t-spread in $P=P G(r, q)$. Then \mathscr{F} is not of type $(m)_{r-2}$.
Proof. Assume to the contrary that \mathscr{F} is of type $(m)_{r-2}$ for a positive integer m.

Counting the pairs (S, W), where $S \in \mathscr{F}$ and W is an $(r-2)$-dimensional subspace of P through S, we get

$$
\boldsymbol{\theta}_{\boldsymbol{r}} \cdot \boldsymbol{\theta}_{r-1} \cdot m=|\mathscr{F}| \cdot \boldsymbol{\theta}_{r-t-1} \cdot \boldsymbol{\theta}_{r-t-2}
$$

Since \mathscr{F} is a t-spread, we have $|\mathscr{F}|=\theta_{r} \mid \theta_{t}$, and so

$$
\theta_{t} \cdot \theta_{r-1} \cdot m=\theta_{r-t-1} \cdot \theta_{r-t-2}
$$

Since $r=a(t+1)-1$, we have $\operatorname{gcd}(r, r-t-1)=1$. Therefore, θ_{r-1} divides θ_{r-t-1}, a contradiction.

In the following theorem, we determine all partial t-spreads of singular type.
Theorem 4.7. A partial t-spread in $\boldsymbol{P}=\mathrm{PG}(r, q)$ is of type $(m)_{d}(m \neq 0)$ if and only if it is a (total) t-spread of \boldsymbol{P} and we have $d=r-1$. Moreover, in this situation, $\boldsymbol{m}=\boldsymbol{\theta}_{\boldsymbol{r}-\mathrm{t}-\mathbf{1}} / \boldsymbol{\theta}_{\boldsymbol{t}}$.

Proof. By Lemma 2.4, any t-spread of \boldsymbol{P} is of type $\left(\theta_{r-t-1} / \theta_{t}\right)_{r-1}$.
Suppose on the other hand that \mathscr{S} is a partial t-spread of type $(m)_{d}$ in \boldsymbol{P}. Then, by Corollary 4.2, \mathscr{S} is of type $(n)_{r-1}$. Now, Theorem 4.5 implies that \mathscr{S} is a t-spread of \boldsymbol{P}. Finally, Lemma 4.6 in connection with Lemma 4.1 shows $d=$ $r-1$.

5. Partial spreads of type $(0, m)_{d}$

Throughout this section, we denote by \mathscr{S} a partial t-spread of type $(0, m)_{d}$ in $\boldsymbol{P}=\operatorname{PG}(r, q)$ with $2 t+1 \leqslant d<r$. Without loss in generality, we can suppose $|\mathscr{P}| \geqslant 2$. We shall prove that under these hypotheses we have necessarily $d=r-1$.

Consider a subspace U of \boldsymbol{P} with $d+1 \leqslant \operatorname{dim}(U)<r$. Then the elements of \mathscr{S} in U form a partial t-spread of type $(0, m)_{d}$ of U. Therefore, it suffices to show that the assumption $r=d+2$ yields a contradiction. We shall work under this assumption.

Lemma 5.1. Under the above assumptions, we have

$$
\begin{equation*}
(|\mathscr{S}|-1) \theta_{d-2 t} \cdot \theta_{d-2 t-1}=\theta_{d-t+1} \cdot \theta_{d-t} \cdot(m-1) \tag{5.1}
\end{equation*}
$$

Proof. Fix $V_{0} \in \mathscr{S}$. We count the pairs (V, H), where $V \in \mathscr{S}-\left\{V_{0}\right\}$ and H is a d-dimensional subspace through V and V_{0}. Since any of these d-dimensional subspaces H contains precisely m elements of \mathscr{P}, the assertion follows.

Denote by a and b the uniquely defined integers with

$$
\begin{equation*}
d+2=r=a(t+1)+b \quad \text { and } \quad 1 \leqslant b \leqslant t+1 \tag{5.2}
\end{equation*}
$$

Lemma 5.2. If we define

$$
\begin{array}{ll}
\gamma_{1}+1=\operatorname{gcd}(t+1, b+1), & \gamma_{2}+1=\operatorname{gcd}(t, a+b-1) \\
\gamma_{3}+1=\operatorname{gcd}(b+2-a, t+2), & \gamma_{4}+1=\operatorname{gcd}(t+1, b)
\end{array}
$$

then

$$
\begin{array}{ll}
g_{1}:=\operatorname{gcd}\left(\theta_{d-2 t}, \theta_{d-t+1}\right)=\theta_{\gamma_{1}}, & g_{2}:=\operatorname{gcd}\left(\theta_{d-2 t}, \theta_{d-t}\right)=\theta_{\gamma_{2}} \\
g_{3}:=\operatorname{gcd}\left(\theta_{d-2 t-1}, \theta_{d-t+1}\right)=\theta_{\gamma_{3}}, & g_{4}:=\operatorname{gcd}\left(\theta_{d-2 t-1}, \theta_{d-t}\right)=\theta_{\gamma_{4}} .
\end{array}
$$

Moreover, $\operatorname{gcd}\left(g_{1}, g_{2}\right)=1$.
Proof. Using Lemma 2.4, this follows by elementary calculations.
Corollary 5.3. Either $\theta_{d-t+1} \cdot \theta_{d-t} / g_{1} g_{2} g_{3}$ or $\theta_{d-t+1} \cdot \theta_{d-t} / g_{2} g_{3} g_{4}$ is a divisor of $|\mathscr{T}|-1$.

Proof. In view of Lemma 5.2, this follows by Lemma 5.1.
Corollary 5.4. $d \leqslant t+3+\gamma_{2}+\gamma_{3}+\max \left\{\gamma_{1}, \gamma_{4}\right\}$.

Proof. If we put $M:=\max \left\{g_{1} g_{2} g_{3}, g_{2} g_{3} g_{4}\right\}$, it follows by Corollary 5.3

$$
\theta_{d-t+1} \cdot \theta_{d-t} \leqslant(|\mathscr{P}|-1) M
$$

Since

$$
|\mathscr{S}|-1 \leqslant\left(\theta_{d+2}-\theta_{t}\right) / \theta_{t}=q^{t+1} \cdot \theta_{d+1-t} / \theta_{t}
$$

we have

$$
\theta_{d-t} \cdot \theta_{t} \leqslant q^{t+1} \cdot M
$$

Therefore,

$$
q^{d-t} \cdot q^{t}<q^{t+1} \cdot \max \left\{q^{\gamma_{1}+1} q^{\gamma_{2}+1} q^{\gamma_{3}+1}, q^{\gamma_{2}+1} q^{\gamma_{3}+1} q^{\gamma_{4}+1}\right\}
$$

and so

$$
d-t+t<t+1+\gamma_{2}+\gamma_{3}+\max \left\{\gamma_{1}, \gamma_{4}\right\} .
$$

Corollary 5.5. $d \leqslant 4 t+2$.
Proof. By Lemma 5.2, $\max \left\{\gamma_{1}, \gamma_{4}\right\} \leqslant t$. Clearly, $\gamma_{2} \leqslant t-1$ and $\gamma_{3} \leqslant t+1$. Thus, by the preceeding corollary, it follows $d \leqslant 4 t+3$.

Assume $d=4 t+3$. Then $a=4$ and $b=1$. Consequently, $\gamma_{1} \leqslant 1, \gamma_{2} \leqslant 3, \gamma_{3} \leqslant$ $t+1, \gamma_{4}=0$, and so $4 t+3=d \leqslant t+3+3+t+1+1$. Thus, $2 t \leqslant 5$. But in the cases $t=1$ and $t=2$, a contradiction follows easily.

The following assertion turns out to be very useful.

Proposition 5.6. $a=3$.

Proof. Since $d \leqslant 4 t+2$, we have $a \leqslant 3$. Clearly, $a \geqslant 2$. (Otherwise, $d=1+$ $t+1+b-2 \leqslant 2 t-1$.) Assume $a=2$. Then

$$
\begin{array}{ll}
\gamma_{1}+1=\operatorname{gcd}(t+1, b+1), & \gamma_{2}+1=\operatorname{gcd}(t, b+1) \\
\gamma_{3}+1=\operatorname{gcd}(b, t+2), & \gamma_{4}+1=\operatorname{gcd}(t+1, b)
\end{array}
$$

So, $\gamma_{1}+\gamma_{2} \leqslant b$ and $\gamma_{3}+\gamma_{4} \leqslant b-1$. Therefore, Corollary 5.4 implies

$$
2(t+1)+b-2=d \leqslant t+3+b+b-1
$$

and so $b \geqslant t-2$. Assume first $b=t+1$. Then (5.1) yields

$$
(|\mathscr{G}|-1)\left(q^{t+1}+\cdots+1\right)=\left(q^{2 t+2}+\cdots+1\right)\left(q^{t+1}+1\right)(m-1)
$$

Therefore, $\left(q^{2 t+2}+\cdots+1\right)\left(q^{t+1}+1\right)$ divides $|\mathscr{S}|-1$ contradicting

$$
|\mathscr{S}|-1 \leqslant q^{t+1}\left(q^{2 t+2}+\cdots+1\right)
$$

In the cases $b=t, b=t-1$ and $b=t-2$ we get similarly

$$
\begin{aligned}
& (|\mathscr{P}|-1)\left(q^{t-1}+\cdots+1\right)=\left(q^{t+1}+1\right)\left(q^{2 t}+\cdots+1\right)(m-1) \\
& (|\mathscr{P}|-1)\left(q^{t-2}+\cdots+1\right)=\left(q^{2 t}+\cdots+1\right)\left(q^{t}+1\right)(m-1)
\end{aligned}
$$

and

$$
\begin{aligned}
& (|\mathscr{S}|-1)\left(q^{t-2}+\cdots+1\right)\left(q^{t-3}+\cdots+1\right) \\
& \quad=\left(q^{2 t-1}+\cdots+1\right)\left(q^{2 t-2}+\cdots+1\right)(m-1)
\end{aligned}
$$

In any case, a contradiction follows.
Lemma 5.7. $b \neq t+1$, t.
Proof. If $b=t+1$, then $\gamma_{1}=0, \gamma_{2}=\operatorname{gcd}(t, t+3)-1 \leqslant 2, \gamma_{3}=\operatorname{gcd}(t, t+2)-1 \leqslant 1$, $\gamma_{4}=t$. Thus,

$$
4 t+2=3(t+1)+b-2 \leqslant t+3+2+1+t
$$

hence $2 t \leqslant 4$, i.e. $t \leqslant 2$. If $t=2$, then $\gamma=0, \gamma_{3}=1$; if $t=1$, then $\gamma_{2}=0=\gamma_{3}$. In both cases we get a contradiction.

Suppose now $b=t$. It follows $\quad \gamma_{1}=t, \quad \gamma_{2}=\operatorname{gcd}(t, t+2)-1 \leqslant 1, \quad \gamma_{3}=$ $\operatorname{gcd}(t-1, t+2)-1 \leqslant 2, \gamma_{4}=0$. So, $3 t+1+t \leqslant t+3+t+1+2$, therefore $t \leqslant 2$. But this contradicts (5.1).

In a similar way, one can prove the following
Lemma 5.8. $b \neq t-1, t-2$.
Proof. One has to note that in the case $b=t-1$ we have $1 \leqslant b=t-1$, so $t \geqslant 2$. Similarly, if $b=t-2$, then $t \geqslant 3$.

We can now get a final contradiction.
Theorem 5.9. Denote by \mathscr{S} a partial t-spread of class $[0, m]_{d}$ in $P=P G(r, q)$ with $2 t+1 \leqslant d<r$. If $|\mathcal{Y}| \geqslant 2$, then $d=r-1$.

Proof. Lemmas 5.7 and 5.8 imply in particular $\gamma_{1} \neq t$; so $\gamma_{1} \leqslant[(t+1) / 2]-1$. Similarly, $\gamma_{2} \leqslant\left[\frac{1}{2} t\right]-1, \gamma_{3} \leqslant\left[\frac{1}{2}(t+2)\right]-1, \gamma_{4} \leqslant\left[\frac{1}{2}(t+1)\right]-1$. By Corollary 5.4 we have

$$
d \leqslant t+3+\frac{t}{2}-1+\frac{t+2}{2}-1+\frac{t+1}{2}-1=\frac{5 t}{2} .
$$

But, by Proposition 5.6 we have $d \geqslant 3(t+1)-1=3 t+2$. Together, we get a contradiction.

In Section 7 we shall construct a class of partial t-spreads of type $(0, m)_{d}$ Another class of examples can be found in [16].

Proposition 5.10. Suppose that in $\boldsymbol{P}=\mathrm{PG}(r, q)$ there exists a partial t-spread \mathscr{S} of type $(0, m)_{r-1}$ with $|\mathscr{S}| \geqslant 2$. Then

$$
\theta_{r-2 t-2} \mid(m-1) \theta_{r-t-1} \text { and }|\mathscr{S}|=1+(m-1) \theta_{r-t-1} / \theta_{r-2 t-2}
$$

Moreover,

$$
m \leqslant \theta_{r-t-1} / \theta_{t} \quad \text { and } \quad m \cdot \theta_{r-2 t-2} \mid q^{r-2 t-1} \cdot \theta_{t}\left(m q^{r-2 t-1} \cdot \theta_{t}-\theta_{r-t-1}\right)
$$

Proof. If we count the incident pairs (S, H), where $S \in \mathscr{S}$ and H is a hyperplane of P, we get

$$
(|\mathscr{S}|-1) \theta_{r-2 t-2}=\theta_{r-t-1} \cdot(m-1) .
$$

6. On partial spreads of class $[1, n]_{\boldsymbol{d}}$

In this section we shall prove that-under certain assumptions-the existence of a partial t-spread of type $(1, n)_{d}$ in $\operatorname{PG}(r, q)$ implies $r=d+1$. By similar methods as in the last section, we can prove a little more, namely the following theorem, which applies in particular to partial t-spreads of type $(1, n)_{d}$.

Theorem 6.1. Denote by \mathscr{S} a partial t-spread in $\boldsymbol{P}=\mathrm{PG}(r, q)$. Suppose that there exists a subspace U of dimension $2 t+1$ in which \mathscr{S} induces a partial t-spread \mathscr{S}_{U} with u elements, such that any subspace of dimension d through U contains exactly $u+k>u$ elements of \mathscr{S}. Suppose moreover $d>4 t+3$. Then either $r=d+1$, or one of the following cases occurs:

$$
(t, d)=(1,7),(2,11),(3,15),(5,25),(8,40)
$$

Proof. Suppose $r \geqslant d+2$. Then, without loss in generality, $r=d+2$. Counting the incident pairs (V, W) with $V \in \mathscr{S}-\mathscr{S}_{U}$, where W is a d-dimensional subspace through U and V, we get

$$
\begin{equation*}
(|\mathscr{S}|-u) \cdot \theta_{d-3 t-1} \cdot \theta_{d-3 t-2}=\theta_{d-2 t} \cdot \theta_{d-2 t-1} \cdot k \tag{6.1}
\end{equation*}
$$

Put $d+2=a(t+1)+b$ with $1 \leqslant b \leqslant t+1$. Then

$$
\begin{aligned}
& \gamma_{1}+1:=\operatorname{gcd}(d-3 t, d-2 t+1)=\operatorname{gcd}(t+1, b+1) \\
& \gamma_{2}+1:=\operatorname{gcd}(d-3 t, d-2 t)=\operatorname{gcd}(t, a+b-2) \\
& \gamma_{3}+1:=\operatorname{gcd}(d-3 t-1, d-2 t+1)=\operatorname{gcd}(t+2, b+3-a) \\
& \gamma_{4}+1:=\operatorname{gcd}(d-3 t-1, d-2 t)=\operatorname{gcd}(t+1, b)
\end{aligned}
$$

In particular, $\gamma_{1}+\gamma_{4}=\max \left\{\gamma_{1}, \gamma_{4}\right\} \leqslant \max \{b, t\}$. If we define $g_{i}:=\theta_{\gamma_{i}}(i=1,2,3,4)$, it follows by (6.1) that either $\theta_{d-2 t} \theta_{d-2 t-1} / g_{1} g_{2} g_{3}$ or $\theta_{d-2 t} \theta_{d-2 t-1} / g_{2} g_{3} g_{4}$ is a divisor of $|\mathscr{P}|-u$. Since $\mathscr{S}-\mathscr{S}_{U}$ is a partial t-spread of $\boldsymbol{P}-U$, we have

$$
|\mathscr{Y}|-u \leqslant|P-U| / \theta_{t}=q^{2 t+2} \cdot \theta_{d-2 t} \mid \theta_{t}
$$

Hence, if μ denotes the maximum of $g_{1} g_{2} g_{3}$ and $g_{2} g_{3} g_{4}$, then

$$
\theta_{d-2 t} \cdot \theta_{d-2 t-1} / \mu \leqslant|\mathscr{S}|-u \leqslant q^{2 t+2} \cdot \theta_{d-2 \downarrow} / \theta_{t}
$$

and therefore

$$
\theta_{d-2 t-1} \cdot \theta_{t} \leqslant q^{2 t+2} \cdot \max \left\{g_{1} g_{2} g_{3}, g_{2} g_{3} g_{4}\right\}
$$

Hence, $d-2 t-1+t<2 t+2+3+\gamma_{2}+\gamma_{3}+\max \left\{\gamma_{1}, \gamma_{4}\right\}$, i.e. $d \leqslant 3 t+5+\gamma_{2}+\gamma_{3}+$ $\max \left\{\gamma_{1}, \gamma_{4}\right\}$.

Since $\max \left\{\gamma_{1}, \gamma_{4}\right\} \leqslant b, \quad \gamma_{2} \leqslant t-1$ and $\gamma_{3} \leqslant t+1$, it follows in particular $a(t+1)+b-2=d \leqslant 3 t+5+(t-1)+(t+1)+b$, and so $a(t+1) \leqslant 5 t+7=$ $5(t+1)+2$.

We claim $a \leqslant 5$. (Assume $a \geqslant 6$. Then $a=6$ and $2=b=t+1$. But then we have $\gamma_{3}=0$, a contradiction.) On the other hand,

$$
\begin{equation*}
a(t+1)+b-2 \geqslant 4 t+3 \tag{6.2}
\end{equation*}
$$

which means $a \geqslant 4$. Thus, $4 \leqslant a \leqslant 5$. We consider first the case $a=5$. In this situation we have

$$
\gamma_{2} \leqslant b+2, \quad \gamma_{3} \leqslant t+1, \quad \max \left\{\gamma_{1}, \gamma_{4}\right\} \leqslant b-1
$$

and so $(b+2)+(t+1)+(b-1) \geqslant 2 t+2+b$, i.e. $b \geqslant t$. But in these cases we have $\gamma_{2}+\gamma_{3} \leqslant 5$, which implies $t=1$. This yields a contradiction.

Thus, $a=4$. Therefore,

$$
t+b+3 \leqslant \gamma_{2}+\gamma_{3}+\max \left\{\gamma_{1}, \gamma_{4}\right\}
$$

Moreover,

$$
\begin{array}{ll}
\gamma_{1}=\operatorname{gcd}(t+1, b+1)-1, & \gamma_{2}=\operatorname{gcd}(t, b+2)-1 \leqslant b+1 \\
\gamma_{3}=\operatorname{gcd}(t+2, b-1)-1, & \gamma_{4}=\operatorname{gcd}(t+1, b)-1
\end{array}
$$

Let us first consider the cases $b=t+1, t, t-2$. If $b \geqslant t$, then $\gamma_{2}+\gamma_{3} \leqslant 3$ and $\max \left\{\gamma_{1}, \gamma_{4}\right\}=t$, So, $t+b-3 \leqslant 3+t$, i.e. $b \leqslant 6$. But these values of b (and t) are impossible by (6.1).

Consider now the case $b=t-2$. Then $t=b+2 \geqslant 3$ and $\gamma_{1} \leqslant 1, \gamma_{2}=t-1$, $\gamma_{3} \in\{0,4\}$ and $\gamma_{4} \leqslant 2$. Therefore, $2 t-5=t+b-3 \leqslant(t-1)+4+2$, and so $t \leqslant 10$. The values $t=10,9,7,6,4$ can be excluded immediately, but the cases $(t, d)=(1,7),(2,11),(3,15),(5,25),(8,40)$ yield no contradiction.

Let us now suppose $b \neq t+1, t, t-2$. Then

$$
\gamma_{1} \leqslant \frac{t+1}{2}-1=\frac{t-1}{2}, \quad \gamma_{2} \leqslant \frac{t}{2}-1=\frac{t-2}{2}, \quad \gamma_{3} \leqslant \frac{t+1}{2}-1=\frac{t-1}{2}
$$

Since $d>4 t+3$, we have $b>1$. Therefore, $\gamma_{3} \leqslant b-2$. It follows

$$
t+b-3 \leqslant \frac{t-2}{2}+b-2+\frac{t-1}{2}
$$

a final contradiction.
Corollary 6.2. Let \mathscr{S} be a partial t-spread of type $(1, m)_{d}$ in $\boldsymbol{P}=\operatorname{PG}(r, q)$ with $4 t+3<d<r$. Suppose that there is a $(2 t+1)$-dimensional subspace U of P such that \mathscr{S} induces a partial t-spread in U. Then $r=d+1$ or one of the following cases occurs:

$$
(t, d)=(1,7),(2,11),(3,15),(5,25),(8,40)
$$

Proof. Since there exists a d-dimensional subspace of \boldsymbol{P} which does not contain all elements of \mathscr{S} in U, there exists an element of \mathscr{S} outside U. Consequently, any d-dimensional subspace through U contains exactly $m-u$ elements of \mathscr{S} outside U, where u is the number of elements of \mathscr{S} in U. Now, the assertion follows by the above theorem.

Remarks. (1) In Proposition 7.6 we shall construct partial 1 -spreads \mathscr{S}^{\prime} in $\boldsymbol{P}=\operatorname{PG}(7, q)$ with the following property: There is a 3-dimensional subspace U of \boldsymbol{P} such that any subspace of dimension 5 through U has exactly $q(q-1)$ elements of \mathscr{S}^{\prime}. This example shows that the assumption ' $d \geqslant 4 t+3$ ' of Theorem 6.1 cannot be weakened very much.
(2) For any prime-power q, there exists a partial 1 -spread of type $(1, q+1)_{3}$ in PG(4, q^{2}). Cf. de Finis and de Resmini [12].

7. Examples. The type of a geometric spread

Denote by \mathscr{S} a geometric t-spread in $P=P G(r, q)$, where $r+1=(a+1)(t+1)$, $a \geqslant 2$. By Lemma 2.4, any hyperplane of \boldsymbol{P} contains exactly $\theta_{a-1}\left(q^{t+1}\right)$ elements of \mathscr{S}, i.e. $\boldsymbol{\theta}_{a-1}\left(q^{t+1}\right)$ points of a hyperplane of the associated projective space $\boldsymbol{P}(\mathscr{P})$ defined in Section 2.

Proposition 7.1. In $\boldsymbol{P}=\operatorname{PG}((a+1)(t+1)-1, q)$, any geometric t-spread \mathscr{S} has type $\left(\theta_{a-2}\left(q^{t+1}\right), \theta_{a-1}\left(q^{t+1}\right)\right)_{r-2}$.

Proof. Denote by W a subspace of dimension $r-2$, and let H be a hyperplane through W. Since H intersects \mathscr{S} in the points of a hyperplane of $\boldsymbol{P}(\mathscr{Y})$, there is a subspace V of dimension $a(t+1)-1$ of H such that any element of \mathscr{S} in H is in V.

If W contains V, then W has exactly $\theta_{a-1}\left(q^{t+1}\right)$ elements of \mathscr{S}. If W does not contain V, then the hyperplane W of H intersects V in a hyperplane U of V. By Lemma 2.4, u contains exactly $\theta_{a-2}\left(q^{t+1}\right)$ elements of \mathscr{S}.

A maximal $\{k ; n\}$-arc (cf. Barlotti [3]) in a projective plane \boldsymbol{P} of order q is a non-empty set \mathscr{K} of points of \boldsymbol{P} such that any line of \boldsymbol{P} intersects \mathscr{K} in 0 or exactly n points. Any maximal $\{k ; n\}$-arc has precisely $k=(q+1)(n-1)+1$ points. These structures have been investigated in detail; see for example $[3,9,11,14,17,24-$ 26].

Proposition 7.2. (a) In $\boldsymbol{P}=\operatorname{PG}((a+1)(t+1)-1, q)$ there exists a partial t-spread of type $\left(0, q^{(a-1)(t+1)}\right)_{r-1}$.
(b) Suppose that the desarguesian projective plane of order q^{i+1} contains a maximal $\left\{\left(q^{t+1}+1\right)(n-1)+1, n\right\}$-arc. Then, in $\operatorname{PG}(3 t+2, q)$, there exists a partial t-spread of type $(0, n)_{3 t+1}$.

Proof. (a) Consider a geometric t-spread \mathscr{S} of \boldsymbol{P}. Remove from \mathscr{S} the points of a hyperplane of $\boldsymbol{P}(\mathscr{P})$. Since any hyperplane of \boldsymbol{P} intersects \mathscr{S} in the points of a hyperplane of $\boldsymbol{P}(\mathscr{P})$, the assertion follows.
(b) Consider a maximal $\left\{\left(q^{t+1}+1\right)(n-1)+1 ; n\right\}$-arc in the projective plane $\boldsymbol{P}(\mathscr{P})$, where \mathscr{S} is a geometric t-spread of $\mathrm{PG}(3 t+2, q)$.

The most important result of this section is the following.
Theorem 7.3. Denote by \mathscr{S} a geometric 1 -spread in $\boldsymbol{P}=\operatorname{PG}(2 a+1, q)$. Moreover, let s be an integer with $0 \leqslant s \leqslant a$. Then any $(a+s)$-dimensional subspace of \boldsymbol{P} contains at least $\theta_{s-1}\left(q^{2}\right)$ elements of \mathscr{S}.

Proof. By induction on s. The case $s=0$ is trivial. Suppose $s \geqslant 1$ and suppose moreover that the assertion is true for $s-1$.

Denote by U a subspace of dimension $a+s$ and assume that U has fewer than $\theta_{s-1}\left(q^{2}\right)$ elements of \mathscr{S}. Since \mathscr{T} is geometric, by induction, U has exactly $\theta_{s-2}\left(q^{2}\right)$ elements of $\mathscr{\mathscr { S }}$. Moreover, the elements of \mathscr{S} in U form a spread \mathscr{S}_{0} of a ($2 s-3$)-dimensional subspace U_{0} of U. (Note that \mathscr{S}_{0} is the point set of an ($s-2$)-dimensional subspace of $\boldsymbol{P}(\mathscr{S})$.)

Consider now the $\theta_{a+s}-\theta_{2 s-3}=q^{2(s-1)} \cdot \theta_{a-s+2}$ elements of \mathscr{S} which intersect U
in exactly one point. Each of these lines generates together with \mathscr{S}_{0} an $(s-1)$ dimensional subspace of $\boldsymbol{P}(\mathscr{P})$. Consider the corresponding ($2 s-1$)-dimensional subspaces V_{1}, \ldots, V_{b} of P. Each of these subspaces V_{i} intersects U in a ($2 s-2$)-dimensional subspace. So, the number b of these subspaces V_{i} equals

$$
b=q^{2(s-1)} \cdot \theta_{a-s+2} / q^{2 s-2}=\theta_{a-s+2}
$$

We claim that for any two distinct subspaces V_{i}, V_{j} we have $\left\langle U, V_{i}\right\rangle \neq\left\langle U, V_{j}\right\rangle$. (Otherwise, $\left\langle V_{i}, V_{j}\right\rangle$ would be contained in the subspace $X=\left\langle U, V_{i}\right\rangle=\left\langle U, V_{j}\right\rangle$ of dimension $a+s+1$. Since \mathscr{S} is geometric, it induces a spread \mathscr{S}^{\prime} in $\left\langle V_{i}, V_{j}\right\rangle$ with $\left|\mathscr{S}^{\prime}\right|=\theta_{s}\left(q^{2}\right)$. Therefore, the hyperplane $\left\langle V_{1}, V_{j}\right\rangle \cap U$ of $\left\langle V_{i}, V_{j}\right\rangle$ would contain exactly $\boldsymbol{\theta}_{s-1}\left(q^{2}\right)$ elements of \mathscr{S}^{\prime}, a contradiction to our assumption.)

Consequently, there are at least θ_{a-s+2} subspaces of dimension $a+s+1$ through U. But the exact number of these subspaces is θ_{a-s}. This is a contradiction.

In view of Theorem 3.2, the above theorem implies in particular
Corollary 7.4. Let \mathscr{S} be a geometric 1-spread in $\operatorname{PG}(2 a+1, q)$. Then \mathscr{S} is of class $[\geqslant 1]_{d}$ if and only if $d \geqslant a+1$.

Corollary 7.5. Let \mathscr{P} be a geometric 1 -spread in $P=P G(2 a+1, q)$, and denote by U an a-dimensional subspace of \boldsymbol{P} containing no element of \mathscr{S}. Define \mathscr{S}^{\prime} to be the set of lines of \mathscr{S} which do not intersect U. If s is an integer with $1 \leqslant s \leqslant a$, then any subspace of dimension $a+s$ through U contains exactly $\theta_{s-1}\left(q^{2}\right)-\theta_{s-1}$ elements of \mathscr{S}^{\prime}.

Proof. Denote by V a subspace of dimension $a+s$ through U. Then, by Theorem $7.3, V$ contains at least $\theta_{s-1}\left(q^{2}\right)$ elements of $\mathscr{\mathscr { S }}$.

Step 1. V contains exactly $\theta_{s-1}\left(q^{2}\right)$ elements of \mathscr{P}.
Assume to the contrary that V has more than $\theta_{s-1}\left(q^{2}\right)$ elements in common with \mathscr{S}. Then V contains at least $\theta_{\mathrm{s}}\left(q^{2}\right)$ elements of $\mathscr{\mathscr { S }}$. Since \mathscr{S} is geometric, there exists a $(2 s+1)$-dimensional subspace Y of V in which \mathscr{S} induces a geometric spread $\mathscr{S}_{\mathbf{Y}}$. Since

$$
\operatorname{dim}(Y \cap U) \geqslant 2 s+1+a-(a+s)=s+1
$$

by Corollary 7.4, $Y \cap U$ contains at least one element of $\mathscr{S}_{\mathbf{Y}}$, a contradiction.
Step 2. V contains exactly $\theta_{s-1}\left(q^{2}\right)-\theta_{s-1}$ elements of \mathscr{S}^{\prime}.
For: By Step 1 , there is a $(2 s-1)$-dimensional subspace W of V such that any element of \mathscr{S} in V is in W. Moreover,

$$
\operatorname{dim}(W \cap U) \geqslant 2 s-1+a-(a+s)=s-1
$$

But $\operatorname{dim}(W \cap U) \geqslant s$ is impossible, since otherwise (by Theorem 7.3), $V \cap U$ would contain an element of \mathscr{S}. Thus, $\operatorname{dim}(W \cap U)=s-1$. Consequently, V contains exactly $\theta_{s-1}\left(q^{2}\right)-\theta_{s-1}$ elements of \mathscr{S}^{\prime}.

Clearly, a geometric 1-spread of $\operatorname{PG}(2 a+1, q)$ is of class $\left[0,1, \theta_{1}\left(q^{2}\right), \ldots, \theta_{a}\left(q^{2}\right)\right]_{d}$. In the remainder of this section we shall determine the type of \mathscr{S} for any d with $0 \leqslant d \leqslant 2 a+1$.

Proposition 7.6. Let \mathscr{S} be a geometric 1 -spread in $\boldsymbol{P}=\mathrm{PG}(2 a+1, q)$. Denote by s an integer with $0 \leqslant s \leqslant a-1$. Then for any $i \in\{-1,0,1, \ldots, a-1-s\}$ there is a subspace U of dimension $2 s+2+i$ such that U has exactly $\theta_{s}\left(q^{2}\right)$ elements in common with \mathscr{S}.

Proof. Let \mathscr{S}^{\prime} be the point set of an s-dimensional subspace of $\boldsymbol{P}(\mathscr{P})$, and denote by W^{\prime} the subspace of dimension $2 s+1$ in which \mathscr{S} induces the spread \mathscr{P}^{\prime}.

Let $\mathscr{S}^{\prime \prime}$ be the point set of a complement of $\boldsymbol{P}\left(\mathscr{P}^{\prime}\right)$ in $\boldsymbol{P}(\mathscr{S})$. This means that $\boldsymbol{P}\left(\mathscr{P}^{\prime \prime}\right)$ has dimension $a-s-1$ and that $\mathscr{S}^{\prime \prime}$ has no element in common with \mathscr{S}^{\prime}. If $W^{\prime \prime}$ denotes the subspace of dimension $2(a-s-1)+1$ of \boldsymbol{P} in which \mathscr{S} induces the spread $\mathscr{P}^{\prime \prime}$, then W^{\prime} and $W^{\prime \prime}$ are complementary subspaces of \boldsymbol{P}.

By Corollary 7.4, for any integer $i \in\{-1,0,1, \ldots, a-s-1\}$, there is an i dimensional subspace V of $W^{\prime \prime}$ which has no element in common with $\mathscr{S}^{\prime \prime}$.

Then $U:=\left\langle V, W^{\prime}\right\rangle$ is a subspace of dimension $2 s+2+i$ of \boldsymbol{P}. It remains to show that the only elements of \mathscr{S} in U are the elements of \mathscr{S}^{\prime}. Indeed, if U would contain a line $l \in \mathscr{S}-\mathscr{S}^{\prime}$, then \mathscr{S} would induce a spread in $\left\langle l, W^{\prime}\right\rangle$, and $\left\langle l, W^{\prime}\right\rangle$ would intersect $W^{\prime \prime}$ non-trivially, a contradiction.

Theorem 7.7. Let \mathscr{S} be a geometric 1 -spread in $\mathbf{P}=\operatorname{PG}(2 a+1, q)$.
(a) If h is an integer with $0 \leqslant h \leqslant a$, then \mathscr{S} has type $\left(0,1, \theta_{1}\left(q^{2}\right), \ldots, \theta_{u}\left(q^{2}\right)\right)_{h}$, where u is defined by $u=\left[\frac{1}{2}(h-1)\right]$.
(b) If h is an integer with $1 \leqslant h \leqslant a$, then \mathscr{S} has type $\left(\theta_{h-1}\left(q^{2}\right), \ldots, \theta_{u}\left(q^{2}\right)\right)_{a+h}$, where u is defined by $u=\left[\frac{1}{2}(a+h-1)\right]$.

Proof. (a) Fix a number s with $0 \leqslant s \leqslant u$, and define $i=h-2 s-2$. It follows $-1 \leqslant i \leqslant a-2 s-2 \leqslant a-s-1$. So, by the above proposition, there is a subspace of dimension $2 s+2+i=h$ which has exactly $\theta_{s}\left(q^{2}\right)$ elements in common with \mathscr{S}.
(b) Fix a number s with $h-1 \leqslant s \leqslant u$ and define $i=a+h-2 s-2$. Since $s \geqslant$ $h-1$, we have $i \leqslant a+h-(h-1)-s-2=a-s-1$. Moreover, $s \leqslant u=\left[\frac{1}{2}(a+h-1)\right]$ implies that $i \geqslant-1$. Now, the assertion follows in view of Proposition 7.6.

References

[1] M. Aigner, Combinatorial Theory (Springer Berlin, 1969).
[2] R. Baer, Partitionen abelscher Gruppen, Arch. Math. 14 (1963) 73-83.
[3] A. Barlotti, Sui $\{k ; n\}$-archi di un piano lineare finito, Boll. Un. Mat. Ital. 11 (1956) 553-556.
[4] L. Berardi, Alcune condizioni necessarie per l'esistenza di t-fibrazioni di tipo ($0, m)_{2 t+1}$ in PG(n, q), Rend. Mat., to appear.
[5] L. Berardi and F. Eugeni, Limitazioni inferiori e superiori per le t-fibrazioni massimali in
$\operatorname{PG}(n, q)$ con fissato livello, Atti Convegno "Geometria comb. e di incidenze", Passo della Mendola (1982) 67-82.
[6] A. Beutelspacher, Partial spreads in finite projective spaces and partial designs, Math. Z. 145 (1975) 211-229.
[7] A. Beutelspacher, Einführung in die endliche Geometrie II. Projektive Räume (Bibliographisches Institut, Mannheim, Wien, Zürich, 1983).
[8] A. Bruen, Partial spreads and replaceable nets, Canad. J. Math. 23 (1971) 381-391.
[9] P.V. Ceccherini, Su certi $\{k ; n\}$-archi dedotti da curve piane e sulle $\{m ; n\}$-calotte di tipo ($0, n$) di un $S_{r}(r \geqslant 2)$, Rend. Mat. 2 (1969) 185-196.
[10] P.V. Ceccherini and A. Dragomir, Combinazioni generalizzate, q-coefficienti binomiali e spazi grafici, Atti del Convegno di Geometria Combinatoria e sue Applicazioni, Perugia (1970) 137-158.
[11] A. Cossu, Su alcune proprietà dei $\{k ; n\}$-archi di un piano proiettivo sopra un corpo finito, Rend. Mat. e Appl. 20 (1961) 271-277.
[12] M. de Finis and M.J. de Resmini, On spreads of type (m, n) with respect to primes in $\operatorname{PG}(4, q), q$ a square, Boll. Un. Mat. Ital. D 1 (1982) 247-252.
[13] P. Dembowski, Finite Geometries (Springer, Berlin, 1968).
[14] R.H.F. Denniston, Some maximal ares in finite projective planes, J. Combin. Theory 6 (1969) 317-319.
[15] F. Eugeni and O. Ferri, Sulle fibrazioni mediante piani in PG(n,q), Boll. Un. Mat. Ital. A 3 (1984) 221-228.
[16] F. Eugeni, Sulla esistenza di t-fibrazioni in $\operatorname{PG}(r, q)$ di fissato tipo, to appear.
[17] J.W.P. Hirschfeld, Projective Geometries over finite Fields (Clarendon Press, Oxford, 1979).
[18] D.M. Mesner, Sets of disjoint lines in PG(3,q), Canad. J. Math. 19 (1967) 273-280.
[19] G.C. Rota and L.H. Harper, Matching theory, an introduction, Adv. Probab. I (1971) 171-215.
[20] B. Segre, Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane, Ann. Mat. pura Appl. 64 (1964) 1-76.
[21] G. Tallini, Problemi e risultati nelle geometrie di Galois, Relazione n. 30 (1973) Ist. Mat. Univ. Napoli.
[22] G. Tallini, Fibrazioni di rette in $\operatorname{PG}(r, q)$, Quaderno Sem. Comb. n. 37 (1981), Ist. Mat. Univ. "G. Castlenuovo", Roma.
[23] G. Tallini, k-insiemi e blocking sets in $\operatorname{PG}(r, q)$ e in $\operatorname{AG}(r, q)$, Quaderno n. 1 Sem. Geom. Comb. Ist. Mat. Appl., Fac. Ing. L'Aquila (1982) 1-36.
[24] M. Tallini Scafati, Sui $\{k ; n\}$-archi di un piano grafico finito, Atti Accad. Naz. Lincei 40 (1966) 373-378.
[25] M. Tallini Scafati, $\{k ; n\}$-archi di un piano grafico finito, con particolare riguardo a quelli a due caratteri I, II, Atti Accad. Naz. Lincei 40 (1966) 812-818, 1020-1025.
[26] J.A. Thas, Construction of maximal arcs and partial geometries, Geom. Dedcata 3 (1974) 61-64.

[^0]: * Communicated at XII Congresso UMI, Perugia, September 1983.
 \dagger This paper was written while the first author was as a visiting professor at the Università degli Studi in L'Aquila, Italy. He wants to thank the C.N.R. for the support.

