ON THE TYPE OF PARTIAL *t*-SPREADS IN FINITE PROJECTIVE SPACES*

Albrecht BEUTELSPACHER†

Fachbereich Mathematik der Universität, D-6500 Mainz, Fed. Rep. Germany

Franco EUGENI

Istituto di Matematica Applicata, Facoltàdi Ingegneria, L'Aquila, Italy

Received 5 November 1984

A partial t-spread in a projective space \mathbf{P} is a set of mutually skew t-dimensional subspaces of \mathbf{P} . In this paper, we deal with the question, how many elements of a partial spread \mathscr{G} can be contained in a given d-dimensional subspace of \mathbf{P} . Our main results run as follows. If any d-dimensional subspace of \mathbf{P} contains at least one element of \mathscr{G} , then the dimension of \mathbf{P} has the upper bound d-1+(d/t). The same conclusion holds, if no d-dimensional subspace contains precisely one element of \mathscr{G} . If any d-dimensional subspace has the same number m > 0of elements of \mathscr{G} , then \mathscr{G} is necessarily a total t-spread. Finally, the 'type' of the so-called geometric t-spreads is determined explicitely.

1. Introduction

Denote by $\mathbf{P} = PG(r, q)$ the finite projective space of dimension $r \ge 3$ and order q, where $q = p^h$ is a power of the prime p. A partial t-spread of \mathbf{P} is a set \mathscr{G} of t-dimensional subspaces of \mathbf{P} such that any point of \mathbf{P} is incident with at most one element of \mathscr{G} . The partial t-spread \mathscr{G} of \mathbf{P} is called a t-spread, if any point of \mathbf{P} lies on a (unique) element of \mathscr{G} .

Partial *t*-spreads have been investigated thoroughly. In particular, one is interested in the cardinality of maximal partial *t*-spreads; see for instance [5, 6, 8, 15, 18].

Recently, the notion of 'type' and 'class' of a partial *t*-spread was introduced by Tallini [22]. Denote by \mathscr{S} a partial *t*-spread of $\mathbf{P} = PG(r, q)$, and let *d* be an integer with $t \leq d \leq r$. We say that \mathscr{S} is of type $(T)_d$, where *T* is a set of non-negative integers, if the following conditions hold:

(i) For any d-dimensional subspace U of **P**, the number of elements of \mathcal{S} contained in U is a number of T.

(ii) For any number $m \in T$, there exists a *d*-dimensional subspace U of **P** such that U has exactly m elements of \mathcal{G} .

^{*} Communicated at XII Congresso UMI, Perugia, September 1983.

[†] This paper was written while the first author was as a visiting professor at the Università degli Studi in L'Aquila, Italy. He wants to thank the C.N.R. for the support.

⁰⁰¹²⁻³⁶⁵X/85/\$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland)

If \mathscr{S} is a partial *t*-spread of type $(T)_d$, then \mathscr{S} is said to be of class $[C]_d$, for any set C of non-negative integers with $T \subseteq C$.

If $T = \{m_1, \ldots, m_a\}$ (or $C = \{m_1, \ldots, m_b\}$), we say also that \mathscr{G} is of type $(m_1, \ldots, m_a)_d$ (or class $[m_1, \ldots, m_b]_d$), if \mathscr{G} is of type $(T)_d$ (or of class $[C]_d$, respectively).

Up to now, only partial t-spreads of type $(T)_{2t+1}$ (or class $[C]_{2t+1}$) have been considered. The study of these structures was initiated by Tallini [22, 23] in the case t=1, and continued by de Finis and de Resmini [12], and, for t>1, by Berardi [4] and Eugeni [16].

The aim of this paper is to investigate partial t-spreads of type $(T)_d$ and class $[C]_d$ for an arbitrary integer d. In Section 3 we shall prove the following surprising theorem. Denote by \mathscr{G} a non-empty partial t-spread of class $[C]_d$ in PG(r, q). If $0 \notin C$ or $1 \notin C$, then $r \leq d-1+(d/t)$. In other words: If r > d-1+(d/t), then $0, 1 \in C$.

In Section 4, partial *t*-spreads of type $(m)_d$ with $m \neq 0$ are studied. It turns out that those partial *t*-spreads are exactly the (total) *t*-spreads.

In Sections 5 and 6 we shall deal with partial *t*-spreads of type $(0, n)_d$ and $(1, n)_d$ in PG(r, q). We shall show that under certain assumptions it follows that d = r - 1.

Finally, in the last section, we shall construct many examples illustrating our theorems. In particular, we shall determine the type $(T)_d$ of a geometric 1-spread in PG(r, q) for any integer d with $1 \le d \le r$.

2. Preliminary definitions and results

Throughout this paper we shall use the terminology of Dembowski [13]. For any two integers d and r with $0 \le d \le r$ and for any prime-power q we define the following numbers, which are known as the 'q-analoguous' to the binomial coefficients (see for example [1, 10, 19]).

$$\theta_r(q^s) = \sum_{i=0}^r q^{si}, \quad \theta_r = \theta_r(q) \quad \theta_{-1} = 0, \quad (2.1)$$

$$\begin{bmatrix} r \\ d \end{bmatrix}_{q} = \frac{\theta_{r-1} \cdots \theta_{0}}{\theta_{d-1} \cdots \theta_{0} \theta_{r-d-1} \cdots \theta_{0}},$$
(2.2)

$$\gamma_{r,d} = \prod_{i=0}^{d} \frac{\theta_{r-i}}{\theta_{d-i}} = \begin{bmatrix} r+1\\ d+1 \end{bmatrix}_{q}.$$
(2.3)

It is well known that $\theta_r(q)$ is the number of points in PG(r, q), and $\begin{bmatrix} r \\ d \end{bmatrix}_q$ is the number of (d-1)-dimensional subspaces in PG(r-1, q).

Result 2.1 (Segre [20]). The projective space PG(r, q) contains a *t*-spread if and only if r+1=(a+1)(t+1) for a positive integer *a*. For any *t*-spread \mathcal{S} of

PG((a+1)(t+1)-1, q) we have

$$|\mathcal{G}| = \theta_r / \theta_t = \theta_a(q^{t+1}). \tag{2.4}$$

For any two distinct elements V, V' of a partial spread \mathcal{G} , denote by $\langle V, V' \rangle$ the subspace generated by V and V'. We say that \mathcal{G} induces a partial t-spread in $\langle V, V' \rangle$, if any element of \mathcal{G} having a point in common with $\langle V, V' \rangle$ is contained in $\langle V, V' \rangle$; \mathcal{G} is called geometric (cf. [2]), if for any two distinct elements V, V' of \mathcal{G} , \mathcal{G} induces a partial t-spread in $\langle V, V' \rangle$. The following result is well known.

Result 2.2 (Serge [20]). The projective space PG(r, q) contains a geometric *t*-spread if and only if t+1 divides r+1.

For a geometric *t*-spread \mathscr{S} of $\mathbf{P} = PG(r, q)$, let $\mathbf{P}(\mathscr{S}) = (\mathscr{S}, \mathscr{B})$ be the following incidence structure. The *points* are the elements of \mathscr{S} , the *blocks* are the sets of elements of \mathscr{S} belonging to the subspaces $\langle V, V' \rangle$ for any two distinct elements V, V' of \mathscr{S} . Then the following result is true.

Result 2.3 (Serge [20]). If \mathscr{S} is a geometric *t*-spread of PG(r, q) with r+1 = (a+1)(t+1), then the incidence structure $\mathbb{P}(\mathscr{S})$ is a projective space of dimension *a* and order q^{t+1} .

For a generalization of this result see Theorem 5.1 in [6]. We present now some easy lemmas.

Lemma 2.4. Denote by \mathcal{G} a partial t-spread of $\mathbf{P} = PG(r, q)$ with r+1 = (a+1)(t+1). Then \mathcal{G} is a t-spread if and only if any hyperplane of \mathbf{P} contains exactly $\theta_{a-1}(q^{t+1})$ elements of \mathcal{G} .

Proof. Consider a hyperplane H and denote by s the number of elements of \mathscr{S} which are subspaces of H. Since any element of \mathscr{S} which is not contained in H intersects H in a subspace of dimension t-1, the number n of points of H which are incident with an element of \mathscr{S} equals

 $n = s \cdot \theta_t + (|\mathcal{S}| - s)\theta_{t-1} = s \cdot q^t + |\mathcal{S}|\theta_{t-1}.$

Since $|\mathcal{G}| \leq \theta_a(q^{t+1})$, it follows

$$n \leq s \cdot q^t + \theta_{r-1} - q^t \cdot \theta_{a-1}(q^{t+1}).$$

Therefore, $s = \theta_{a-1}(q^{t+1})$ if and only if $n = \theta_{r-1}(q)$, i.e. if and only if any point of H is incident with an element of \mathcal{G} .

Now the assertion of our lemma follows easily. If any hyperplane has $\theta_{a-1}(q^{t+1})$ elements of \mathscr{G} , then any point is incident with an element of \mathscr{G} , and so, \mathscr{G} is a *t*-spread. On the other hand, if \mathscr{G} is a *t*-spread, then $n = \theta_{r-1}(q)$ for any hyperplane H; hence H contains exactly $\theta_{a-1}(q^{t+1})$ elements of \mathscr{G} . \Box

Denote by gcd(s, t) the greatest common divisor of the positive integers s and t.

Lemma 2.5. Let q be a prime-power, and let s and t be two positive integers. Moreover, define γ by $\gamma + 1 = \gcd(s+1, t+1)$. Then $\gcd(\theta_s, \theta_t) = \theta_{\gamma}$.

Proof. The following fact is well known (see for example [7, p. 105]):

 $\theta_u \mid \theta_v$ if and only if $u+1 \mid v+1$.

A repeated application of this assertion proves the lemma. \Box

3. Non-existence theorems

In this section we shall prove a rather restrictive non-existence theorem for partial *t*-spreads of type $(T)_d$. We shall apply this result to partial *t*-spreads of class $[\geq 1]_d$ and $[0, \geq 2]_d$. This result says in particular that for any partial *t*-spread \mathscr{G} in PG(r, q) with r > d - 1 + (d/t), there is a *d*-dimensional subspace which contains no element of \mathscr{G} and a *d*-dimensional subspace which contains exactly one element of \mathscr{G} .

Lemma 3.1. Denote by \mathcal{G} a partial t-spread of type $(T)_d$ in $\mathbf{P} = PG(r, q)$. Suppose that there exists a u-dimensional subspace U of \mathbf{P} with $u \leq d-t-1$ in which \mathcal{G} induces a partial spread \mathcal{G}_U having exactly s elements. If $s \notin T$, then $r \leq d-1+(d/t)$.

Proof. If h denotes the smallest number in T which is greater than s, then m := h - s > 0. In particular, any d-dimensional subspace through U contains at least m elements of $\mathscr{G} - \mathscr{G}_U$. We claim: Any subspace of dimension d + i through U contains at least $mq^{(t+1)i}$ elements of $\mathscr{G} - \mathscr{G}_U$.

Namely: We have already observed that the assertion holds for i = 0. Suppose now $i \ge 1$ and assume that the assertion is true for i-1. Consider a subspace W of dimension d+i through U. By induction, any hyperplane of W through U has at least $s_{i-1} := mq^{(t+1)(i-1)}$ elements of $\mathscr{G} - \mathscr{G}_U$. Denote by s_i the number of elements of $\mathscr{G} - \mathscr{G}_U$ in W. Counting the number of pairs (V, H), where V is an element of $\mathscr{G} - \mathscr{G}_U$ in W and H is a hyperplane of W through U and V we obtain

$$s_i \cdot \theta_{d+i-u-t-2} \ge \theta_{d+i-u-1} \cdot mq^{(t+1)(i-1)},$$

hence

$$s_i \ge mq^{(t+1)(i-1)} \cdot q^{t+1} = m \cdot q^{(t+1)i}.$$

It follows in particular $|\mathcal{G} - \mathcal{G}_U| \ge m \cdot q^{(t+1)(r-d)}$. Since $|\mathcal{G}| \le \theta_r/\theta_t < q^{r+1}/q^t$, we have

$$q^{(t+1)(r-d)} \cdot q^t \leq m \cdot q^{(t+1)(r-d)} \cdot q^t < q^{r+1},$$

thus, (t+1)(r-d)+t < r+1. \Box

A partial t-spread \mathscr{G} of **P** is said to be of class $[\ge 1]_d$, (or, of class $[0, \ge 2]_d$) if no d-dimensional subspace of **P** contains no element of \mathscr{G} (or, exactly one element of \mathscr{G} , respectively). As corollaries of Lemma 3.1 we have the following theorems which generalize the results given in [16] in the cases d = 2t+1 and d = 2t+2.

Theorem 3.2. Denote by d and r two positive integers with d < r. If \mathscr{S} is a partial t-spread of class $[\ge 1]_d$ in $\mathbf{P} = PG(r, q)$, then $r \le d - 1 + (d/t)$.

Proof. Put $U = \emptyset$.

Theorem 3.3. Denote by \mathcal{G} a partial t-spread of $\mathbf{P} = PG(r, q)$ of class $[0, \ge 2]_d$ with $2t+1 \le d < r$. If $\mathcal{G} \ne \emptyset$, then $r \le d-1+(d/t)$.

Proof. Let U be an element of \mathcal{G} . \Box

Corollary 3.4. Denote by \mathcal{G} a non-empty partial t-spread in $\mathbf{P} = PG(r, q)$ of class $[\geq 1]_{2t+1}$ or of class $[0, \geq 2]_{2t+1}$ with r > 2t+1.

- (a) If t = 1, then $r \leq 5$.
- (b) If t > 1, then r = 2t + 2.

Proof. If d = 2t + 1, Theorems 3.2 and 3.3 reduce to $r \le d - 1 + (d/t) = 2t + 2 + (1/t)$.

The remainder of this section is devoted to examples which show that the above bounds are best possible. In Section 7 we shall prove that a geometric 1-spread in PG(2d-1, q) is always of class $[\geq 1]_d$ (see Corollary 7.4).

Proposition 3.5. For any positive integer t and any prime-power q there exists a partial t-spread of class $[\ge 1]_d$ in PG(2t+2, q).

Proof. Example 1. Denote by H a hyperplane of **P**, and let \mathscr{G} be a t-spread of H. Then, by Result 2.1, \mathscr{G} is a partial t-spread of type $(1, q^{t+1}+1)_{2t+1}$ of **P**. (Any hyperplane $H' \neq H$ intersects H in a 2t-dimensional subspace which contains exactly one element of \mathscr{G} (see Lemma 2.4).)

Example 2. Embed **P** as a hyperplane in $\Sigma = PG(2t+3, q)$ and consider a (t+1)-spread \mathcal{F} of Σ . Denote by F_0 the element of \mathcal{F} in **P**. We define

$$\mathcal{G} = \{F \cap \mathbf{P} \mid F \in \mathcal{F} - \{F_0\}\}$$

and $\mathscr{G}' = \mathscr{G} \cup \{S_0\}$, where S_0 is an arbitrary *t*-dimensional subspace of F_0 . Clearly, \mathscr{G}' is a partial *t*-spread of **P** (cf. [6, Theorem 4.2]; see also [16]). We claim that \mathscr{G}' is of type $(1, q, q+1)_{2t+1}$.

In order to show this, consider a hyperplane W of P. There are exactly q

hyperplanes H_1, \ldots, H_q of Σ through W with $H_i \neq \mathbf{P}$. Each of these hyperplanes contains exactly one element of \mathcal{F} . If $F_0 \subseteq W$, then this element is in any case F_0 . On the other hand, if $F_0 \not\subseteq W$, then these q elements of \mathcal{F} are mutually distinct. Thus, W contains exactly q elements of \mathcal{S} . It may be that W contains also S_0 . Therefore, \mathcal{S}' is of type $(1, q, q+1)_{2t+1}$. \Box

If we consider the partial spread \mathcal{G} of **P** again, we see immediately

Proposition 3.6. For any positive integer t and any prime-power q there exists a partial t-spread of type $(0, q)_{2t+1}$ in PG(2t+2, q).

We remark that this was proved in [4] in the case t = 1 and in [16].

The authors do not know an example of a non-empty partial 1-spread of class $[0, \ge 2]_d$ in PG(2d-1, q). However, in Section 7 we shall see (cf. Theorem 7.3) that for any integer $d \ge 3$ and any prime-power q, a geometric 1-spread in PG(2d-3, q) is of class $[0, \ge 2]_d$.

4. Partial t-spreads of singular type

Throughout this section, we denote by \mathscr{S} a partial *t*-spread in $\mathbf{P} = PG(r, q)$ of type $(m)_d$ with $2t+1 \le d < r$. If m = 0, then $\mathscr{S} = \emptyset$. So, we may also suppose that $m \ge 1$. The main result of this section is a precise description of all partial *t*-spreads of \mathbf{P} of type $(m)_d$ (see Theorem 4.7).

Lemma 4.1. Let h be a positive integer with d+h < r, and denote by U a (d+h)-dimensional subspace of **P**. If m_h denotes the number of elements of \mathcal{S} in U, then

$$m_h \cdot \begin{bmatrix} d+h-t \\ h \end{bmatrix}_q = m \cdot \begin{bmatrix} d+h+1 \\ d+1 \end{bmatrix}_q.$$
(4.1)

In other words, \mathcal{G} is of type $(m_h)_{d+h}$.

Proof. Counting the pairs (S, W), where S is an element of \mathscr{S} in U and W is a d-dimensional subspace of U containing S we obtain (4.1). It follows in particular that m_h is independent from the choice of the (d+h)-dimensional subspace U. \Box

Corollary 4.2. Suppose $d \leq r-1$. Then \mathcal{G} is of type $(n)_{r-1}$ with

$$n = m\theta_{r-1} \cdots \theta_{r-t-1}/\theta_d \cdots \theta_{d-t-1} = |\mathcal{S}| \cdot \theta_{r-t-1}/\theta_r.$$
(4.2)

Proof. By Lemma 4.1, \mathcal{G} is of type $(m_{r-d-1})_{r-1}$ with

$$n := m_{r-d-1} = m \cdot \begin{bmatrix} r \\ d+1 \end{bmatrix}_q / \begin{bmatrix} r-1-t \\ r-1-d \end{bmatrix}_q.$$

Counting the pairs (S, W), where $S \in \mathcal{S}$ and W is a hyperplane of **P** with $S \subseteq W$ we get $\theta_r \cdot n = |\mathcal{S}| \theta_{r-r-1}$.

Denote by a and b the uniquely defined positive integers with

r = a(t+1)+b and $1 \le b \le t+1$.

Lemma 4.3. Define the integer g by g+1 = gcd(t+1, b+1). Then θ_g divides θ_{r-t-1} , and θ_{r-t-1}/θ_g is a divisor of the above defined number n.

Proof. Since g+1 divides (a-1)(t+1)+b+1 (=r-t), by Lemma 2.4, θ_{r-t-1} is a multiple of θ_g . Moreover,

gcd(t+1, r-t) = gcd(r+1, t+1) = gcd(b+1, t+1) = g+1.

Again using Lemma 2.4 we have $gcd(\theta_t, \theta_{r-t-1}) = \theta_g$. In view of (4.2), the assertion follows. \Box

Corollary 4.4. We have g > 0 and $b \le t$.

Proof. Assume g = 0. Then Lemma 4.3 implies that θ_{r-t-1} divides *n*. In particular, $\theta_{r-t-1} \leq n$. On the other hand, $n \leq \theta_{r-1}/\theta_t$. Thus,

$$\theta_{r-t-1} \cdot \theta_t \leq \theta_{r-1},$$

a contradiction.

If b = t + 1, then g = 0. But we have already shown that this is impossible. \Box

Theorem 4.5. We have that \mathcal{G} is a (total) t-spread of **P**.

Proof. Since θ_g divides θ_{r-t-1} , θ_r/θ_g is a divisor of θ_r/θ_{r-t-1} . Therefore, Corollary 4.2 implies that θ_r/θ_g divides $|\mathcal{S}|$. In particular we have

$$\theta_r/\theta_g \leq |\mathcal{G}|.$$

On the other hand, clearly, $|\mathcal{G}| \leq \theta_r/\theta_t$. Since $g \leq b$ and $b \leq t$ it follows

 $\theta_{\rm r}/\theta_{\rm b} \leq \theta_{\rm r}/\theta_{\rm g} \leq |\mathcal{G}| \leq \theta_{\rm r}/\theta_{\rm t}.$

Therefore, $|\mathcal{G}| = \theta_r/\theta_t$. This means that \mathcal{G} is a (total) *t*-spread of **P**.

Lemma 4.6. Denote by \mathcal{F} a t-spread in $\mathbf{P} = PG(r, q)$. Then \mathcal{F} is not of type $(m)_{r-2}$.

Proof. Assume to the contrary that \mathcal{F} is of type $(m)_{r-2}$ for a positive integer m.

Counting the pairs (S, W), where $S \in \mathcal{F}$ and W is an (r-2)-dimensional subspace of **P** through S, we get

 $\theta_r \cdot \theta_{r-1} \cdot m = |\mathcal{F}| \cdot \theta_{r-t-1} \cdot \theta_{r-t-2}.$

Since \mathscr{F} is a *t*-spread, we have $|\mathscr{F}| = \theta_r/\theta_t$, and so

 $\theta_t \cdot \theta_{r-1} \cdot m = \theta_{r-t-1} \cdot \theta_{r-t-2}.$

Since r = a(t+1)-1, we have gcd(r, r-t-1) = 1. Therefore, θ_{r-1} divides θ_{r-t-1} , a contradiction.

In the following theorem, we determine all partial *t*-spreads of singular type.

Theorem 4.7. A partial t-spread in $\mathbf{P} = PG(r, q)$ is of type $(m)_d$ $(m \neq 0)$ if and only if it is a (total) t-spread of \mathbf{P} and we have d = r - 1. Moreover, in this situation, $m = \theta_{r-t-1}/\theta_t$.

Proof. By Lemma 2.4, any *t*-spread of **P** is of type $(\theta_{r-t-1}/\theta_t)_{r-1}$.

Suppose on the other hand that \mathscr{G} is a partial *t*-spread of type $(m)_d$ in \mathbb{P} . Then, by Corollary 4.2, \mathscr{G} is of type $(n)_{r-1}$. Now, Theorem 4.5 implies that \mathscr{G} is a *t*-spread of \mathbb{P} . Finally, Lemma 4.6 in connection with Lemma 4.1 shows d = r-1. \Box

5. Partial spreads of type $(0, m)_d$

Throughout this section, we denote by \mathscr{G} a partial *t*-spread of type $(0, m)_d$ in $\mathbf{P} = PG(r, q)$ with $2t + 1 \le d < r$. Without loss in generality, we can suppose $|\mathscr{G}| \ge 2$. We shall prove that under these hypotheses we have necessarily d = r - 1.

Consider a subspace U of **P** with $d+1 \le \dim(U) \le r$. Then the elements of \mathscr{S} in U form a partial t-spread of type $(0, m)_d$ of U. Therefore, it suffices to show that the assumption r = d+2 yields a contradiction. We shall work under this assumption.

Lemma 5.1. Under the above assumptions, we have

$$(|\mathcal{G}|-1)\theta_{d-2t} \cdot \theta_{d-2t-1} = \theta_{d-t+1} \cdot \theta_{d-t} \cdot (m-1).$$
(5.1)

Proof. Fix $V_0 \in \mathcal{G}$. We count the pairs (V, H), where $V \in \mathcal{G} - \{V_0\}$ and H is a *d*-dimensional subspace through V and V_0 . Since any of these *d*-dimensional subspaces H contains precisely m elements of \mathcal{G} , the assertion follows. \Box

Denote by a and b the uniquely defined integers with

$$d+2=r=a(t+1)+b$$
 and $1 \le b \le t+1$. (5.2)

Lemma 5.2. If we define

$$\gamma_1 + 1 = \gcd(t+1, b+1),$$
 $\gamma_2 + 1 = \gcd(t, a+b-1),$
 $\gamma_3 + 1 = \gcd(b+2-a, t+2),$ $\gamma_4 + 1 = \gcd(t+1, b),$

then

$$g_1 := \gcd(\theta_{d-2t}, \theta_{d-t+1}) = \theta_{\gamma_1}, \qquad g_2 := \gcd(\theta_{d-2t}, \theta_{d-t}) = \theta_{\gamma_2},$$
$$g_3 := \gcd(\theta_{d-2t-1}, \theta_{d-t+1}) = \theta_{\gamma_3}, \qquad g_4 := \gcd(\theta_{d-2t-1}, \theta_{d-t}) = \theta_{\gamma_4}$$

Moreover, $gcd(g_1, g_2) = 1$.

Proof. Using Lemma 2.4, this follows by elementary calculations. \Box

Corollary 5.3. Either $\theta_{d-t+1} \cdot \theta_{d-t}/g_1g_2g_3$ or $\theta_{d-t+1} \cdot \theta_{d-t}/g_2g_3g_4$ is a divisor of $|\mathcal{S}| - 1$.

Proof. In view of Lemma 5.2, this follows by Lemma 5.1. \Box

Corollary 5.4. $d \le t + 3 + \gamma_2 + \gamma_3 + \max\{\gamma_1, \gamma_4\}.$

Proof. If we put $M := \max\{g_1g_2g_3, g_2g_3g_4\}$, it follows by Corollary 5.3

$$\theta_{d-t+1} \cdot \theta_{d-t} \leq (|\mathcal{G}|-1)M.$$

Since

$$|\mathcal{G}| - 1 \leq (\theta_{d+2} - \theta_t) / \theta_t = q^{t+1} \cdot \theta_{d+1-t} / \theta_t,$$

we have

$$\theta_{d-t} \cdot \theta_t \leq q^{t+1} \cdot M.$$

Therefore,

$$q^{d-t} \cdot q^{t} < q^{t+1} \cdot \max\{q^{\gamma_{1}+1}q^{\gamma_{2}+1}q^{\gamma_{3}+1}, q^{\gamma_{2}+1}q^{\gamma_{3}+1}q^{\gamma_{4}+1}\},\$$

and so

$$d-t+t < t+1+\gamma_2+\gamma_3+\max\{\gamma_1,\gamma_4\}. \quad \Box$$

Corollary 5.5. $d \leq 4t+2$.

Proof. By Lemma 5.2, $\max{\{\gamma_1, \gamma_4\} \le t}$. Clearly, $\gamma_2 \le t-1$ and $\gamma_3 \le t+1$. Thus, by the preceeding corollary, it follows $d \le 4t+3$.

Assume d = 4t+3. Then a = 4 and b = 1. Consequently, $\gamma_1 \le 1$, $\gamma_2 \le 3$, $\gamma_3 \le t+1$, $\gamma_4 = 0$, and so $4t+3 = d \le t+3+3+t+1+1$. Thus, $2t \le 5$. But in the cases t = 1 and t = 2, a contradiction follows easily. \Box

The following assertion turns out to be very useful.

Proposition 5.6. a = 3.

Proof. Since $d \le 4t+2$, we have $a \le 3$. Clearly, $a \ge 2$. (Otherwise, $d = 1 + t+1+b-2 \le 2t-1$.) Assume a = 2. Then

$$\gamma_1 + 1 = \gcd(t+1, b+1), \qquad \gamma_2 + 1 = \gcd(t, b+1),$$

 $\gamma_3 + 1 = \gcd(b, t+2), \qquad \gamma_4 + 1 = \gcd(t+1, b).$

So, $\gamma_1 + \gamma_2 \leq b$ and $\gamma_3 + \gamma_4 \leq b - 1$. Therefore, Corollary 5.4 implies

 $2(t+1) + b - 2 = d \le t + 3 + b + b - 1,$

and so $b \ge t-2$. Assume first b = t+1. Then (5.1) yields

$$(|\mathcal{G}|-1)(q^{t+1}+\cdots+1)=(q^{2t+2}+\cdots+1)(q^{t+1}+1)(m-1).$$

Therefore, $(q^{2t+2}+\cdots+1)(q^{t+1}+1)$ divides $|\mathcal{G}|-1$ contradicting

 $|\mathscr{G}| - 1 \leq q^{t+1}(q^{2t+2} + \cdots + 1).$

In the cases b = t, b = t-1 and b = t-2 we get similarly

$$(|\mathcal{S}|-1)(q^{t-1}+\cdots+1) = (q^{t+1}+1)(q^{2t}+\cdots+1)(m-1),$$

$$(|\mathcal{S}|-1)(q^{t-2}+\cdots+1) = (q^{2t}+\cdots+1)(q^{t}+1)(m-1),$$

and

$$(|\mathcal{S}|-1)(q^{t-2}+\cdots+1)(q^{t-3}+\cdots+1) = (q^{2t-1}+\cdots+1)(q^{2t-2}+\cdots+1)(m-1).$$

In any case, a contradiction follows. \Box

Lemma 5.7. $b \neq t+1, t$.

Proof. If b = t+1, then $\gamma_1 = 0$, $\gamma_2 = \gcd(t, t+3) - 1 \le 2$, $\gamma_3 = \gcd(t, t+2) - 1 \le 1$, $\gamma_4 = t$. Thus,

 $4t+2 = 3(t+1)+b-2 \le t+3+2+1+t,$

hence $2t \le 4$, i.e. $t \le 2$. If t = 2, then $\gamma = 0$, $\gamma_3 = 1$; if t = 1, then $\gamma_2 = 0 = \gamma_3$. In both cases we get a contradiction.

Suppose now b = t. It follows $\gamma_1 = t$, $\gamma_2 = \gcd(t, t+2) - 1 \le 1$, $\gamma_3 = \gcd(t-1, t+2) - 1 \le 2$, $\gamma_4 = 0$. So, $3t+1+t \le t+3+t+1+2$, therefore $t \le 2$. But this contradicts (5.1). \Box

In a similar way, one can prove the following

Lemma 5.8. $b \neq t-1, t-2$.

Proof. One has to note that in the case b = t-1 we have $1 \le b = t-1$, so $t \ge 2$. Similarly, if b = t-2, then $t \ge 3$. \Box We can now get a final contradiction.

Theorem 5.9. Denote by \mathcal{S} a partial t-spread of class $[0, m]_d$ in $\mathbf{P} = PG(r, q)$ with $2t+1 \le d < r$. If $|\mathcal{S}| \ge 2$, then d = r-1.

Proof. Lemmas 5.7 and 5.8 imply in particular $\gamma_1 \neq t$; so $\gamma_1 \leq [(t+1)/2] - 1$. Similarly, $\gamma_2 \leq [\frac{1}{2}t] - 1$, $\gamma_3 \leq [\frac{1}{2}(t+2)] - 1$, $\gamma_4 \leq [\frac{1}{2}(t+1)] - 1$. By Corollary 5.4 we have

$$d \le t+3+\frac{t}{2}-1+\frac{t+2}{2}-1+\frac{t+1}{2}-1=\frac{5t}{2}$$

But, by Proposition 5.6 we have $d \ge 3(t+1)-1=3t+2$. Together, we get a contradiction. \Box

In Section 7 we shall construct a class of partial *t*-spreads of type $(0, m)_d$. Another class of examples can be found in [16].

Proposition 5.10. Suppose that in $\mathbf{P} = PG(r, q)$ there exists a partial t-spread \mathcal{S} of type $(0, m)_{r-1}$ with $|\mathcal{S}| \ge 2$. Then

$$\theta_{r-2t-2} | (m-1)\theta_{r-t-1}$$
 and $|\mathcal{S}| = 1 + (m-1)\theta_{r-t-1}/\theta_{r-2t-2}$.

Moreover,

$$m \leq \theta_{r-t-1}/\theta_t$$
 and $m \cdot \theta_{r-2t-2} \mid q^{r-2t-1} \cdot \theta_t (mq^{r-2t-1} \cdot \theta_t - \theta_{r-t-1}).$

Proof. If we count the incident pairs (S, H), where $S \in \mathcal{S}$ and H is a hyperplane of **P**, we get

$$(|\mathcal{G}|-1)\theta_{r-2t-2} = \theta_{r-t-1} \cdot (m-1).$$

6. On partial spreads of class $[1, n]_d$

In this section we shall prove that—under certain assumptions—the existence of a partial *t*-spread of type $(1, n)_d$ in PG(r, q) implies r = d + 1. By similar methods as in the last section, we can prove a little more, namely the following theorem, which applies in particular to partial *t*-spreads of type $(1, n)_d$.

Theorem 6.1. Denote by \mathcal{G} a partial t-spread in $\mathbf{P} = PG(r, q)$. Suppose that there exists a subspace U of dimension 2t+1 in which \mathcal{G} induces a partial t-spread \mathcal{G}_U with u elements, such that any subspace of dimension d through U contains exactly u+k > u elements of \mathcal{G} . Suppose moreover d > 4t+3. Then either r = d+1, or one of the following cases occurs:

$$(t, d) = (1, 7), (2, 11), (3, 15), (5, 25), (8, 40).$$

Proof. Suppose $r \ge d+2$. Then, without loss in generality, r = d+2. Counting the incident pairs (V, W) with $V \in \mathcal{G} - \mathcal{G}_U$, where W is a d-dimensional subspace through U and V, we get

$$(|\mathcal{G}| - u) \cdot \theta_{d-3t-1} \cdot \theta_{d-3t-2} = \theta_{d-2t} \cdot \theta_{d-2t-1} \cdot k.$$
(6.1)

Put d+2 = a(t+1)+b with $1 \le b \le t+1$. Then

$$\begin{aligned} \gamma_1 + 1 &:= \gcd(d - 3t, d - 2t + 1) = \gcd(t + 1, b + 1), \\ \gamma_2 + 1 &:= \gcd(d - 3t, d - 2t) = \gcd(t, a + b - 2), \\ \gamma_3 + 1 &:= \gcd(d - 3t - 1, d - 2t + 1) = \gcd(t + 2, b + 3 - a), \\ \gamma_4 + 1 &:= \gcd(d - 3t - 1, d - 2t) = \gcd(t + 1, b). \end{aligned}$$

. .

In particular, $\gamma_1 + \gamma_4 = \max\{\gamma_1, \gamma_4\} \le \max\{b, t\}$. If we define $g_i := \theta_{\gamma_i}$ (i = 1, 2, 3, 4), it follows by (6.1) that either $\theta_{d-2t}\theta_{d-2t-1}/g_1g_2g_3$ or $\theta_{d-2t}\theta_{d-2t-1}/g_2g_3g_4$ is a divisor of $|\mathcal{G}| - u$. Since $\mathcal{G} - \mathcal{G}_U$ is a partial *t*-spread of $\mathbf{P} - U$, we have

$$|\mathcal{G}| - u \leq |\mathbf{P} - U|/\theta_t = q^{2t+2} \cdot \theta_{d-2t}/\theta_t.$$

Hence, if μ denotes the maximum of $g_1g_2g_3$ and $g_2g_3g_4$, then

$$\theta_{d-2t} \cdot \theta_{d-2t-1} / \mu \leq |\mathcal{G}| - u \leq q^{2t+2} \cdot \theta_{d-2t} / \theta_t,$$

and therefore

$$\theta_{d-2t-1} \cdot \theta_t \leq q^{2t+2} \cdot \max\{g_1g_2g_3, g_2g_3g_4\}.$$

Hence, $d - 2t - 1 + t < 2t + 2 + 3 + \gamma_2 + \gamma_3 + \max\{\gamma_1, \gamma_4\}$, i.e. $d \le 3t + 5 + \gamma_2 + \gamma_3 + \gamma_3 + \max\{\gamma_1, \gamma_4\}$, i.e. $d \le 3t + 5 + \gamma_2 + \gamma_3 + \gamma_3 + \max\{\gamma_1, \gamma_4\}$, i.e. $d \le 3t + 5 + \gamma_2 + \gamma_3 + \gamma_3 + \max\{\gamma_1, \gamma_4\}$. $\max\{\gamma_1, \gamma_4\}.$

Since $\max\{\gamma_1, \gamma_4\} \le b$, $\gamma_2 \le t-1$ and $\gamma_3 \le t+1$, it follows in particular $a(t+1)+b-2=d \le 3t+5+(t-1)+(t+1)+b$, and so $a(t+1) \le 5t+7=$ 5(t+1)+2.

We claim $a \le 5$. (Assume $a \ge 6$. Then a = 6 and 2 = b = t + 1. But then we have $\gamma_3 = 0$, a contradiction.) On the other hand,

$$a(t+1)+b-2 \ge 4t+3,$$
 (6.2)

which means $a \ge 4$. Thus, $4 \le a \le 5$. We consider first the case a = 5. In this situation we have

$$\gamma_2 \leq b+2, \quad \gamma_3 \leq t+1, \quad \max\{\gamma_1, \gamma_4\} \leq b-1,$$

and so $(b+2)+(t+1)+(b-1) \ge 2t+2+b$, i.e. $b \ge t$. But in these cases we have $\gamma_2 + \gamma_3 \leq 5$, which implies t = 1. This yields a contradiction.

Thus, a = 4. Therefore,

$$t+b+3 \leq \gamma_2+\gamma_3+\max\{\gamma_1,\gamma_4\}.$$

Moreover,

$$\gamma_1 = \gcd(t+1, b+1) - 1, \qquad \gamma_2 = \gcd(t, b+2) - 1 \le b+1,$$

 $\gamma_3 = \gcd(t+2, b-1) - 1, \qquad \gamma_4 = \gcd(t+1, b) - 1.$

Let us first consider the cases b = t+1, t, t-2. If $b \ge t$, then $\gamma_2 + \gamma_3 \le 3$ and $\max\{\gamma_1, \gamma_4\} = t$, So, $t+b-3 \le 3+t$, i.e. $b \le 6$. But these values of b (and t) are impossible by (6.1).

Consider now the case b = t-2. Then $t = b+2 \ge 3$ and $\gamma_1 \le 1$, $\gamma_2 = t-1$, $\gamma_3 \in \{0, 4\}$ and $\gamma_4 \le 2$. Therefore, $2t-5 = t+b-3 \le (t-1)+4+2$, and so $t \le 10$. The values t = 10, 9, 7, 6, 4 can be excluded immediately, but the cases (t, d) = (1, 7), (2, 11), (3, 15), (5, 25), (8, 40) yield no contradiction.

Let us now suppose $b \neq t+1$, t, t-2. Then

$$\gamma_1 \leq \frac{t+1}{2} - 1 = \frac{t-1}{2}, \qquad \gamma_2 \leq \frac{t}{2} - 1 = \frac{t-2}{2}, \qquad \gamma_3 \leq \frac{t+1}{2} - 1 = \frac{t-1}{2}.$$

Since d > 4t+3, we have b > 1. Therefore, $\gamma_3 \le b-2$. It follows

$$t+b-3 \leq \frac{t-2}{2}+b-2+\frac{t-1}{2},$$

a final contradiction. \Box

Corollary 6.2. Let \mathscr{G} be a partial t-spread of type $(1, m)_d$ in $\mathbf{P} = PG(r, q)$ with 4t+3 < d < r. Suppose that there is a (2t+1)-dimensional subspace U of \mathbf{P} such that \mathscr{G} induces a partial t-spread in U. Then r = d+1 or one of the following cases occurs:

$$(t, d) = (1, 7), (2, 11), (3, 15), (5, 25), (8, 40).$$

Proof. Since there exists a *d*-dimensional subspace of \mathbf{P} which does not contain all elements of \mathcal{S} in U, there exists an element of \mathcal{S} outside U. Consequently, any *d*-dimensional subspace through U contains exactly m-u elements of \mathcal{S} outside U, where u is the number of elements of \mathcal{S} in U. Now, the assertion follows by the above theorem. \Box

Remarks. (1) In Proposition 7.6 we shall construct partial 1-spreads \mathscr{G}' in $\mathbf{P} = PG(7, q)$ with the following property: There is a 3-dimensional subspace U of \mathbf{P} such that any subspace of dimension 5 through U has exactly q(q-1) elements of \mathscr{G}' . This example shows that the assumption $d \ge 4t+3'$ of Theorem 6.1 cannot be weakened very much.

(2) For any prime-power q, there exists a partial 1-spread of type $(1, q+1)_3$ in PG(4, q^2). Cf. de Finis and de Resmini [12].

7. Examples. The type of a geometric spread

Denote by \mathscr{S} a geometric *t*-spread in $\mathbf{P} = PG(r, q)$, where r+1 = (a+1)(t+1), $a \ge 2$. By Lemma 2.4, any hyperplane of \mathbf{P} contains exactly $\theta_{a-1}(q^{t+1})$ elements of \mathscr{S} , i.e. $\theta_{a-1}(q^{t+1})$ points of a hyperplane of the associated projective space $\mathbf{P}(\mathscr{S})$ defined in Section 2.

Proposition 7.1. In $\mathbf{P} = \mathbf{PG}((a+1)(t+1)-1, q)$, any geometric t-spread \mathcal{S} has type $(\theta_{a-2}(q^{t+1}), \theta_{a-1}(q^{t+1}))_{r-2}$.

Proof. Denote by W a subspace of dimension r-2, and let H be a hyperplane through W. Since H intersects \mathscr{S} in the points of a hyperplane of $\mathbb{P}(\mathscr{S})$, there is a subspace V of dimension a(t+1)-1 of H such that any element of \mathscr{S} in H is in V.

If W contains V, then W has exactly $\theta_{a-1}(q^{t+1})$ elements of \mathcal{G} . If W does not contain V, then the hyperplane W of H intersects V in a hyperplane U of V. By Lemma 2.4, u contains exactly $\theta_{a-2}(q^{t+1})$ elements of \mathcal{G} .

A maximal $\{k; n\}$ -arc (cf. Barlotti [3]) in a projective plane **P** of order q is a non-empty set \mathcal{X} of points of **P** such that any line of **P** intersects \mathcal{X} in 0 or exactly n points. Any maximal $\{k; n\}$ -arc has precisely k = (q+1)(n-1)+1 points. These structures have been investigated in detail; see for example [3, 9, 11, 14, 17, 24-26].

Proposition 7.2. (a) In P = PG((a+1)(t+1)-1, q) there exists a partial t-spread of type $(0, q^{(a-1)(t+1)})_{r-1}$.

(b) Suppose that the desarguesian projective plane of order q^{t+1} contains a maximal $\{(q^{t+1}+1)(n-1)+1, n\}$ -arc. Then, in PG(3t+2, q), there exists a partial t-spread of type $(0, n)_{3t+1}$.

Proof. (a) Consider a geometric *t*-spread \mathscr{G} of **P**. Remove from \mathscr{G} the points of a hyperplane of $P(\mathscr{G})$. Since any hyperplane of **P** intersects \mathscr{G} in the points of a hyperplane of $P(\mathscr{G})$, the assertion follows.

(b) Consider a maximal $\{(q^{t+1}+1)(n-1)+1; n\}$ -arc in the projective plane $P(\mathcal{S})$, where \mathcal{S} is a geometric *t*-spread of PG(3t+2, q). \Box

The most important result of this section is the following.

Theorem 7.3. Denote by \mathcal{G} a geometric 1-spread in $\mathbf{P} = PG(2a+1, q)$. Moreover, let s be an integer with $0 \le s \le a$. Then any (a+s)-dimensional subspace of \mathbf{P} contains at least $\theta_{s-1}(q^2)$ elements of \mathcal{G} .

Proof. By induction on s. The case s = 0 is trivial. Suppose $s \ge 1$ and suppose moreover that the assertion is true for s - 1.

Denote by U a subspace of dimension a + s and assume that U has fewer than $\theta_{s-1}(q^2)$ elements of \mathcal{G} . Since \mathcal{G} is geometric, by induction, U has exactly $\theta_{s-2}(q^2)$ elements of \mathcal{G} . Moreover, the elements of \mathcal{G} in U form a spread \mathcal{G}_0 of a (2s-3)-dimensional subspace U_0 of U. (Note that \mathcal{G}_0 is the point set of an (s-2)-dimensional subspace of $\mathbf{P}(\mathcal{G})$.)

Consider now the $\theta_{a+s} - \theta_{2s-3} = q^{2(s-1)} \cdot \theta_{a-s+2}$ elements of \mathscr{S} which intersect U

in exactly one point. Each of these lines generates together with \mathscr{G}_0 an (s-1)dimensional subspace of $\mathbb{P}(\mathscr{G})$. Consider the corresponding (2s-1)-dimensional subspaces V_1, \ldots, V_b of \mathbb{P} . Each of these subspaces V_i intersects U in a (2s-2)-dimensional subspace. So, the number b of these subspaces V_i equals

$$b = q^{2(s-1)} \cdot \theta_{a-s+2}/q^{2s-2} = \theta_{a-s+2}$$

We claim that for any two distinct subspaces V_i , V_j we have $\langle U, V_i \rangle \neq \langle U, V_j \rangle$. (Otherwise, $\langle V_i, V_j \rangle$ would be contained in the subspace $X = \langle U, V_i \rangle = \langle U, V_j \rangle$ of dimension a + s + 1. Since \mathscr{S} is geometric, it induces a spread \mathscr{S}' in $\langle V_i, V_j \rangle$ with $|\mathscr{S}'| = \theta_s(q^2)$. Therefore, the hyperplane $\langle V_1, V_j \rangle \cap U$ of $\langle V_i, V_j \rangle$ would contain exactly $\theta_{s-1}(q^2)$ elements of \mathscr{S}' , a contradiction to our assumption.)

Consequently, there are at least θ_{a-s+2} subspaces of dimension a+s+1 through U. But the exact number of these subspaces is θ_{a-s} . This is a contradiction. \Box

In view of Theorem 3.2, the above theorem implies in particular

Corollary 7.4. Let \mathcal{G} be a geometric 1-spread in PG(2a+1, q). Then \mathcal{G} is of class $[\geq 1]_d$ if and only if $d \geq a+1$.

Corollary 7.5. Let \mathcal{S} be a geometric 1-spread in $\mathbf{P} = \mathrm{PG}(2a+1,q)$, and denote by U an a-dimensional subspace of \mathbf{P} containing no element of \mathcal{S} . Define \mathcal{S}' to be the set of lines of \mathcal{S} which do not intersect U. If s is an integer with $1 \leq s \leq a$, then any subspace of dimension a + s through U contains exactly $\theta_{s-1}(q^2) - \theta_{s-1}$ elements of \mathcal{S}' .

Proof. Denote by V a subspace of dimension a + s through U. Then, by Theorem 7.3, V contains at least $\theta_{s-1}(q^2)$ elements of \mathcal{S} .

Step 1. V contains exactly $\theta_{s-1}(q^2)$ elements of \mathcal{S} .

Assume to the contrary that V has more than $\theta_{s-1}(q^2)$ elements in common with \mathscr{G} . Then V contains at least $\theta_s(q^2)$ elements of \mathscr{G} . Since \mathscr{G} is geometric, there exists a (2s+1)-dimensional subspace Y of V in which \mathscr{G} induces a geometric spread \mathscr{G}_Y . Since

 $\dim(Y \cap U) \ge 2s + 1 + a - (a + s) = s + 1$,

by Corollary 7.4, $Y \cap U$ contains at least one element of \mathscr{G}_{Y} , a contradiction.

Step 2. V contains exactly $\theta_{s-1}(q^2) - \theta_{s-1}$ elements of \mathcal{G}' .

For: By Step 1, there is a (2s-1)-dimensional subspace W of V such that any element of \mathcal{G} in V is in W. Moreover,

$$\dim(W \cap U) \ge 2s - 1 + a - (a + s) = s - 1.$$

But dim $(W \cap U) \ge s$ is impossible, since otherwise (by Theorem 7.3), $V \cap U$ would contain an element of \mathscr{G} . Thus, dim $(W \cap U) = s - 1$. Consequently, V contains exactly $\theta_{s-1}(q^2) - \theta_{s-1}$ elements of \mathscr{G}' . \Box

Clearly, a geometric 1-spread of PG(2a+1, q) is of class $[0, 1, \theta_1(q^2), \ldots, \theta_a(q^2)]_d$. In the remainder of this section we shall determine the type of \mathcal{G} for any d with $0 \le d \le 2a+1$.

Proposition 7.6. Let \mathcal{G} be a geometric 1-spread in $\mathbf{P} = PG(2a+1,q)$. Denote by s an integer with $0 \le s \le a-1$. Then for any $i \in \{-1, 0, 1, \ldots, a-1-s\}$ there is a subspace U of dimension 2s+2+i such that U has exactly $\theta_s(q^2)$ elements in common with \mathcal{G} .

Proof. Let \mathscr{G}' be the point set of an s-dimensional subspace of $\mathbb{P}(\mathscr{G})$, and denote by W' the subspace of dimension 2s+1 in which \mathscr{G} induces the spread \mathscr{G}' .

Let \mathscr{G}'' be the point set of a complement of $\mathbf{P}(\mathscr{G}')$ in $\mathbf{P}(\mathscr{G})$. This means that $\mathbf{P}(\mathscr{G}'')$ has dimension a-s-1 and that \mathscr{G}'' has no element in common with \mathscr{G}' . If W'' denotes the subspace of dimension 2(a-s-1)+1 of \mathbf{P} in which \mathscr{G} induces the spread \mathscr{G}'' , then W' and W'' are complementary subspaces of \mathbf{P} .

By Corollary 7.4, for any integer $i \in \{-1, 0, 1, ..., a-s-1\}$, there is an *i*-dimensional subspace V of W" which has no element in common with $\mathcal{G}^{"}$.

Then $U := \langle V, W' \rangle$ is a subspace of dimension 2s + 2 + i of **P**. It remains to show that the only elements of \mathscr{S} in U are the elements of \mathscr{S}' . Indeed, if U would contain a line $l \in \mathscr{S} - \mathscr{S}'$, then \mathscr{S} would induce a spread in $\langle l, W' \rangle$, and $\langle l, W' \rangle$ would intersect W'' non-trivially, a contradiction. \Box

Theorem 7.7. Let \mathcal{G} be a geometric 1-spread in $\mathbf{P} = PG(2a+1, q)$.

(a) If h is an integer with $0 \le h \le a$, then \mathscr{S} has type $(0, 1, \theta_1(q^2), \ldots, \theta_u(q^2))_h$, where u is defined by $u = [\frac{1}{2}(h-1)]$.

(b) If h is an integer with $1 \le h \le a$, then \mathscr{S} has type $(\theta_{h-1}(q^2), \ldots, \theta_u(q^2))_{a+h}$, where u is defined by $u = [\frac{1}{2}(a+h-1)]$.

Proof. (a) Fix a number s with $0 \le s \le u$, and define i = h - 2s - 2. It follows $-1 \le i \le a - 2s - 2 \le a - s - 1$. So, by the above proposition, there is a subspace of dimension 2s + 2 + i = h which has exactly $\theta_s(q^2)$ elements in common with \mathcal{G} .

(b) Fix a number s with $h-1 \le s \le u$ and define i = a+h-2s-2. Since $s \ge h-1$, we have $i \le a+h-(h-1)-s-2 = a-s-1$. Moreover, $s \le u = [\frac{1}{2}(a+h-1)]$ implies that $i \ge -1$. Now, the assertion follows in view of Proposition 7.6. \Box

References

- [1] M. Aigner, Combinatorial Theory (Springer Berlin, 1969).
- [2] R. Baer, Partitionen abelscher Gruppen, Arch. Math. 14 (1963) 73-83.
- [3] A. Barlotti, Sui {k; n}-archi di un piano lineare finito, Boll. Un. Mat. Ital. 11 (1956) 553-556.
- [4] L. Berardi, Alcune condizioni necessarie per l'esistenza di t-fibrazioni di tipo $(0, m)_{2t+1}$ in PG(n, q), Rend. Mat., to appear.
- [5] L. Berardi and F. Eugeni, Limitazioni inferiori e superiori per le t-fibrazioni massimali in

PG(n, q) con fissato livello, Atti Convegno "Geometria comb. e di incidenze", Passo della Mendola (1982) 67-82.

- [6] A. Beutelspacher, Partial spreads in finite projective spaces and partial designs, Math. Z. 145 (1975) 211-229.
- [7] A. Beutelspacher, Einführung in die endliche Geometrie II. Projektive Räume (Bibliographisches Institut, Mannheim, Wien, Zürich, 1983).
- [8] A. Bruen, Partial spreads and replaceable nets, Canad. J. Math. 23 (1971) 381-391.
- [9] P.V. Ceccherini, Su certi $\{k; n\}$ -archi dedotti da curve piane e sulle $\{m; n\}$ -calotte di tipo (0, n) di un S_r $(r \ge 2)$, Rend. Mat. 2 (1969) 185-196.
- [10] P.V. Ceccherini and A. Dragomir, Combinazioni generalizzate, q-coefficienti binomiali e spazi grafici, Atti del Convegno di Geometria Combinatoria e sue Applicazioni, Perugia (1970) 137-158.
- [11] A. Cossu, Su alcune proprietà dei {k; n}-archi di un piano proiettivo sopra un corpo finito, Rend. Mat. e Appl. 20 (1961) 271-277.
- [12] M. de Finis and M.J. de Resmini, On spreads of type (m, n) with respect to primes in PG(4, q), q a square, Boll. Un. Mat. Ital. D 1 (1982) 247-252.
- [13] P. Dembowski, Finite Geometries (Springer, Berlin, 1968).
- [14] R.H.F. Denniston, Some maximal arcs in finite projective planes, J. Combin. Theory 6 (1969) 317-319.
- [15] F. Eugeni and O. Ferri, Sulle fibrazioni mediante piani in PG(n, q), Boll. Un. Mat. Ital. A 3 (1984) 221-228.
- [16] F. Eugeni, Sulla esistenza di t-fibrazioni in PG(r, q) di fissato tipo, to appear.
- [17] J.W.P. Hirschfeld, Projective Geometries over finite Fields (Clarendon Press, Oxford, 1979).
- [18] D.M. Mesner, Sets of disjoint lines in PG(3, q), Canad. J. Math. 19 (1967) 273-280.
- [19] G.C. Rota and L.H. Harper, Matching theory, an introduction, Adv. Probab. I (1971) 171-215.
- [20] B. Segre, Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane, Ann. Mat. pura Appl. 64 (1964) 1–76.
- [21] G. Tallini, Problemi e risultati nelle geometrie di Galois, Relazione n. 30 (1973) Ist. Mat. Univ. Napoli.
- [22] G. Tallini, Fibrazioni di rette in PG(r, q), Quaderno Sem. Comb. n. 37 (1981), Ist. Mat. Univ. "G. Castlenuovo", Roma.
- [23] G. Tallini, k-insiemi e blocking sets in PG(r, q) e in AG(r, q), Quaderno n.1 Sem. Geom. Comb. Ist. Mat. Appl., Fac. Ing. L'Aquila (1982) 1-36.
- [24] M. Tallini Scafati, Sui {k; n}-archi di un piano grafico finito, Atti Accad. Naz. Lincei 40 (1966) 373-378.
- [25] M. Tallini Scafati, {k; n}-archi di un piano grafico finito, con particolare riguardo a quelli a due caratteri I, II, Atti Accad. Naz. Lincei 40 (1966) 812-818, 1020-1025.
- [26] J.A. Thas, Construction of maximal arcs and partial geometries, Geom. Dedcata 3 (1974) 61-64.