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Abstract

We derive results on the asymptotic behavior of tails and quantiles of quadratic forms of
Gaussian vectors. They appear in particular in delta—gamma models in financial risk
management approximating portfolio returns. Quantile estimation corresponds to the
estimation of the Value-at-Risk, which is a serious problem in high dimension.
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1. Introduction

Quadratic forms X7 QX of Gaussian vectors X ~N(u, X) play an important role
in probability theory and statistics. These forms appear in (central and non-central)
>-statistics, likelihood ratios, and power spectra, which are used in many different
applications and models throughout statistics.

Traditional applications include “ballistic analysis of multiple weapon systems’’,
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the “detection of signals from noise in multichannel receivers”, “the study of bone
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lengths determined in vivo using X-ray stereography’ [13] as well as numerous
applications in communication theory cited by Raphaeli [19] and Gao and
Smith [7].

This paper was motivated by a problem from financial mathematics. The so-called
delta—gamma method approximates the Value-at-Risk, which is nothing else but a
small quantile, e.g. the 1%-quantile. The approximation is based on a second-order
Taylor expansion of the price of a financial derivative, for instance, a European
option. The expansion is for the price of the derivative at a particular time and at a
certain price level of the underlying security, which may be an index or an asset price.
See Duffie and Pan [6] for details.

In a Gaussian framework, the second-order approximation leads to

V(X) = 9+ATX+%XTFX, (1.1)

where X is an m-dimensional Gaussian vector with mean 0 and covariance matrix
2, Aisavectorin R” and I' is some symmetric m x m-matrix. The Gaussian model
is usually based on the central limit theorem. Such quadratic approximations are
extremely popular in risk management for financial institutions [17].

Eq. (1.1) can be brought into the diagonal form

1 m 1
V:0+5TY+§YTAY:0+Z(5]-)’]-+§)V»)’].2>, (1.2)
J=1

where ¥ = (Y1, ..., Y,,,)T is a standard normal vector, o0 = (Jy, ...,5,71)T6R’”, and
A = diag(4y, ..., Ay) is a diagonal matrix. This can be done by solving the generalized
eigenvalue problem

cct =3,

c'rc =4,

and putting X = CY, 6§ = CT4.

Approximations to the probability distribution of V" include series expansions [16,
Section 4.2], numerical Fourier inversion [10,20], Monte Carlo simulation [§], and
numerous approximations with limited accuracy based on moment matching (see
[12] for references). The two approaches used in practice, which in principle can
achieve any desired accuracy are numerical Fourier inversion and Monte Carlo
simulation. For small quantiles, special Monte Carlo simulation methods, such as
importance sampling (see e.g. [8]), have been developed to reduce the required
amount of simulations.

The Fourier inversion method starts with the characteristic function ¢(¢) =
Ee"V, teR, which is known analytically in the case (1.1). Then the inversion
formula

=5 [ " (o) di (1.3)

o0
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holds for the probability density f. The key to an error analysis of trapezoidal,
equidistant approximations to the integral (1.3)

flx, 4) Af i P(kA,)e™ kA (1.4)

k*—oﬁ

1s the Poisson summation formula

Alx, A4, 1) Z f<x+—j) (1.5)

j—f(f

The infinite sum (1.4) has to be truncated, so the resulting errors consist in a
discretization error and a truncation error. The discretization error is described by all
terms in the infinite sum in (1.5) except that for j = 0. Thus, the question how the
discretization error decreases asymptotically with 4, tending to 0 is identical to
the question of the tail behavior of f. On the other hand, the truncation error can be
read off (1.4) and is obviously related to the tail behavior of ¢. The influence of these
errors on accuracy is investigated theoretically as well as numerically in [1, p. 22].
For a modified approach using Fourier inversion, see Jaschke [11].

This paper proposes a different approach to the problem in providing an
asymptotic approximation to the density f, to the tails of the distribution function F
and to the a-quantile x,, for « close to 0 or 1. This approach is in the spirit of Beran
[4], who derives the asymptotic right tail behavior of the distribution of V' and its
density function in the positive definite case, i.e. when 41, ..., 4, appearing in (1.2)
are all strictly positive. The contribution of this paper is to develop the asymptotic
tail behavior for the general case (1.2), without any restrictions on the /;’s. The
extension of Beran’s result was motivated by a real life example in risk management
as mentioned before.

Our paper is organized as follows. In Section 2, we present V" as being essentially a
sum of independent non-central y-distributed random variables with different
degrees of freedom and non-centrality parameters. In Section 3, the main asymptotic
results are derived. The behavior of the lower and upper tails of V' are obtained for
the relevant regimes, which are determined by the lowest/highest eigenvalue being
negative, zero or positive. Section 4 is devoted to quantile approximation based on
the results in Section 3. Examples and some discussion on our results included in
Section 5 conclude the paper. These examples show that our proposed approxima-
tions work well for extremely small/large quantiles, but even for quantiles such as
1% they may still not be precise enough. On the other hand, in contrast to numerical
Fourier inversion, which in principle can achieve any desired accuracy, our approach
yields explicit expressions for the extreme quantiles.

2. An alternative representation

Suppose that the (generalized) eigenvalues 4; of V" appearing in (1.2) are sorted in
increasing order. Suppose there are n<m distinct eigenvalues, and denote by i; the
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highest index of the jth distinct eigenvalue, and by g; its multiplicity
(wj = ij —ij_1,ip = 0,i, = m); thus 4; <---<4,;,. Forj=1,...,n, define

Y
" i/’ 0 2 .
i Zl:i,»,lﬂ(;_-l."' Yp)©, if 4; #0,

V=9 ! . (2.1)
Zl/:i,»,ﬁl 51 Y], if )L]:i = O,
and 5]2 = ZL,},I +l d;. Then the V; are independent and
n 5?2 n
v=0- Y zi‘LZ V.
j= 1 oo j=1
i, #0

If 7;, = 0, then V; is Gaussian. If 4; #0, then V; is a scaled version of a (non-central)
x*-variable with u; degrees of freedom and non-centrality parameter a; = o; /)5
Specifically, if g(-; a7, ;) denotes the Xi/_ (a7)-density, then
2 2
109 = i0( v ) (2.2)
i

i

where f; denotes the density of V.

3. Approximation of the tails

In this section, we shall determine the tail behavior of the density f(x) of V" as x
approaches the left and right endpoints of its support. It will turn out that the left,
resp. right, tail behavior of /" differs according whether /; , resp. 4; , is negative, zero,
or positive. For 4;, <0, f(x) behaves like a constant times fj(x) as x— — oo, and for
Ji; =20 it behaves like a constant times a power of x times f;(x), as x approaches the
left endpoint.

3.1. Case 1: the lowest eigenvalue is negative

For our results, we shall need the tail behavior of (non-)central y>-distributions,
whose density is known analytically, see for example [14, p. 416]; [15, p. 436]:

YVx/a) P Dy (ay/X)e T2 (a0),
g(x;a®,p) = 1<o,w>(x){ i =0 3.
WY € (a=0),
where a = va? and
» 1 X\ 2n+v
Lx)=S —— (X 2
() = n!l(n+v+ 1)(2) (32)

is the modified Bessel function of the first kind.
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The tail behavior of I,(x) for x— oo is independent of v, see e.g. [2, (9.7.1)]:

L(x) = ¢'2nx)"2(1+ 0(1/x)), x— 0, (3.3)
which leads to

g(x; @, 1) = (2v2r) a2 e Pl eV (1 4 O(1/ V),

X— 00, (3.4)

in the case a#0. Together with (2.2) this leads to the tail behavior of f; (if 4; #0):
50 =L@ (1 + 01/ VD), x— (sgn y) o0, (3.5)

where f} is defined by

x| etV (g, 20),

fix) = le(O,oc)(;”ffx){ [t/ (@ = 0), Y
with
. {(2\/5) 1=a/2,0- u,)/z(‘%yl)(ﬂjﬂ)m (a;#0),
Ve =0

and a; = \/a; = 0;/4;|. Note also that the support of f; is [0, c0) if 4;>0, and
(—o0,0]if 4; <0. If 4; = 0, then f; is Gaussian. The following theorem shows that
the left tail behavior of f is determined by the tail behavior of f;.

Theorem 3.1. For Ay = J;, <0, the density f of V has the asymptotic left tail behavior
fx) = b1 fi(x)(1+0(1/VIxD) = bi f{(x)(1 + O(1/VIx]), x— — o0, (3.7)
and for 4y, = 2;,>0, it has the asymptotic right tail behavior
f(x) = b fu(x)(1 + O(1/V/x)) = by £, (¥)(1 + O(1/Vx)), x— 0, (3-8)
where the constant by, ke{l,n}, is given by

R _H//2 o) -
by = Vi —2)2 H ((1 _ﬁ) &% QUi =2)2,) '>. (3.9)
Je{l o mp{k} Fi

.....

Proof. Let 1;<0. Our proof is inspired by an example given in [3, p. 573]. We
claim that, whenever a probability density /4 has asymptotic behavior /(x) =

enfi(x)(1 + O(1/+/]x])) (for some constant ¢; #0 and x— — o), then, for j>1, the
convolution / * f; has asymptotic behavior

(h* f;)(x (/ e fi( )dy> x)(1+001/Vx]), x- — . (3.10)
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In other words, we show that
o0 h _
/ S (M=) () dy = 0(1), x— — . (3.11)
o h(x)
To show (3.11), split the integral into the two integrals ranging over (— o0, x + ¢)

and [x + ¢, c0), for some sufficiently large positive constant ¢. The first integral can
be bounded as

R
s%( sup f;(y)) /_Wh(X—y) dy + \/W/_: e fi(y) dy.

— o0 <y<x+c 0

Siy) dy

The first term in this sum converges to 0 for x— — oo, since ff;c h(x —y)dy<1,and
since /(x)/+/|x| decreases slower than f;, see (3.5), (3.6). If we choose
/Tje(ﬂul,ij),)ij<0, then (3.5) and (3.6) show that e’/*fi(y) = O(e}’(lfl_ifl)),

-1

y— — oo, and thus [*TCe" fi(y) dy = 0" U 4" x5 — oo, showing that
the second term above converges to 0 for x— — o0, too.
Now (3.11) will follow if we show that there is an integrable function bounding

: h(x=y)
G:y—f(y)e’ SUP{\/ |x]| “hy ¢ A 1 e 0) () (3.12)
X< Xo
for some suitably chosen xy<0. We will choose xy = —2¢. Thus, we can as-

sume x< —2¢ and x—y< —c in the following calculations. Write A(x) =
enfi(x)(1 4 p(x)), where

[VIx|p(x)|<C Vx< —¢ (3.13)
(c sufficiently large, C some constant). Then we have from (3.6)
hx =) i _ 4
h(x)

_ .x —y‘(uw})/éleal /_2/\21\(@*\/@1 +p(x—y) 1
X 1+ p(x)

_ {’x -y (M_3)/4ea1\/m(mi\/m) —1

X

— y=3)/4 .
n ‘x — Y\t e“”/z/lill(‘/yﬂﬁm)p(x _y)

1

— x —

0}
1
HH (x,y) + Hy(x,y) + H3(x,p) }———,
{H(x,y) + Ha(x,y) + H3( y)}1+p(x)
where H;(x,y) is defined to be the summand appearing in the ith row
of the preceding sum. We claim that for any A >0, there is a constant C; >0

(3.14)
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\/|x||H,-(x,y)|<Cye’v‘y‘, Vx< —2¢, x—y< —¢, i=1,2,3. (3.15)
For Hj this is clear, since \/|x||H3(x, y)| < C by (3.13). To show this for H,, note that

x x—y|—1/2
\/IXIP(x—y):L Ix —ylp(x — y<C‘
|x =y

by (3.13), and hence
VIl (x, ) < 2 e,

for some reR and p == a;+/2/|41].- Now if y=0, then 1<|(x —»)/x|<1+p/(2¢).
If y<0, and x<2y, then 1/2<|(x—y)/x|<2. If y<0 and x>2y, then
¢/(2lyl + ¢) <|(x — y)/x|<2. Thus, for all x< —2¢ and x — y< — ¢, the following
inequalities hold:

x—y Iyl
< <2 .1
2|y\ +2¢ i i e (3.16)

Together with

sup VF VI < sup @WVIITHR =V < VD

x<—2¢ x<—2¢
this implies that (3.15) holds for H,. Next we shall show that it also holds for H;: An

application of the mean value theorem to the function y+ (1 — y/x)(”‘%)/ * shows
that

X X X

(11-3)/4 -3 (1 =3)/4-1
(1 _X) 1 - :u14 (1 é]) y =:1 "i_l//l(xvy)v (317)

where ¢, is some number between 0 and y. Since 1 — &, /x lies between 1 and 1 — y/x,
it follows from (3.16) and x< — 2¢, that

2\
Vi< (24228 (3.18)
for some constants Cj,Cy’. Applying the mean value theorem to the function
Y WVITIVEY) where p = ay+/2/]/1], shows that

B e e I B O e e B 3.19
+€ 2\/52—_)( +lp2(x7y)7 ( )

where &, is some number between 0 and y. Now since

Va3V < oo/ D=V < o/

and since /[x[/(& —x) = (1 — &/x) "%, where 1—¢&/x lies between 1 and
1 — y/x, it follows as for ¥, that

VXl (x0)| <G <2+2|y|> e”\/‘y_', (3.20)
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for some constants C, and C,’. Now (3.14), (3.17) and (3.19) show that

VIXH  (x,3) = VX[ (x,9) + W (%, 9) + i (6, 05 (x, 9)),

and (3.18), (3.20) then immediately imply (3.15) for H;.

Since lim,_, _,, p(x) = 0 it follows from (3.12), (3.14) and (3.15), that for any 1'>0
there exists a constant C’ >0 such that G(y) < Cy/'f;(y)e*/*1e*Pl. But it is clear that
this is an integrable majorant for sufficiently small A’. Hence, we obtain (3.11) and
(3.10). It then follows by induction and from (3.5) that the density of 2}1:1 V; has
asymptotic behavior

<H/ e fi(y) dy>f1 (14 0(1//]x]), (3.21)

as x— — o0. There remains to calculate [* "% fi(v) dy: For 2, #0, (2.2) gives

[ &l f(y) dy

0
:[ e‘ﬂ’//(z’”‘)g(x;q?,uj) dx

.
i
- eow{ )
—u./2
= &5/ <1 _%> " e, (3.22)

where we used the fact that the moment generating function of ;(i(af) at t<4 5 18
7

given by
E(exp{t, (a))}) = (1 = 20) " exp(ai(1 - 20)7"),

see e.g. [15, p. 437]. Similar calculations, using the moment generating function of
the normal distribution, show that

/w &M fi(y) dy = &7/CH)

for 7, =0+ 5}. Then it follows with b as defined in (3.9), that the density of Y7, V;
$

%
AW

has  the asymptotic  behavior  exp{—0/i; +ai/2 + Z -2
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52
(1+0(1/+/]x])), as x> — co. Thus, since V =6 — Zj}:#lo ;T’j—l— Y Vi
i

n_ 52
bfi|x=0+) 5
o

52
0 J
i

f(x) =expq =0/ + Z 2/1:j)1
/,/;10 K "{/

x (14 0(1/V/Ix])),

as x— — co. Then it follows immediately that lim,_, ., f(x)(b; fi(x))"' = 1. More
precise arguments, similar to the ones we used to show (3.15) for H;, together with
(3.5) then imply (3.7). The proof of (3.8) is similar. [

Remark 3.2. (a) By (3.22) and (3.9), for ke{l,n},

b = E(exp{;—ik(l/ - Vk)}>;

thus, by is nothing else than the moment generating function of V' — V. evaluated at
the point 1/4;,.

(b) Eq. (3.7) is trivially true if 4; >0, since then the support of /" as well as that of f;
are both bounded from the left.

(c) Eq. (3.7) shows that there is a function ¢ and constants ¢, C>0 such that
S(x) = b1 f1(x)(1 + o(x)) and |/|x]e(x)|<C for all x< — ¢. The constant C gives
error bounds for the approximation. The proof presented here is actually
constructive, i.e. explicit values for ¢ and C could be derived by exact bookkeeping
in the proof. Bounds for the starting constants needed in (3.3) can be found in [18§],
for example.

(d) Similar results have been derived in the context of tail distributions; see Goldie
and Kliippelberg [9] and references therein.

3.2. Case 2: the lowest eigenvalue is positive

Suppose that 4; >0. In this subsection, we shall derive the tail behavior of f(x) as
x approaches the left endpoint of its support: It follows from (3.2) that the modified
Bessel function of the first kind 7,(x) behaves like 27" (I'(v + 1)) "'x"(1 + O(x?)) as
xN0. Then (3.1) shows that

2-#/2

1) = )

g(x;a e Ol (1 4 0(x)),  xNO,
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and with (2.2) we obtain for j =1, ...,n,

/'L'*:“j/z

P 2
filx) ==~ e~ X2 (1 4 (x)),
) = 77 (14 ()
where ; is a function for which there exist constants d;,D;>0 such that
[t;(x)| < Dj|x| for all xe[0,d;]. Then we obtain for j,ke{l, ..., n},

;Lfl‘.f/zlfuk/Ze—(q%+ai)/2

) =y, 7 )

X (L (x =) dy.

Now one has

X
/ PP (= py N dy
0

1
— xlyFm)/2-1 / Zu,-/271(1 _ Z)#k/%l d=
0

= x(ﬂj+f‘k)/271B(#j/2, 1/2)

rtuoz—1 LW/ DT (e /2)

=x
-
r(#5)

?

where B(-, -) denotes the Beta-function. For the remaining terms, similar calculations
show that e.g.

* _ T(pi/2+ DI (1 /2)
//2_1 _ He/2—1 X J k (/.+ )/2
/0 W (x = p)™ l//j(y) dy| < D; F(ﬂj;ﬂk ) X W TH

for x€[0,d;], implying that
P W
fi % fie(x) = %gw}wbﬂx(www/z-l (14 0(x)), xN0.
2
Now we immediately obtain the tail behavior of f:

Proposition 3.3. For iy = 4;, >0, the density f of V has the asymptotic left tail
behavior

n 52

f<x+ 0— Z i) —d|x|"*" (14 0(x)), xN0 (3.23)
=1 =%

with the constant

n - /2 n
Hj_rl(M;lz)ﬂ/ e 2 92
m

If A = Ai, <0, then (3.23) holds for the right tail as x 70.

d= (3.24)
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3.3. Case 3: the lowest eigenvalue is 0

Now suppose that 1; = 0 and 5% #0. Since V; = Zf‘zl 0;Y; is normally distributed

with mean zero and variance &2, it follows that fi(x) = (v/2m|3,])'e="/®). We
shall see that the left tail behavior of f(x) is essentially determined by the tail
behavior of fi.

Proposition 3.4. Let h be a probability density with support in [0, o) such that
h(x) = (14 O(x)),  xN0 (3.25)

for some u> — 1 and some constant ¢, #0. Further, suppose that h is bounded on every
interval (A, o) for every A>0. Then

$2\u+l
) =y T EE
x> — 0. (3.26)

|~ e/ (1 4 0(1/|x])),

Proof. For simplicity, we assume that 67 = 1. The proof for general 7 is similar or
alternatively can be deduced by a simple dilation argument.
Note that (3.25) is equivalent to

h(x) = chx“exz/z(l + 0(x)), x\0.
Write

h(x) = epxe™ 2 (1 + Y (x)),
where

lY(x)|<Dx Vxel0,4] (3.27)
and D, 4>0 are suitable constants. Also, let

h(x)<E Vxe[4, ©) (3.28)
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for some E>0. Then we have for negative x,

(% h)(x / BV (x — ) dy

2 2
— et Pe I gy
\/27{/
eny"e” Py (y)e I dy
7wl

xy/Zdy

h(y

\/277:/

:ie_'x2/2|xr(”+l>/ a 2t dz
0

V2n
4 S e‘xz/z\xr(ﬁl) -/AX ZY(z/|x|)e™ dz
V2n 0
1 2 * 2
I e /2 h(y)e¥ e /% dy.
s ’ ) y

Noting that I'(u+ 1) = [;” z#e~* dz, we obtain

(fi #h)(x) = exl (p+ De x|V /v/2m
enl (i + Ve 2|0 v/ am
_ fj\cq e=Z dz fAM 2 (z/|x])e” fA Xye*yz/z dy
M D e D
=: Al(x) + AZ(X) + A3(x).

There remains to show that |x|(4;(x) + A2(x) + 43(x)) is bounded as x— — co:
Since

0 1 o0
|x]| e F dz<—/ e dz»0, x— — o,
Alx| Alx|

we have 4,(x) = O(1/x) as x— — co. From (3.27) we obtain
Alx| i Alx]|
x| / (2 |x))e d=<D / e < DI+ 2),
0 0
showing that A,(x) = O(1/x) as x— — oo. Finally, (3.28) gives
o0 o0
2 [ hwere R dy< B [ e dy = Bt e 0, xes - oo,
4 4

showing that A3(x) = O(1/x) as x— — oo. This gives (3.26). O

Combining Propositions 3.3 and 3.4, we obtain the left tail behavior of f:



264 S. Jaschke et al. | Journal of Multivariate Analysis 88 (2004) 252-273

Theorem 3.5. For 1) = A;; = 0, the density f of V has the asymptotic left tail behavior

n 52
f<x+ez 2;)

- 2/2 n n

e = — n _x )

T V2nb| < 11 |5%/ﬂvi,-|ﬂ/2> x| 2 2= (1 4 0(1/x))
j=2

as x— — oo. For J,, = 2;, = 0, the density of V has the asymptotic right tail behavior

D ]
e =t = . — ) /2 2 2
W( [ |55/;~[j|ﬂ//2>x 2o B2 108 (1 4 0(1/x))
V n j=1

as xXx— 0.

4. Approximation of the quantiles

In this section, we give an approximation of the - and (1 — a)-quantile of V as
a—0. As before, denote the density of V" by f and its distribution function by F. The
o-quantile of 7 will be denoted by x,, thus

Xy =F (o) =inf{xeR: F(x)=a}, «€c(0,1).

Since for 4;, <0, Theorem 3.1 expressed the left tail behavior of f in terms of the tail
behavior of f}, it is natural to approximate x, using the quantile of some suitable
4 Fl(x) =f,'(x)(1 + O(1/\/]x])) as x> — co. This is done in the

following theorem. Note that the function F|'(x) is given explicitly and that its
quantiles can easily be calculated numerically:

function F', where <

Theorem 4.1. Suppose i1 = 2;, <0, or Ay, = 4;, >0, respectively. Define on the relevant
range (i.e. for large negative x, or for large positive x, respectively)

Fi(x) = |1l f{(x) = [ale ] e/ 2TAVI,
1— FN’;(X) = |)u,~”|fnt(x) = )ui,lc,,x<“"_3)/4e_x/;"'"+”” v 2/ii’1\/},

where f{ and f;} are given by (3.6). Let by and b, be defined as in (3.9), and denote the o-
quantiles of F! and 1 — E! by (F!) (o) and (1 — F!) (), respectively. Then, as o —0,
the lower and upper quantiles of V satisfy the following asymptotic equations,
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respectively:
Xy = A log by + (F1) ™ () + O(1/y/|(F)) " (0)]), (4.1)
Ximg = Ji,Jog by + (1 = ) (o) + O(1// (1 = F)) ™ (a)). (4.2)

Proof. Define the shifted random variable V) == V' — 4; log b;. Denote its density
by fisn), its distribution function by Fy,) and its a-quantile by x, ) = F(;ﬂ(oc). Put

Xg1 = (F!) (o). Since
Xy = Xy (sh) + 4iy log by,

(4.1) is equivalent to
xa_(sh) — Xg,l = 0(1/ |xa71 |), Xo,l ™ — 0. (4.3)

There remains to show (4.3): an application of Theorem 3.1 to V() shows that

Sisny (X) = by (sn) S1(x)(1+ O(1/+/]x])), where by (shy = b1 exp{(—=4; loghy) /2 } =1,
ie.

Sismy (%) = /1) (1 + O(1//]x])), x— —c0. (4.4)
On the other hand, with f(x) = £ F(x) = |21|% f{(x) we also obtain

[ =)0+ 0(1/y/[x]), x— — 0.
Thus,

A1) = fism )1 +0(1/V1x]), x> —o0,

holds, that is, there exist positive constants ¢, C>0 such that

e €
| fismy (%) = /i ( )Km

Choose ¢ such that in addition f(sy)(x)>0 for all x< —c. Then Fy, is strictly
increasing on (— o0, —¢) and hence FG (Fisn)(x)) = x for all x< — ¢. Defining

r(x) = Fign)(x) = F{ (), (4.5)

it follows that

x : c
PIS [ Uin0) ~ A< () s e (46)

Now let 0 <o <1 such that x,; < — c. Noting that

Sish) (x) Vx< —c

X (sh) — Xo,1 = F g (Fshy (Xash) ) — Fgny (Fsh) (%,1))
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the mean value theorem implies the existence of some constant £ between
Fisny (X5,sh)) and Figny(x5,1) such that by (4.5) and (4.6),

X (sh) = X1 | = [Fishy (X (shy) = Fishy (Xa,1)] - [(FGy) ()]
= [r(xs1)| - [(Figy) ()]
C F(@h)(x% 1)
\ |x11 fSh
_ C F(sh)(xoc,l) F(Sh)( (sh) (é)) f] ( (5)) (4 7)
\ |xo<,]| ¢ fl ( (sh)(é)) f(s )(F(sh)(f)). .
Since | — Fign (xa1)|<| (x2,1)| < CFsny (x5,1)/+/ | X211, it follows that e [Fig(x.1)
(1 = C/\/1x01])s Fiony (x2,1)(1 + C/+/|x51])], and  hence limy, . o F(Sh)(xa‘l)/

ff 1. In partlcular §—>0 as X, — — 0, and thus y == F(‘s‘h)(é)—> — 00 aS X, —

—o0. Since

Fion'
fim £ ©)
y==e (fi)' ()
by (4.4), 'Hospital’s rule implies that
e EG @) e fi0)
Also, by (4.4),
t <— "t
lim M = lim S0)

s FanFa @) v T )
Thus (4.7) implies (4.3) and hence (4.1). The proof of (4.2) is similar. [

=—A1#0

=1

Theorem 4.1 gives an approximation of x, in terms of the a-quantile of some
function F(x). There, F\(x)=|41|f!(x) was chosen. However, the proof of
Theorem 4.1 showed that any function F}' could have been chosen, as long as

LR =00+ 00/, x> - o0

For example, one might choose

‘mz[xmw@

Then (2.2) implies

S\ — )‘i
(Fll) (O() = 71 X¥7“7MI (Cl%),
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where y7_, ,(a*) denotes the (1 — a)-quantile of the y*-distribution with u degrees of
freedom and non-centrality parameter . Thus, we obtain:

Corollary 4.2. Suppose A = 2;, <0, or 7, = 4;,>0, respectively. Then a—0 is
equivalent to X%fwk (a2)— oo for ke{1,n}, and as o.— 0, the lower and upper quantiles
of V satisfy the following asymptotic equations for 1, <0 and 2;, >0, respectively:

Xo = /Lll lOgb] + }II A (al) + 0(1/ /{]—o(/,t] (a%)) (48)

] j’n
xl*a = /L’irl log bn + é /{% o, 1y, ( 3!) + 0(1/ X%f&.y” (a%)) (49)

Corollary 4.2 links the quantiles of ¥ with the quantiles of non-central y*-
distributions. The latter can be calculated with many software packages, such as R,
Electronic Tables or StaTable, the latter two both reviewed in Boomsma and
Molenaar [5]. The package S-Plus has a routine implemented to calculate the
distribution function of a non-central y?-distribution. However, it does not compute
the inverse of this function, i.e. the quantiles. Nevertheless, using a bisection method,
the quantiles can be approximated numerically.

The following theorem gives an approximation of the quantiles of V" for the case
that the lowest (or the largest) eigenvalue is O:

Theorem 4.3. Suppose A =1; =0, or A, =4;, =0, respectively. Define on the
relevant range

l 51| az/2 4y 1=\ 2 2252
Fie = (Bke X [ /2>< D ),

- 5 ‘ / a/2 5 B Z/z—l /2 o o
1 - Fl(x) = |—n 852/ 2i )/ o1 /2 o=x7/(20;)
HE ( e H 5224
Denote by (F!)~ (2) and (1 — E})“ («) the a-quantiles of F\ and 1 — F!, respectively.
Then, as o—0, the lower and upper quantiles of V satisfy the following asymptotic
equations, respectively:

n,o? N .
=030 S+ (F)” @)+ 0(1/(F) ™ (@)), (4.10)
Jj=2 b
L 5]2 Sty — Sty — 2
B = 0= 3 o (B @) + 011 = £ (). (4.11)

Proof. We only treat the case 4; = 0. The treatment of the upper tail for 4,, = 0 is
similar. Since the proof is similar to the proof of Theorem 4.1, using Theorem 3.5
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instead of Theorem 3.1, we only show how to modify that proof. Put Vg =
V+Z]’.':2 i—f— 0= 2;7:1 V. Let fin and F(g,) be the density and distribution
"

function of Vg, and x, () the corresponding a-quantile. Define f]‘(x) = %I*:f(x)
for x<0. Then

_Z"T—v /2 n " 5
Moy € 2 79 /2 =D Wl a2/ (28)
X)) =—FrF— 07/ A" X /= e :

x (1 + (1 +§n: ”,/2>5fx-2),

and Theorem 3.5 gives f{(x) = fi (x)(1 + O(1/x)). Then with x,; = (F})" ()
denoting the a-quantile of F ! and the same notations as in the proof of Theorem 4.1,
(4.6) becomes |r(x)] <T§‘F(sh) (x), and (4.7) changes to

C Fisn)(X,1) Fion) (Fip) (9)) flt(F(;)(f)) 1
eaal & G () (F gy () im (Figy () —Fgy (€)
a1
_\XT.,1| _F((S_h)(é)

|xoc,(sh) — Xo,1 | <

(1+0(1)),

where I'Hospital’s rule was applied to Fg, (F<‘S‘h)(f))/(—ﬁ(F(‘s‘h)(5))(F(‘S‘h)(§))_l). This
implies (4.10). O

Finally, for 4;>0 or 4; <0, an approximation can be written down quite
explicitly, which is done in the next Theorem.

Theorem 4.4. Suppose 1 = A, >0, or i, = 4;, <0, respectively. Then, as a—0, the
lower and upper quantiles of V satisfy the following asymptotic equations, respectively:

S 5_/2 m 2/m 4/m
Xy =0 - Z 5t (3g%) o).
Jj= J

n 52 m
Y
= i

where d is the constant defined in (3.24).

The proof is similar to the proof of Theorem 4.3 and therefore omitted.
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Fig. 1. The left part of the distribution function (CDF) in Example 5.1 (case 1: 4; <0) as well as the
normal approximation and the approximations of Theorem 4.1 and Corollary 4.2. The right graph shows
probabilities in a log scale, the left in a linear scale.

Table 1
Quantiles in Example 5.2 (Case 3: 4; =0.)
Probability “true” quantile Approximation

Normal Tail
0.0500 —1.3602 —1.514526 —1.636064
0.0250 —1.6916 —1.900456 —1.900803
0.0100 —2.0745 —2.349183 —2.228890
0.0050 —2.3339 —2.654734 —2.461087
0.0010 —2.8662 —3.284746 —2.954294

0.0001 —3.5131 —4.054846 —3.572531
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Fig. 2. The left part of the distribution function (CDF) in Example 5.2 (Case 3: 4; = 0) as well as the
normal approximation and the approximation of Theorem 4.3. The right graph shows probabilities on a
logarithmic scale, the left one on a linear scale.

5. Examples and discussion

In this section, we shall illustrate the results of the last section by means of specific
examples. Our approximations will be compared to standard approximations, like a
normal approximation for 4; <0, and a gamma approximation for A, >0.

Example 5.1 (Illustration of Case 1). Suppose that in model (1.2) we have
m=15 n=3, J; =-2, /=1, iy =2, 4y =95, =4, u3 =06, a% =4, 5% =4,
52 =16, and 0 = 0. In Fig. 1, the left part of the distribution function of V, the
normal approximation as well as the approximations according to Theorem 4.1 and
Corollary 4.2 are plotted. The “true’ distribution has been computed by numerical
Fourier inversion with high accuracy. The left graph shows the probability on a
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linear scale, while the right graph shows it on a logarithmic scale. From the left
graph, it can be seen that the normal distribution approximates the true distribution
well for small |x|, whereas the approximations of Theorem 4.1 and Corollary 4.2
approximate better for large negative x, which is shown by the right graph. The
normal approximation is computed by moment matching: the cumulants of ' can
easily be read off the power series expansion of the cumulant generating function
and are given by

- 1 & 29r=2
- Z: and K,—EZ: ((r— D+ 1102 2072).

Example 5.2 (Illustration of Case 3). Suppose that in model (1.2) we have m =n =
2, 21=0, =1, 6=1, 6, =0, and 6 =0. Again, a normal approximation is
quite good at the center of the distribution, whereas the approximation of Theorem
4.3 works well for large negative x. Table 1 shows that the tail approximation
becomes better than the normal approximation for probabilities approximately below
0.025. In Fig. 2, the distribution function of V', the normal approximation as well as
the approximation of Theorem 4.3 are plotted on a linear and logarithmic scale.

Example 5.3 (Illustration of Case 2). Suppose that in model (1.2) we have m =
4, n:2, /11 :;Q: 1, }»3 :/14:2, 51 :52 = 17 53 :54:0.0: 1 is chosen such
that the left tail of the distribution ends at 0. A straightforward approximation of
such a distribution is a gamma distribution (with shape parameter p and scale
parameter f8) with matching mean (fp) and variance (8%p). The gamma approxima-
tion fits very well at the center of the distribution, as seen from the left graph of
Fig. 3, while the tail approximation of Theorem 4.4 is superior for o<0.05,
approximately.

Remark 5.4. Since the tail approximations derived in the previous section are
qualitatively different for 4; <0, A; =0, and 4; >0, it is clear that (for fixed «) the
approximation of Theorem 4.1 must give bad results for 4; <0, but close to zero. To
be able to give explicit ranges for the quantiles for which our approximations work
well, one would need precise error bounds. As pointed out in Remark 3.2(c), in
principle it is possible to obtain such bounds, but very elaborate.

Example 5.5. This example shows that it can happen that (4.8) and (4.9)
approximate well only for very small o Let n=m =2, gy =, =1, —Ai =4 =
2, 6y =03 =2a, where a>3 is positive, and 6 =0. Then V; = —(—-a+ Y1)2,
Vo =(a+ Yz)z, where Y, and Y; are independent standard normal variables.
Then P(Y;e[-3,3])=v0.99 and it follows that P(Vie[(a—3)* (a+3)%) =
P(Vie[—(a+3)* —(a—3)*]=099. Since ¥, and V, are independent, it follows
that P(Vy + V,e[—12a,124]) >0.99, implying that the true 1%-quantile of ¥ + V;
lies in [—12a, 124]. However, if we use approximation (4.8), we have b; = 27 1/2g=d/4,
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Fig. 3. The left part of the distribution function (CDF) in Example 5.3 (Case 2: 1, >0), as well as the
gamma approximation and the approximation of Theorem 4.4. The right graph shows x and the
probabilities in a log scale, the left one in a linear scale.

hence, X4 =a*/2+1og2 —yi_,,(a®), where X5 denotes the approximating
quantity. Since the 1%-quantile of y3(a?) lies in [(a — 2.6)*, (a + 2.6)°], it follows
that X,¢ e[log2 — 6.76 —a?/2 — 5.2a,log2 — 6.76 — a*/2 + 5.2a]. For large a, this
differs clearly from the true quantile, which lies in [—12a, 124]. So we see that the
approximation (4.8) can lead to large errors in the approximation, if the level 1% is
fixed, and if the non-centrality parameters are large, even if the eigenvalues 4; and 4,
have the same modulus.
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