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Abstract

We derive results on the asymptotic behavior of tails and quantiles of quadratic forms of

Gaussian vectors. They appear in particular in delta–gamma models in financial risk

management approximating portfolio returns. Quantile estimation corresponds to the

estimation of the Value-at-Risk, which is a serious problem in high dimension.
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1. Introduction

Quadratic forms X T QX of Gaussian vectors XBNðm;SÞ play an important role
in probability theory and statistics. These forms appear in (central and non-central)

w2-statistics, likelihood ratios, and power spectra, which are used in many different
applications and models throughout statistics.
Traditional applications include ‘‘ballistic analysis of multiple weapon systems’’,

the ‘‘detection of signals from noise in multichannel receivers’’, ‘‘the study of bone
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lengths determined in vivo using X-ray stereography’’ [13] as well as numerous
applications in communication theory cited by Raphaeli [19] and Gao and
Smith [7].
This paper was motivated by a problem from financial mathematics. The so-called

delta–gamma method approximates the Value-at-Risk, which is nothing else but a
small quantile, e.g. the 1%-quantile. The approximation is based on a second-order
Taylor expansion of the price of a financial derivative, for instance, a European
option. The expansion is for the price of the derivative at a particular time and at a
certain price level of the underlying security, which may be an index or an asset price.
See Duffie and Pan [6] for details.
In a Gaussian framework, the second-order approximation leads to

VðXÞ ¼ yþ DT X þ 1

2
X TGX ; ð1:1Þ

where X is an m-dimensional Gaussian vector with mean 0 and covariance matrix
S; D is a vector in Rm; and G is some symmetric m � m-matrix. The Gaussian model
is usually based on the central limit theorem. Such quadratic approximations are
extremely popular in risk management for financial institutions [17].
Eq. (1.1) can be brought into the diagonal form

V ¼ yþ dT Y þ 1

2
Y TLY ¼ yþ

Xm

j¼1
djYj þ

1

2
ljY

2
j

� �
; ð1:2Þ

where Y ¼ ðY1;y;YmÞT is a standard normal vector, d ¼ ðd1;y; dmÞTARm; and
L ¼ diagðl1;y; lmÞ is a diagonal matrix. This can be done by solving the generalized

eigenvalue problem

CCT ¼ S;

CTGC ¼ L;

and putting X ¼ CY ; d ¼ CTD:
Approximations to the probability distribution of V include series expansions [16,

Section 4.2], numerical Fourier inversion [10,20], Monte Carlo simulation [8], and
numerous approximations with limited accuracy based on moment matching (see
[12] for references). The two approaches used in practice, which in principle can
achieve any desired accuracy are numerical Fourier inversion and Monte Carlo
simulation. For small quantiles, special Monte Carlo simulation methods, such as
importance sampling (see e.g. [8]), have been developed to reduce the required
amount of simulations.

The Fourier inversion method starts with the characteristic function fðtÞ ¼
EeitV ; tAR; which is known analytically in the case (1.1). Then the inversion
formula

f ðxÞ ¼ 1

2p

Z
N

�N

e�itxfðtÞ dt ð1:3Þ
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holds for the probability density f : The key to an error analysis of trapezoidal,
equidistant approximations to the integral (1.3)

f̃ðx;DtÞ :¼
Dt

2p

XN
k¼�N

fðkDtÞe�ikDtx ð1:4Þ

is the Poisson summation formula

f̃ðx;Dt; tÞ ¼
XN

j¼�N

f x þ 2p
Dt

j

� �
: ð1:5Þ

The infinite sum (1.4) has to be truncated, so the resulting errors consist in a
discretization error and a truncation error. The discretization error is described by all
terms in the infinite sum in (1.5) except that for j ¼ 0: Thus, the question how the
discretization error decreases asymptotically with Dt tending to 0 is identical to
the question of the tail behavior of f : On the other hand, the truncation error can be
read off (1.4) and is obviously related to the tail behavior of f: The influence of these
errors on accuracy is investigated theoretically as well as numerically in [1, p. 22].
For a modified approach using Fourier inversion, see Jaschke [11].
This paper proposes a different approach to the problem in providing an

asymptotic approximation to the density f ; to the tails of the distribution function F

and to the a-quantile xa for a close to 0 or 1: This approach is in the spirit of Beran
[4], who derives the asymptotic right tail behavior of the distribution of V and its
density function in the positive definite case, i.e. when l1;y; lm appearing in (1.2)
are all strictly positive. The contribution of this paper is to develop the asymptotic
tail behavior for the general case (1.2), without any restrictions on the li’s. The
extension of Beran’s result was motivated by a real life example in risk management
as mentioned before.
Our paper is organized as follows. In Section 2, we present V as being essentially a

sum of independent non-central w2-distributed random variables with different
degrees of freedom and non-centrality parameters. In Section 3, the main asymptotic
results are derived. The behavior of the lower and upper tails of V are obtained for
the relevant regimes, which are determined by the lowest/highest eigenvalue being
negative, zero or positive. Section 4 is devoted to quantile approximation based on
the results in Section 3. Examples and some discussion on our results included in
Section 5 conclude the paper. These examples show that our proposed approxima-
tions work well for extremely small/large quantiles, but even for quantiles such as
1% they may still not be precise enough. On the other hand, in contrast to numerical
Fourier inversion, which in principle can achieve any desired accuracy, our approach
yields explicit expressions for the extreme quantiles.

2. An alternative representation

Suppose that the (generalized) eigenvalues li of V appearing in (1.2) are sorted in
increasing order. Suppose there are npm distinct eigenvalues, and denote by ij the

ARTICLE IN PRESS
S. Jaschke et al. / Journal of Multivariate Analysis 88 (2004) 252–273254



highest index of the jth distinct eigenvalue, and by mj its multiplicity

(mj ¼ ij � ij�1; i0 ¼ 0; in ¼ mÞ; thus li1o?olin : For j ¼ 1;y; n; define

Vj :¼
1
2
lij

Pij
l¼ij�1þ1ð

dl

lij

þ YlÞ2; if lija0;Pij
l¼ij�1þ1 dlYl ; if lij ¼ 0;

8<
: ð2:1Þ

and %d2j :¼
Pij

l¼ij�1þ1 d2l : Then the Vj are independent and

V ¼ y�
Xn

j ¼ 1

lija0

%d2j
2lij

þ
Xn

j¼1
Vj:

If lij ¼ 0; then Vj is Gaussian. If lija0; then Vj is a scaled version of a (non-central)

w2-variable with mj degrees of freedom and non-centrality parameter a2j ¼ %d2j =l
2
ij
:

Specifically, if gð�; a2j ; mjÞ denotes the w2mj
ða2j Þ-density, then

fjðxÞ ¼
2

jlij j
g

2

lij

x; a2j ; mj

� �
; ð2:2Þ

where fj denotes the density of Vj:

3. Approximation of the tails

In this section, we shall determine the tail behavior of the density f ðxÞ of V as x

approaches the left and right endpoints of its support. It will turn out that the left,
resp. right, tail behavior of f differs according whether li1 ; resp. lin ; is negative, zero,
or positive. For li1o0; f ðxÞ behaves like a constant times f1ðxÞ as x-�N; and for
li1X0 it behaves like a constant times a power of x times f1ðxÞ; as x approaches the
left endpoint.

3.1. Case 1: the lowest eigenvalue is negative

For our results, we shall need the tail behavior of (non-)central w2-distributions,
whose density is known analytically, see for example [14, p. 416]; [15, p. 436]:

gðx; a2; mÞ ¼ 1ð0;NÞðxÞ
1
2
ð
ffiffiffi
x

p
=aÞm=2�1Im=2�1ða

ffiffiffi
x

p
Þe�ðxþa2Þ=2 ðaa0Þ;

1
2m=2Gðm=2Þx

m=2�1e�x=2 ða ¼ 0Þ;

(
ð3:1Þ

where a :¼
ffiffiffiffiffi
a2

p
and

InðxÞ ¼
XN
n¼0

1

n!Gðn þ nþ 1Þ
x

2

� �2nþn
ð3:2Þ

is the modified Bessel function of the first kind.
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The tail behavior of InðxÞ for x-N is independent of n; see e.g. [2, (9.7.1)]:

InðxÞ ¼ exð2pxÞ�1=2ð1þ Oð1=xÞÞ; x-N; ð3:3Þ

which leads to

gðx; a2; mÞ ¼ ð2
ffiffiffiffiffiffi
2p

p
Þ�1að1�mÞ=2 e�a2=2xðm�3Þ=4e�x=2þa

ffiffi
x

p
ð1þ Oð1=

ffiffiffi
x

p
ÞÞ;

x-N; ð3:4Þ

in the case aa0: Together with (2.2) this leads to the tail behavior of fj (if lija0):

fjðxÞ ¼ f tj ðxÞð1þ Oð1=
ffiffiffiffiffiffi
jxj

p
ÞÞ; x-ðsgn lij ÞN; ð3:5Þ

where f tj is defined by

f tj ðxÞ :¼ cj1ð0;NÞðlij xÞ
jxjðmj�3Þ=4e�x=lij

þaj

ffiffiffiffiffiffiffiffiffi
j2=lij

j
p ffiffiffiffi

jxj
p

ðaja0Þ;
jxjmj=2�1e�x=lij ðaj ¼ 0Þ;

(
ð3:6Þ

with

cj :¼
ð2

ffiffiffiffiffiffi
2p

p
Þ�1e�a2

j
=2a

ð1�mjÞ=2
j ð 2

jlij
jÞ
ðmjþ1Þ=4 ðaja0Þ;

jlij j
�mj=2=Gðmj=2Þ ðaj ¼ 0Þ

8<
:

and aj ¼
ffiffiffiffiffi
a2j

q
¼ j%dj=lij j: Note also that the support of fj is ½0;NÞ if lij40; and

ð�N; 0� if lijo0: If lij ¼ 0; then fj is Gaussian. The following theorem shows that

the left tail behavior of f is determined by the tail behavior of f1:

Theorem 3.1. For l1 ¼ li1o0; the density f of V has the asymptotic left tail behavior

f ðxÞ ¼ b1 f1ðxÞð1þ Oð1=
ffiffiffiffiffiffi
jxj

p
ÞÞ ¼ b1 f t1ðxÞð1þ Oð1=

ffiffiffiffiffiffi
jxj

p
ÞÞ; x-�N; ð3:7Þ

and for lm ¼ lin40; it has the asymptotic right tail behavior

f ðxÞ ¼ bn fnðxÞð1þ Oð1=
ffiffiffi
x

p
ÞÞ ¼ bn f tnðxÞð1þ Oð1=

ffiffiffi
x

p
ÞÞ; x-N; ð3:8Þ

where the constant bk; kAf1; ng; is given by

bk :¼ ey=lik
�a2

k
=2

Y
jAf1;y;ng\fkg

1�
lij

lik

� ��mj=2

e
%d2j ð2ðlik

�lij
Þlik

Þ�1
 !

: ð3:9Þ

Proof. Let l1o0: Our proof is inspired by an example given in [3, p. 573]. We

claim that, whenever a probability density h has asymptotic behavior hðxÞ ¼
ch f t1ðxÞð1þ Oð1=

ffiffiffiffiffiffi
jxj

p
ÞÞ ( for some constant cha0 and x-�NÞ; then, for j41; the

convolution h � fj has asymptotic behavior

ðh � fjÞðxÞ ¼
Z

N

�N

ey=l1 fjðyÞ dy

� �
hðxÞð1þ Oð1=

ffiffiffiffiffiffi
jxj

p
ÞÞ; x-�N: ð3:10Þ
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In other words, we show thatZ
N

�N

ffiffiffiffiffiffi
jxj

p hðx � yÞ
hðxÞ � ey=l1

� �
fjðyÞ dy ¼ Oð1Þ; x-�N: ð3:11Þ

To show (3.11), split the integral into the two integrals ranging over ð�N; x þ cÞ
and ½x þ c;NÞ; for some sufficiently large positive constant c: The first integral can
be bounded asZ xþc

�N

ffiffiffiffiffiffi
jxj

p hðx � yÞ
hðxÞ � ey=l1

����
���� fjðyÞ dy

p
ffiffiffiffiffiffi
jxj

p
hðxÞ sup

�Noypxþc
fjðyÞ

� �Z xþc

�N

hðx � yÞ dy þ
ffiffiffiffiffiffi
jxj

p Z xþc

�N

ey=l1 fjðyÞ dy:

The first term in this sum converges to 0 for x-�N; since
R xþc

�N
hðx � yÞ dyp1; and

since hðxÞ=
ffiffiffiffiffiffi
jxj

p
decreases slower than fj; see (3.5), (3.6). If we choose

*ljAðl1; ljÞ; *ljo0; then (3.5) and (3.6) show that ey=l1 fjðyÞ ¼ Oðeyðl�11 �*l�1j ÞÞ;
y-�N; and thus

R xþc

�N
ey=l1 fjðyÞ dy ¼ OðeðxþcÞðl�11 �*l�1j ÞÞ; x-�N; showing that

the second term above converges to 0 for x-�N; too.
Now (3.11) will follow if we show that there is an integrable function bounding

G : y/fjðyÞey=l1 sup
xpx0

ffiffiffiffiffiffi
jxj

p hðx � yÞ
hðxÞ e�y=l1 � 1

����
����1½xþc;NÞðyÞ

� �
ð3:12Þ

for some suitably chosen x0o0: We will choose x0 ¼ �2c: Thus, we can as-

sume xp� 2c and x � yp� c in the following calculations. Write hðxÞ ¼
ch f t1ðxÞð1þ rðxÞÞ; where

j
ffiffiffiffiffiffi
jxj

p
rðxÞjpC 8xp� c ð3:13Þ

(c sufficiently large, C some constant). Then we have from (3.6)

hðx � yÞ
hðxÞ e�y=l1 � 1

¼ x � y

x

��� ���ðm1�3Þ=4ea1
ffiffiffiffiffiffiffiffiffi
2=jl1j

p
ð ffiffiffiffiffiffiffiy�x
p �

ffiffiffiffi
jxj

p
Þ1þ rðx � yÞ

1þ rðxÞ � 1

¼ x � y

x

��� ���ðm1�3Þ=4ea1
ffiffiffiffiffiffiffiffiffi
2=jl1j

p
ð ffiffiffiffiffiffiffiy�x
p �

ffiffiffiffi
jxj

p
Þ � 1

�

þ x � y

x

��� ���ðm1�3Þ=4ea1
ffiffiffiffiffiffiffiffiffi
2=jl1j

p
ð ffiffiffiffiffiffiffiy�x
p �

ffiffiffiffi
jxj

p
Þrðx � yÞ

� rðxÞ
�

1

1þ rðxÞ

¼: fH1ðx; yÞ þ H2ðx; yÞ þ H3ðx; yÞg 1

1þ rðxÞ; ð3:14Þ

where Hiðx; yÞ is defined to be the summand appearing in the ith row
of the preceding sum. We claim that for any l040; there is a constant Cl040
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such thatffiffiffiffiffiffi
jxj

p
jHiðx; yÞjpCl0e

l0 jyj; 8xp� 2c; x � yp� c; i ¼ 1; 2; 3: ð3:15Þ

For H3 this is clear, since
ffiffiffiffiffiffi
jxj

p
jH3ðx; yÞjpC by (3.13). To show this for H2; note thatffiffiffiffiffiffi

jxj
p

rðx � yÞ ¼
ffiffiffi
x

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx � yj

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx � yj

p
rðx � yÞpC

x � y

x

��� ����1=2
by (3.13), and henceffiffiffiffiffiffi

jxj
p

jH2ðx; yÞjp x � y

x

��� ���repð ffiffiffiffiffiffiffiy�x
p �

ffiffiffiffi
jxj

p
Þ;

for some rAR and p :¼ a1
ffiffiffiffiffiffiffiffiffiffiffiffi
2=jl1j

p
: Now if yX0; then 1pjðx � yÞ=xjp1þ y=ð2cÞ:

If yo0; and xp2y; then 1=2pjðx � yÞ=xjp2: If yo0 and xX2y; then
c=ð2jyj þ cÞpjðx � yÞ=xjp2: Thus, for all xp� 2c and x � yp� c; the following
inequalities hold:

c

2jyj þ 2c
p

x � y

x

��� ���p2þ jyj
2c
: ð3:16Þ

Together with

sup
xp�2c

epð ffiffiffiffiffiffiffiy�x
p �

ffiffiffiffi
jxj

p
Þp sup

xp�2c

epð
ffiffiffiffiffiffiffiffiffiffi
jyjþjxj

p
�
ffiffiffiffi
jxj

p
Þpep

ffiffiffiffi
jyj

p

this implies that (3.15) holds for H2: Next we shall show that it also holds for H1: An

application of the mean value theorem to the function y/ð1� y=xÞðm1�3Þ=4 shows
that

1� y

x

� �ðm1�3Þ=4¼ 1� m1 � 3

4
1� x1

x

� �ðm1�3Þ=4�1y

x
¼: 1þ c1ðx; yÞ; ð3:17Þ

where x1 is some number between 0 and y: Since 1� x1=x lies between 1 and 1� y=x;
it follows from (3.16) and xp� 2c; that

ffiffiffiffiffiffi
jxj

p
jc1ðx; yÞjpC1 2þ 2jyj

c

� �C1
0

ð3:18Þ

for some constants C1;C1
0: Applying the mean value theorem to the function

y/epð ffiffiffiffiffiffiffiy�x
p �

ffiffiffiffiffi
�x

p
Þ; where p ¼ a1

ffiffiffiffiffiffiffiffiffiffiffiffi
2=jl1j

p
; shows that

epð ffiffiffiffiffiffiffiy�x
p �

ffiffiffiffiffi
�x

p
Þ ¼ 1þ epð

ffiffiffiffiffiffiffiffi
x2�x

p
�
ffiffiffiffiffi
�x

p
Þ py

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � x

p ¼: 1þ c2ðx; yÞ; ð3:19Þ

where x2 is some number between 0 and y: Now since

epð
ffiffiffiffiffiffiffiffi
x2�x

p
�
ffiffiffiffiffi
�x

p
Þpeðp

ffiffiffiffiffiffiffiffiffiffi
jyjþjxj

p
�
ffiffiffiffi
jxj

p
Þpep

ffiffiffiffi
jyj

p
;

and since
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxj=ðx2 � xÞ

p
¼ ð1� x2=xÞ�1=2; where 1� x2=x lies between 1 and

1� y=x; it follows as for c1 thatffiffiffiffiffiffi
jxj

p
jc2ðx; yÞjpC2 2þ 2jyj

c

� �C2
0

ep
ffiffiffiffi
jyj

p
; ð3:20Þ
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for some constants C2 and C2
0: Now (3.14), (3.17) and (3.19) show that

ffiffiffiffiffiffi
jxj

p
H1ðx; yÞ ¼

ffiffiffiffiffiffi
jxj

p
ðc1ðx; yÞ þ c2ðx; yÞ þ c1ðx; yÞc2ðx; yÞÞ;

and (3.18), (3.20) then immediately imply (3.15) for H1:
Since limx-�N rðxÞ ¼ 0 it follows from (3.12), (3.14) and (3.15), that for any l040

there exists a constant Cl0
040 such that GðyÞpCl0

0fjðyÞey=l1el
0 jyj: But it is clear that

this is an integrable majorant for sufficiently small l0: Hence, we obtain (3.11) and

(3.10). It then follows by induction and from (3.5) that the density of
Pn

j¼1 Vj has

asymptotic behavior

Yn

j¼2

Z
N

�N

ey=l1 fjðyÞ dy

 !
f t1ðxÞð1þ Oð1=

ffiffiffiffiffiffi
jxj

p
ÞÞ; ð3:21Þ

as x-�N: There remains to calculate
R
N

�N
ey=l1 fjðyÞ dy: For lija0; (2.2) gives

Z
N

�N

ey=l1 fjðyÞ dy

¼
Z

N

�N

exlij
=ð2l1Þgðx; a2j ; mjÞ dx

¼ E exp
lij

2l1
w2mj

ða2j Þ
� �� �

¼ e
%d2j =ð2lij

l1Þ 1�
lij

l1

� ��mj=2

e
%d2j =ð2ðl1�lij

Þl1Þ; ð3:22Þ

where we used the fact that the moment generating function of w2mj
ða2j Þ at tp1

2
is

given by

Eðexpftw2mj
ða2j ÞgÞ ¼ ð1� 2tÞ�mj=2 expða2j tð1� 2tÞ�1Þ;

see e.g. [15, p. 437]. Similar calculations, using the moment generating function of
the normal distribution, show that

Z
N

�N

ey=l1 fjðyÞ dy ¼ e
%d2

j
=ð2l21Þ

for lij ¼ 0a%d2j : Then it follows with b1 as defined in (3.9), that the density of
Pn

j¼1 Vj

has the asymptotic behavior expf�y=l1 þ a21=2þ
Pn

j¼2
lij

a0

%d2j
2lijl1

gb1 f t1ðxÞ
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ð1þ Oð1=
ffiffiffiffiffiffi
jxj

p
ÞÞ; as x-�N: Thus, since V ¼ y�

Pn
j¼1

lij
a0

%d2
j

2lij

þ
Pn

j¼1 Vj;

f ðxÞ ¼ exp �y=l1 þ
Xn

j¼1
lij

a0

%d2j
2lijl1

8>><
>>:

9>>=
>>;b1 f t1 x � yþ

Xn

j¼1
lij

a0

%d2j
2lij

0
BB@

1
CCA

� ð1þ Oð1=
ffiffiffiffiffiffi
jxj

p
ÞÞ;

as x-�N: Then it follows immediately that limx-�N f ðxÞðb1 f t1ðxÞÞ
�1 ¼ 1: More

precise arguments, similar to the ones we used to show (3.15) for H1; together with
(3.5) then imply (3.7). The proof of (3.8) is similar. &

Remark 3.2. (a) By (3.22) and (3.9), for kAf1; ng;

bk ¼ E exp
1

lik

ðV � VkÞ
� �� �

;

thus, bk is nothing else than the moment generating function of V � Vk evaluated at
the point 1=lik :
(b) Eq. (3.7) is trivially true if l140; since then the support of f as well as that of f1

are both bounded from the left.
(c) Eq. (3.7) shows that there is a function R and constants c;C40 such that

f ðxÞ ¼ b1 f t1ðxÞð1þ RðxÞÞ and j
ffiffiffiffiffiffi
jxj

p
RðxÞjpC for all xp� c: The constant C gives

error bounds for the approximation. The proof presented here is actually
constructive, i.e. explicit values for c and C could be derived by exact bookkeeping
in the proof. Bounds for the starting constants needed in (3.3) can be found in [18],
for example.
(d) Similar results have been derived in the context of tail distributions; see Goldie

and Klüppelberg [9] and references therein.

3.2. Case 2: the lowest eigenvalue is positive

Suppose that l140: In this subsection, we shall derive the tail behavior of f ðxÞ as
x approaches the left endpoint of its support: It follows from (3.2) that the modified

Bessel function of the first kind InðxÞ behaves like 2�nðGðnþ 1ÞÞ�1xnð1þ Oðx2ÞÞ as
xr0: Then (3.1) shows that

gðx; a2; mÞ ¼ 2�m=2

Gðm=2Þ e�a2=2xm=2�1ð1þ OðxÞÞ; xr0;
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and with (2.2) we obtain for j ¼ 1;y; n;

fjðxÞ ¼
l
�mj=2

ij

Gðmj=2Þ
e�a2j =2xmj=2�1ð1þ cjðxÞÞ;

where cj is a function for which there exist constants dj;Dj40 such that

jcjðxÞjpDjjxj for all xA½0; dj�: Then we obtain for j; kAf1;y; ng;

fj � fkðxÞ ¼
l
�mj=2

ij
l�mk=2

ik
e�ða2j þa2

k
Þ=2

Gðmj=2ÞGðmk=2Þ

Z x

0

ymj=2�1ðx � yÞmk=2�1ð1þ cjðyÞÞ

� ð1þ ckðx � yÞÞ dy:

Now one hasZ x

0

ymj=2�1ðx � yÞmk=2�1 dy

¼ xðmjþmkÞ=2�1
Z 1

0

zmj=2�1ð1� zÞmk=2�1 dz

¼ xðmjþmkÞ=2�1Bðmj=2; mk=2Þ

¼ xðmjþmkÞ=2�1
Gðmj=2ÞGðmk=2Þ

Gðmjþmk

2
Þ

;

where Bð�; �Þ denotes the Beta-function. For the remaining terms, similar calculations
show that e.g.Z x

0

ymj=2�1ðx � yÞmk=2�1cjðyÞ dy

����
����pDj

Gðmj=2þ 1ÞGðmk=2Þ
Gðmjþmk

2
þ 1Þ

xðmjþmkÞ=2

for xA½0; dj�; implying that

fj � fkðxÞ ¼
l
�mj=2

ij
l�mk=2

ik

Gðmjþmk

2
Þ

e�ða2j þa2
k
Þ=2xðmjþmkÞ=2�1ð1þ OðxÞÞ; xr0:

Now we immediately obtain the tail behavior of f :

Proposition 3.3. For l1 ¼ li140; the density f of V has the asymptotic left tail

behavior

f x þ y�
Xn

j¼1

%d2j
2lij

 !
¼ djxjm=2�1 ð1þ OðxÞÞ; xr0 ð3:23Þ

with the constant

d ¼
Qn

j¼1 jlij j
�mj=2

Gðm=2Þ e
�
Pn

j¼1 a2j =2: ð3:24Þ

If lm ¼ lino0; then (3.23) holds for the right tail as xs0:
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3.3. Case 3: the lowest eigenvalue is 0

Now suppose that l1 ¼ 0 and %d21a0: Since V1 ¼
Pi1

l¼1 dlYl is normally distributed

with mean zero and variance %d21; it follows that f1ðxÞ ¼ ð
ffiffiffiffiffiffi
2p

p
j%d1jÞ�1e�x2=ð2%d2

1
Þ: We

shall see that the left tail behavior of f ðxÞ is essentially determined by the tail
behavior of f1:

Proposition 3.4. Let h be a probability density with support in ½0;NÞ such that

hðxÞ ¼ chxmð1þ OðxÞÞ; xr0 ð3:25Þ

for some m4� 1 and some constant cha0: Further, suppose that h is bounded on every

interval ½D;NÞ for every D40: Then

ð f1 � hÞðxÞ ¼ ch

Gðmþ 1Þð%d21Þ
mþ1ffiffiffiffiffiffi

2p
p

j%d1j
jxj�ðmþ1Þ

e�x2=ð2%d2
1
Þð1þ Oð1=jxjÞÞ;

x-�N: ð3:26Þ

Proof. For simplicity, we assume that %d21 ¼ 1: The proof for general %d21 is similar or
alternatively can be deduced by a simple dilation argument.
Note that (3.25) is equivalent to

hðxÞ ¼ chxmex2=2ð1þ OðxÞÞ; xr0:

Write

hðxÞ ¼ chxmex2=2ð1þ cðxÞÞ;

where

jcðxÞjpDx 8xA½0;D� ð3:27Þ

and D;D40 are suitable constants. Also, let

hðxÞpE 8xA½D;NÞ ð3:28Þ
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for some E40: Then we have for negative x;

ð f1 � hÞðxÞ ¼
Z

N

0

hðyÞf1ðx � yÞ dy

¼ 1ffiffiffiffiffiffi
2p

p
Z D

0

chymey2=2e�ðx�yÞ2=2 dy

þ 1ffiffiffiffiffiffi
2p

p
Z D

0

chymey2=2cðyÞe�ðx�yÞ2=2 dy

þ 1ffiffiffiffiffiffi
2p

p
Z

N

D
hðyÞe�ðx�yÞ2=2 dy

¼ chffiffiffiffiffiffi
2p

p e�x2=2jxj�ðmþ1Þ
Z Djxj

0

zme�z dz

þ chffiffiffiffiffiffi
2p

p e�x2=2jxj�ðmþ1Þ
Z Djxj

0

zmcðz=jxjÞe�z dz

þ 1ffiffiffiffiffiffi
2p

p e�x2=2

Z
N

D
hðyÞexye�y2=2 dy:

Noting that Gðmþ 1Þ ¼
R
N

0 zme�z dz; we obtain

ð f1 � hÞðxÞ � chGðmþ 1Þe�x2=2jxj�ðmþ1Þ=
ffiffiffiffiffiffi
2p

p

chGðmþ 1Þe�x2=2jxj�ðmþ1Þ=
ffiffiffiffiffiffi
2p

p

¼
�
R
N

Djxj zme�z dz

Gðmþ 1Þ þ
R Djxj
0 zmcðz=jxjÞe�z dz

Gðmþ 1Þ þ
R
N

D hðyÞexye�y2=2 dy

chGðmþ 1Þjxj�ðmþ1Þ

¼: A1ðxÞ þ A2ðxÞ þ A3ðxÞ:

There remains to show that jxjðA1ðxÞ þ A2ðxÞ þ A3ðxÞÞ is bounded as x-�N:
Since

jxj
Z

N

Djxj
zme�z dzp

1

D

Z
N

Djxj
zmþ1e�z dz-0; x-�N;

we have A1ðxÞ ¼ Oð1=xÞ as x-�N: From (3.27) we obtain

jxj
Z Djxj

0

zmcðz=jxjÞe�z dzpD

Z Djxj

0

zmþ1e�z dzpDGðmþ 2Þ;

showing that A2ðxÞ ¼ Oð1=xÞ as x-�N: Finally, (3.28) gives

jxjmþ2
Z

N

D
hðyÞexye�y2=2 dypEjxjmþ2

Z
N

D
exy dy ¼ Ejxjmþ1eDx-0; x-�N;

showing that A3ðxÞ ¼ Oð1=xÞ as x-�N: This gives (3.26). &

Combining Propositions 3.3 and 3.4, we obtain the left tail behavior of f :
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Theorem 3.5. For l1 ¼ li1 ¼ 0; the density f of V has the asymptotic left tail behavior

f x þ y�
Xn

j¼2

%d2j
2lij

 !

¼ e
�
Pn

j¼2 a2j =2ffiffiffiffiffiffi
2p

p
j%d1j

Yn

j¼2
j%d21=lij j

mj=2

 !
jxj�

Pn

j¼2 mj=2e�x2=ð2%d2
1
Þð1þ Oð1=xÞÞ

as x-�N: For lm ¼ lin ¼ 0; the density of V has the asymptotic right tail behavior

f x þ y�
Xn�1
j¼1

%d2j
2lij

 !

¼ e
�
Pn�1

j¼1 a2j =2ffiffiffiffiffiffi
2p

p
j%dnj

Yn�1
j¼1

j%d2n=lij j
mj=2

 !
x
�
Pn�1

j¼1 mj=2e�x2=ð2%d2nÞð1þ Oð1=xÞÞ

as x-N:

4. Approximation of the quantiles

In this section, we give an approximation of the a- and ð1� aÞ-quantile of V as
a-0: As before, denote the density of V by f and its distribution function by F : The
a-quantile of V will be denoted by xa; thus

xa ¼ F’ðaÞ :¼ inffxAR: FðxÞXag; aAð0; 1Þ:

Since for li1o0; Theorem 3.1 expressed the left tail behavior of f in terms of the tail

behavior of f t1 ; it is natural to approximate xa using the quantile of some suitable

function F̃ t
1 ; where

d
dx

F̃ t
1 ðxÞ ¼ f t

1 ðxÞð1þ Oð1=
ffiffiffiffiffiffi
jxj

p
ÞÞ as x-�N: This is done in the

following theorem. Note that the function F̃ t
1 ðxÞ is given explicitly and that its

quantiles can easily be calculated numerically:

Theorem 4.1. Suppose l1 ¼ li1o0; or lm ¼ lin40; respectively. Define on the relevant

range (i.e. for large negative x, or for large positive x, respectively)

F̃ t
1 ðxÞ :¼ jl1j f t1ðxÞ ¼ jl1jc1jxjðm1�3Þ=4e�x=l1þa1

ffiffiffiffiffiffiffiffiffi
2=jl1j

p ffiffiffiffi
jxj

p
;

1� F̃ t
n ðxÞ :¼ jlin j f tnðxÞ ¼ lin cnxðmn�3Þ=4e�x=linþan

ffiffiffiffiffiffiffiffi
2=lin

p ffiffi
x

p
;

where f t1 and f tn are given by (3.6). Let b1 and bn be defined as in (3.9), and denote the a-
quantiles of F̃ t

1 and 1� F̃ t
n by ðF̃ t

1 Þ
’ðaÞ and ð1� F̃ t

n Þ
’ðaÞ; respectively. Then, as a-0;

the lower and upper quantiles of V satisfy the following asymptotic equations,
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respectively:

xa ¼ li1 log b1 þ ðF̃ t
1 Þ

’ðaÞ þ Oð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðF̃ t

1 Þ
’ðaÞj

q
Þ; ð4:1Þ

x1�a ¼ lin log bn þ ð1� F̃ t
n Þ

’ðaÞ þ Oð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� F̃ t

n Þ
’ðaÞ

q
Þ: ð4:2Þ

Proof. Define the shifted random variable VðshÞ :¼ V � li1 log b1: Denote its density

by fðshÞ; its distribution function by FðshÞ and its a-quantile by xa;ðshÞ ¼ F’
ðshÞðaÞ: Put

xa;1 :¼ ðF̃ t
1 Þ

’ðaÞ: Since

xa ¼ xa;ðshÞ þ li1 log b1;

(4.1) is equivalent to

xa;ðshÞ � xa;1 ¼ Oð1=
ffiffiffiffiffiffiffiffiffiffi
jxa;1j

q
Þ; xa;1-�N: ð4:3Þ

There remains to show (4.3): an application of Theorem 3.1 to VðshÞ shows that

fðshÞðxÞ ¼ b1;ðshÞ f t1ðxÞð1þ Oð1=
ffiffiffiffiffiffi
jxj

p
ÞÞ; where b1;ðshÞ ¼ b1 expfð�li1 log b1Þ=li1g ¼ 1;

i.e.

fðshÞðxÞ ¼ f t1ðxÞð1þ Oð1=
ffiffiffiffiffiffi
jxj

p
ÞÞ; x-�N: ð4:4Þ

On the other hand, with f̃ t1 ðxÞ :¼ d
dx

F̃ t
1 ðxÞ ¼ jl1j d

dx
f t1ðxÞ we also obtain

f̃ t1 ðxÞ ¼ f t1ðxÞð1þ Oð1=
ffiffiffiffiffiffi
jxj

p
ÞÞ; x-�N:

Thus,

f̃ t1 ðxÞ ¼ fðshÞðxÞð1þ Oð1=
ffiffiffiffiffiffi
jxj

p
ÞÞ; x-�N;

holds, that is, there exist positive constants c;C40 such that

j fðshÞðxÞ � f̃ t1 ðxÞjp
Cffiffiffiffiffiffi
jxj

p fðshÞðxÞ 8xp� c:

Choose c such that in addition fðshÞðxÞ40 for all xp� c: Then FðshÞ is strictly

increasing on ð�N;�cÞ and hence F’
ðshÞðFðshÞðxÞÞ ¼ x for all xp� c: Defining

rðxÞ :¼ FðshÞðxÞ � F̃ t
1 ðxÞ; ð4:5Þ

it follows that

jrðxÞjp
Z x

�N

j fðshÞðyÞ � f̃ t1 ðyÞj dyp
Cffiffiffiffiffiffi
jxj

p FðshÞðxÞ 8xp� c: ð4:6Þ

Now let 0oao1 such that xa;1p� c: Noting that

xa;ðshÞ � xa;1 ¼ F’
ðshÞðFðshÞðxa;ðshÞÞÞ � F’

ðshÞðFðshÞðxa;1ÞÞ;
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the mean value theorem implies the existence of some constant x between
FðshÞðxa;ðshÞÞ and FðshÞðxa;1Þ such that by (4.5) and (4.6),

jxa;ðshÞ � xa;1j ¼ jFðshÞðxa;ðshÞÞ � FðshÞðxa;1Þj � jðF’
ðshÞÞ0ðxÞj

¼ jrðxa;1Þj � jðF’
ðshÞÞ0ðxÞj

p
Cffiffiffiffiffiffiffiffiffiffi
jxa;1j

p FðshÞðxa;1Þ
fðshÞðF’

ðshÞðxÞÞ

¼ Cffiffiffiffiffiffiffiffiffiffi
jxa;1j

p FðshÞðxa;1Þ
x

FðshÞðF’
ðshÞðxÞÞ

f t
1 ðF’

ðshÞðxÞÞ
f t1ðF’

ðshÞðxÞÞ
fðshÞðF’

ðshÞðxÞÞ
: ð4:7Þ

Since jx� FðshÞðxa;1Þjpjrðxa;1ÞjpCFðshÞðxa;1Þ=
ffiffiffiffiffiffiffiffiffiffi
jxa;1j

p
; it follows that xA½FðshÞðxa;1Þ

ð1� C=
ffiffiffiffiffiffiffiffiffiffi
jxa;1j

p
Þ;FðshÞðxa;1Þð1þ C=

ffiffiffiffiffiffiffiffiffiffi
jxa;1j

p
Þ�; and hence limxa;1-�N FðshÞðxa;1Þ=

x ¼ 1: In particular, x-0 as xa;1-�N; and thus y :¼ F’
ðshÞðxÞ-�N as xa;1-

�N: Since

lim
y-�N

FðshÞ
0ðyÞ

ð f t1Þ0ðyÞ
¼ �l1a0

by (4.4), l’Hospital’s rule implies that

lim
xa;1-�N

FðshÞðF’
ðshÞðxÞÞ

f t1ðF’
ðshÞðxÞÞ

¼ lim
y-N

FðshÞðyÞ
f t1ðyÞ

¼ �l1:

Also, by (4.4),

lim
xa;1-�N

f t1ðF’
ðshÞðxÞÞ

fðshÞðF’
ðshÞðxÞÞ

¼ lim
y-�N

f t1ðyÞ
fðshÞðyÞ

¼ 1:

Thus (4.7) implies (4.3) and hence (4.1). The proof of (4.2) is similar. &

Theorem 4.1 gives an approximation of xa in terms of the a-quantile of some

function F̃ t
1 ðxÞ: There, F̃ t

1 ðxÞ ¼ jl1j f t1ðxÞ was chosen. However, the proof of

Theorem 4.1 showed that any function F̃ t
1 could have been chosen, as long as

d

dx
F̃ t
1 ðxÞ ¼ f t1ðxÞð1þ Oð1=

ffiffiffiffiffiffi
jxj

p
ÞÞ; x-�N:

For example, one might choose

F̃ t
1 ðxÞ :¼

Z x

�N

f1ðyÞ dy:

Then (2.2) implies

ðF̃ t
1 Þ

’ðaÞ ¼ li1

2
w21�a;m1

ða21Þ;
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where w21�a;mða2Þ denotes the ð1� aÞ-quantile of the w2-distribution with m degrees of

freedom and non-centrality parameter a2: Thus, we obtain:

Corollary 4.2. Suppose l1 ¼ li1o0; or lm ¼ lin40; respectively. Then a-0 is

equivalent to w21�a;mk
ða2kÞ-N for kAf1; ng; and as a-0; the lower and upper quantiles

of V satisfy the following asymptotic equations for li1o0 and lin40; respectively:

xa ¼ li1 log b1 þ
li1

2
w21�a;m1

ða21Þ þ Oð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w21�a;m1

ða21Þ
q

Þ; ð4:8Þ

x1�a ¼ lin log bn þ
lin

2
w21�a;mn

ða2nÞ þ Oð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w21�a;mn

ða2nÞ
q

Þ: ð4:9Þ

Corollary 4.2 links the quantiles of V with the quantiles of non-central w2-
distributions. The latter can be calculated with many software packages, such as R,
Electronic Tables or StaTable, the latter two both reviewed in Boomsma and
Molenaar [5]. The package S-Plus has a routine implemented to calculate the

distribution function of a non-central w2-distribution. However, it does not compute
the inverse of this function, i.e. the quantiles. Nevertheless, using a bisection method,
the quantiles can be approximated numerically.
The following theorem gives an approximation of the quantiles of V for the case

that the lowest (or the largest) eigenvalue is 0:

Theorem 4.3. Suppose l1 ¼ li1 ¼ 0; or lm ¼ lin ¼ 0; respectively. Define on the

relevant range

F̃ t
1 ðxÞ :¼

j%d1jffiffiffiffiffiffi
2p

p e
�
Pn

j¼2 a2j =2
Yn

j¼2
j%d21=lij j

mj=2

 !
ð�xÞ�1�

Pn

j¼2 mj=2e�x2=ð2%d2
1
Þ;

1� F̃ t
n ðxÞ :¼

j%dnjffiffiffiffiffiffi
2p

p e
�
Pn�1

j¼1 a2j =2
Yn�1
j¼1

j%d2n=lij j
mj=2

 !
x
�1�
Pn�1

j¼1 mj=2e�x2=ð2%d2nÞ:

Denote by ðF̃ t
1 Þ

’ðaÞ and ð1� F̃ t
n Þ

’ðaÞ the a-quantiles of F̃ t
1 and 1� F̃ t

n ; respectively.

Then, as a-0; the lower and upper quantiles of V satisfy the following asymptotic

equations, respectively:

xa ¼ y�
Xn

j¼2

%d2j
2lij

þ ðF̃ t
1 Þ

’ðaÞ þ Oð1=ðF̃ t
1 Þ

’ðaÞ2Þ; ð4:10Þ

x1�a ¼ y�
Xn�1
j¼1

%d2j
2lij

þ ðF̃ t
n Þ

’ðaÞ þ Oð1=ð1� F̃ t
n Þ

’ðaÞ2Þ: ð4:11Þ

Proof. We only treat the case l1 ¼ 0: The treatment of the upper tail for lm ¼ 0 is
similar. Since the proof is similar to the proof of Theorem 4.1, using Theorem 3.5
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instead of Theorem 3.1, we only show how to modify that proof. Put VðshÞ :¼

V þ
Pn

j¼2
%d2j
2lij

� y ¼
Pn

j¼1 Vj : Let fðshÞ and FðshÞ be the density and distribution

function of VðshÞ; and xa;ðshÞ the corresponding a-quantile. Define f̃ t1 ðxÞ :¼ d
dx

F̃ t
1 ðxÞ

for xo0: Then

f̃ t1 ðxÞ ¼
e
�
Pn

j¼2 a2j =2ffiffiffiffiffiffi
2p

p
j%d1j

Yn

j¼2
j%d21=lij j

mj=2

 !
jxj�

Pn

j¼2 mj=2e�x2=ð2%d2
1
Þ

� 1þ 1þ
Xn

j¼2
mj=2

 !
%d21x

�2

 !
;

and Theorem 3.5 gives f̃ t1 ðxÞ ¼ fðshÞðxÞð1þ Oð1=xÞÞ: Then with xa;1 ¼ ðF̃ t
1 Þ

’ðaÞ
denoting the a-quantile of F̃ t

1 and the same notations as in the proof of Theorem 4.1,

(4.6) becomes jrðxÞjpC
jxj FðshÞðxÞ; and (4.7) changes to

jxa;ðshÞ � xa;1jp
C

jxa;1j
FðshÞðxa;1Þ

x

FðshÞðF’
ðshÞðxÞÞ

�f̃ t1 ðF’
ðshÞðxÞÞðF’

ðshÞðxÞÞ
�1

f̃ t1 ðF’
ðshÞðxÞÞ

fðshÞðF’
ðshÞðxÞÞ

1

�F’
ðshÞðxÞ

¼ C0

jxa;1j
1

�F’
ðshÞðxÞ

ð1þ oð1ÞÞ;

where l’Hospital’s rule was applied to FðshÞðF’
ðshÞðxÞÞ=ð�f̃ t1 ðF’

ðshÞðxÞÞðF’
ðshÞðxÞÞ

�1Þ: This
implies (4.10). &

Finally, for li140 or lino0; an approximation can be written down quite
explicitly, which is done in the next Theorem.

Theorem 4.4. Suppose l1 ¼ li140; or lm ¼ lino0; respectively. Then, as a-0; the

lower and upper quantiles of V satisfy the following asymptotic equations, respectively:

xa ¼ y�
Xn

j¼1

%d2j
2lij

þ m

2d
a

� �2=m

þOða4=mÞ;

x1�a ¼ y�
Xn

j¼1

%d2j
2lij

� m

2d
a

� �2=m

þOða4=mÞ;

where d is the constant defined in (3.24).

The proof is similar to the proof of Theorem 4.3 and therefore omitted.
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Fig. 1. The left part of the distribution function (CDF) in Example 5.1 (case 1: l1o0) as well as the

normal approximation and the approximations of Theorem 4.1 and Corollary 4.2. The right graph shows

probabilities in a log scale, the left in a linear scale.

Table 1

Quantiles in Example 5.2 (Case 3: l1 ¼ 0:)

Probability ‘‘true’’ quantile Approximation

Normal Tail

0.0500 �1.3602 �1.514526 �1.636064
0.0250 �1.6916 �1.900456 �1.900803
0.0100 �2.0745 �2.349183 �2.228890
0.0050 �2.3339 �2.654734 �2.461087
0.0010 �2.8662 �3.284746 �2.954294
0.0001 �3.5131 �4.054846 �3.572531
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5. Examples and discussion

In this section, we shall illustrate the results of the last section by means of specific
examples. Our approximations will be compared to standard approximations, like a
normal approximation for l1p0; and a gamma approximation for l140:

Example 5.1 (Illustration of Case 1). Suppose that in model (1.2) we have

m¼ 15; n¼ 3; li1 ¼ �2; li2 ¼ 1; li3 ¼ 2; m1 ¼ 5; m2 ¼ 4; m3 ¼ 6; a21 ¼ 4; %d22 ¼ 4;
%d23 ¼ 16; and y ¼ 0: In Fig. 1, the left part of the distribution function of V ; the
normal approximation as well as the approximations according to Theorem 4.1 and
Corollary 4.2 are plotted. The ‘‘true’’ distribution has been computed by numerical
Fourier inversion with high accuracy. The left graph shows the probability on a

ARTICLE IN PRESS

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

0.
0

0.
1

0.
2

0.
3

0.
4

x

pr
ob

ab
ili

ty

true (Fourier inversion)
tail approximation 4.3
normal approximation

-8 -6 -4 -2 0

1e
-1

6
1e

-1
2

1e
-0

8
1e

-0
4

1e
+

00

x

Fig. 2. The left part of the distribution function (CDF) in Example 5.2 (Case 3: l1 ¼ 0) as well as the

normal approximation and the approximation of Theorem 4.3. The right graph shows probabilities on a

logarithmic scale, the left one on a linear scale.
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linear scale, while the right graph shows it on a logarithmic scale. From the left
graph, it can be seen that the normal distribution approximates the true distribution
well for small jxj; whereas the approximations of Theorem 4.1 and Corollary 4.2
approximate better for large negative x; which is shown by the right graph. The
normal approximation is computed by moment matching: the cumulants of V can
easily be read off the power series expansion of the cumulant generating function
and are given by

k1 ¼ yþ 1

2

Xm

j¼1
lj and kr ¼

1

2

Xm

j¼1
ððr � 1Þ!lr

j þ r!d2j l
r�2
j Þ:

Example 5.2 (Illustration of Case 3). Suppose that in model (1.2) we have m ¼ n ¼
2; l1 ¼ 0; l2 ¼ 1; d1 ¼ 1; d2 ¼ 0; and y ¼ 0: Again, a normal approximation is
quite good at the center of the distribution, whereas the approximation of Theorem
4.3 works well for large negative x: Table 1 shows that the tail approximation
becomes better than the normal approximation for probabilities approximately below
0.025. In Fig. 2, the distribution function of V ; the normal approximation as well as
the approximation of Theorem 4.3 are plotted on a linear and logarithmic scale.

Example 5.3 (Illustration of Case 2). Suppose that in model (1.2) we have m ¼
4; n ¼ 2; l1 ¼ l2 ¼ 1; l3 ¼ l4 ¼ 2; d1 ¼ d2 ¼ 1; d3 ¼ d4 ¼ 0: y ¼ 1 is chosen such
that the left tail of the distribution ends at 0: A straightforward approximation of
such a distribution is a gamma distribution (with shape parameter p and scale

parameter b) with matching mean (bp) and variance (b2p). The gamma approxima-
tion fits very well at the center of the distribution, as seen from the left graph of
Fig. 3, while the tail approximation of Theorem 4.4 is superior for ao0:05;
approximately.

Remark 5.4. Since the tail approximations derived in the previous section are
qualitatively different for l1o0; l1 ¼ 0; and l140; it is clear that ( for fixed a) the
approximation of Theorem 4.1 must give bad results for l1o0; but close to zero. To
be able to give explicit ranges for the quantiles for which our approximations work
well, one would need precise error bounds. As pointed out in Remark 3.2(c), in
principle it is possible to obtain such bounds, but very elaborate.

Example 5.5. This example shows that it can happen that (4.8) and (4.9)
approximate well only for very small a: Let n ¼ m ¼ 2; m1 ¼ m2 ¼ 1; � l1 ¼ l2 ¼
2; d1 ¼ d2 ¼ 2a; where aX3 is positive, and y ¼ 0: Then V1 ¼ �ð�a þ Y1Þ2;
V2 ¼ ða þ Y2Þ2; where Y1 and Y2 are independent standard normal variables.

Then PðYiA½�3; 3�ÞX
ffiffiffiffiffiffiffiffiffi
0:99

p
and it follows that PðV2A½ða � 3Þ2; ða þ 3Þ2�Þ ¼

PðV1A½�ða þ 3Þ2;�ða � 3Þ2�X
ffiffiffiffiffiffiffiffiffi
0:99

p
: Since V1 and V2 are independent, it follows

that PðV1 þ V2A½�12a; 12a�ÞX0:99; implying that the true 1%-quantile of V1 þ V2

lies in ½�12a; 12a�: However, if we use approximation (4.8), we have b1 ¼ 2�1=2e�a2=4;
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hence, x̂1% ¼ a2=2þ log 2� w21�a;1ða2Þ; where x̂1% denotes the approximating

quantity. Since the 1%-quantile of w21ða2Þ lies in ½ða � 2:6Þ2; ða þ 2:6Þ2�; it follows
that x̂1%A½log 2� 6:76� a2=2� 5:2a; log 2� 6:76� a2=2þ 5:2a�: For large a; this
differs clearly from the true quantile, which lies in ½�12a; 12a�: So we see that the
approximation (4.8) can lead to large errors in the approximation, if the level 1% is
fixed, and if the non-centrality parameters are large, even if the eigenvalues l1 and l2
have the same modulus.
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