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As confounding obscures the ‘real’ effect of an exposure on

outcome, investigators performing etiological studies do

their utmost best to prevent or control confounding.

Unfortunately, in this process, errors are frequently made.

This paper explains that to be a potential confounder, a

variable needs to satisfy all three of the following criteria: (1)

it must have an association with the disease, that is, it should

be a risk factor for the disease; (2) it must be associated with

the exposure, that is, it must be unequally distributed

between exposure groups; and (3) it must not be an effect of

the exposure; this also means that it may not be part of the

causal pathway. In addition, a number of different techniques

are described that may be applied to prevent or control for

confounding: randomization, restriction, matching, and

stratification. Finally, a number of examples outline

commonly made errors, most of which result from

‘overadjustment’ for variables that do not satisfy the criteria

for potential confounders. Such an example of an error

frequently occurring in the literature is the incorrect

adjustment for blood pressure while studying the

relationship between body mass index and the development

of end-stage renal disease. Such errors will introduce new

bias instead of preventing it.
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Confounding, sometimes referred to as confounding bias, is
mostly described as a ‘mixing’ or ‘blurring’ of effects.1 It
occurs when an investigator tries to determine the effect of an
exposure on the occurrence of a disease (or other outcome),
but then actually measures the effect of another factor, a
confounding variable. As most medical studies attempt to
investigate disease etiology and causal relationships, con-
founding is regarded as undesirable, as it obscures the ‘real’
effect of an exposure. For this reason, confounding is
something that investigators want to get rid of, for example,
by so-called ‘adjustment for confounding variables’. This
paper will explain the concept of confounding as well as the
ways in which confounding can be addressed, including
randomization, restriction, matching, and stratification.
Another common way to address confounding, multivariate
analysis, will be discussed in future articles in this series.

WHEN ARE VARIABLES POTENTIAL CONFOUNDERS?

To explain the phenomenon of confounding, it is necessary
to consider the relationship between an exposure and the
occurrence of a disease (Figure 1). In order for a variable to
be a potential confounder, it needs to have the following
three properties: (1) the variable must have an association
with the disease, that is, it should be a risk factor for the
disease; (2) it must be associated with the exposure, that is, it
must be unequally distributed between the exposed and
nonexposed groups; and (3) it must not be an effect of the
exposure, nor (linked to this) be a factor in the causal
pathway of the disease.

This can be illustrated by a study on the relationship
between dialysis modality at the start of renal replacement
therapy (RRT) and patient survival (Figure 2) as was
performed by Couchoud et al.2 in Example 1.

Example 1. Association between treatment choice and
outcome in the elderly with end-stage renal disease (ESRD)
Couchoud et al.2 studied the association between initial dialysis
modality and 2-year patient survival in a cohort of 3512 elderly
ESRD patients. After adjustment for estimated glomerular
filtration rate (estimated GFR) at dialysis initiation and a
number of other factors, unplanned HD was associated with a
50% increased risk of death and PD with a 30% increased risk
of death compared with planned HD.
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In this study, Couchoud et al.2 rightfully adjusted for
estimated GFR because it is known from the literature that
the GFR prior to the start of dialysis is a risk factor for patient
survival on dialysis. Second, it is known that, on average,
patients starting on peritoneal dialysis tend to have a higher
GFR than those starting on hemodialysis; hence, there is an
association between dialysis modality and GFR. Finally, GFR
prior to the start of dialysis may influence the choice of
dialysis modality, but is certainly not an effect of dialysis
modality, as it was measured before initiating RRT. Thus, the
third requirement for GFR to act as a confounder has also
been fulfilled. It can therefore be concluded that GFR prior to
the start of dialysis is indeed a potential confounder in the
relationship between dialysis modality and patient survival.

A second example relates to the relationship between body
mass index (BMI) and the development of ESRD (Figure 3).
This relationship was studied by Hsu et al.3 in Example 2.

Example 2. BMI and the risk for ESRD Hsu et al.3

investigated the relationship between BMI and the risk for
ESRD using data of more than 320 000 members of Kaiser
Permanente. They were able to show that, adjusted for a
number of confounders like age, sex, and race (but not for blood
pressure), increased BMI was strongly associated with an
increased risk for ESRD.

Reviewing the different properties of potential confoun-
ders, it can be stated that blood pressure is indeed a risk
factor for the development of ESRD. Furthermore, there is an
association between BMI and blood pressure, in that higher
BMIs are associated with higher blood pressures. Blood
pressure is, however, also an effect of BMI; it is probably even
in the causal pathway that leads to the development of ESRD.
Hsu et al.,3 therefore, rightfully concluded that blood

pressure does not satisfy all criteria for a confounder, and
in their main analysis, they did not adjust for it.

From these examples, it immediately follows that the
analysis of study data itself will not indicate what is or is not a
confounder. Only a considerable knowledge of pathophysio-
logical mechanisms and potential causal pathways will assist
an investigator to decide whether a variable satisfies the
criteria for being a potential confounder or not.

CONTROLLING CONFOUNDING

As confounding obscures the real effect, in other words the
etiological importance of a variable, it needs to be prevented
or removed as much as possible. Like other types of bias,
confounding can be addressed during study design. At that
stage, confounding can be prevented by use of randomiza-
tion, restriction, or matching. In contrast to other types of
bias, confounding can also be controlled by adjusting for it
after completion of a study using stratification or multi-
variate analysis. Obviously, adjusting for confounding at this
later stage can only take place if information on the
confounding factors has been collected during the study.

Randomization

In studies investigating the effects of therapy or other
interventions, it is possible to reduce confounding by
randomization. As explained in a previous paper in this
series,4 the randomization procedure randomly assigns
patients to an experimental group or to a control group.
Randomization helps to prevent selection bias by the
clinician (sometimes also referred to as ‘confounding by
indication’). Although randomization of large groups of
patients will frequently result in a similar distribution of
known and unknown confounders in the experimental and
the control group, it is unlikely that this balance will be
achieved for all patient characteristics. Although the balance
may be incomplete, the randomization process does guaran-
tee that any differences between the two groups are due to
chance5 and not due to the choice of the physician. Thus,
although differences in potential confounders between the
two groups may still exist after randomization, they are likely
to be reduced as much as possible. Examples of large
randomized controlled trials in nephrology include the
HEMO, ADEMEX, and CREATE studies.6–8 The size of these
randomized controlled trials helped the randomization
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Figure 1 | Properties of a confounder.
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Figure 2 | Relationship between dialysis modality and patient
survival—could GFR immediately prior to the start of dialysis be
a confounder in this relationship?

Relationship of interest

Risk factorEffect

Blood pressure

Body mass index End-stage
renal disease

Figure 3 | Relationship between BMI and the development of
ESRD—could blood pressure be a confounder in this
relationship?
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process to be successful in producing a similar distribution of
known confounders between the experimental groups. The
randomized controlled trial performed within the NEther-
lands COoperative Study on the Adequacy of Dialysis
(NECOSAD),9 however, was small (only including 38
patients), and therefore, the randomization failed to produce
similar experimental groups. The patients randomized to
peritoneal dialysis were on an average 7 years younger and
had less diabetes mellitus and other comorbidity than those
assigned to hemodialysis. As these factors would provide the
peritoneal dialysis patients with a better prognosis anyway, the
investigators adjusted for these confounders during data analysis
to determine the ‘real’ effect of dialysis modality on outcome.9

Other ways of addressing confounding

The other three ways of addressing confounding that will be
discussed in this paper are restriction, matching, and
stratification. These will be explained by using an example
of a hypothetical study investigating the relationship between
diabetes mellitus and ischemic heart disease in RRT patients.
In such a study, age would be a potential confounder. The
simplest way of controlling for confounding by age during
the study design would be using restriction. The investigators
might restrict their study to the group of dialysis patients
above the age of 65 years. Although restriction would, at least
partially, take away confounding by age, it hampers
extrapolation of study results to other groups, in this case
to patients below the age of 65 years.

Another method of controlling confounding for age
during study design is matching. In a cohort study, the
patients in the exposed and unexposed groups could be
matched in pairs for potential confounders. In the study on
the relationship between diabetes and ischemic heart disease,
for each ‘exposed’ person with diabetes mellitus the
investigator may select an ‘unexposed’, that is, nondiabetic,
patient of the same age. In this way, the potential
confounding effect of age on outcome will be reduced. In
cohort studies, the technique of matching is infrequently
used, and it may be viewed as a special case of stratification
(see later). In case–control studies, however, matching is
frequently used. Still, the choice of matching variables needs
careful attention because, as will be described later, errors are
frequently made.

An approach for controlling confounding after the
completion of a study during data analysis is stratification.
Using this method, the study population in the same example
of diabetes and ischemic heart disease is first divided into
strata, that is, subgroups according to levels of the potential
confounding factor, in this case age. Thereafter, relative risks
for each stratum, so-called ‘stratum-specific relative risks,’ are
calculated. Table 1 shows the fictitious data in this study,
overall and by age stratum. Suppose that in this study, we
found that the crude relative risk is 1.7, meaning that patients
with diabetes mellitus are 70% more likely to have ischemic
heart disease than patients without diabetes. As age is a
potential confounder in this relationship, the study popula-

tion was divided into strata of patients younger and older
than 65 years of age. The relative risk in each stratum was
calculated and found to be 1.5 for both age groups. To
calculate a summary statistic that describes the effect of
diabetes mellitus adjusted for age across the different strata,
one may use either pooling (using a Mantel–Haenszel
procedure)10 or standardization. Both methods aggregate
information over all strata by taking weighted averages of
stratum-specific relative risks to calculate an overall ‘adjusted’
effect size. Often, one wants to know if a potential
confounder is indeed confounding a relationship of interest.
If the adjusted effect differs substantially from the crude
effect, then confounding is considered to be present. In the
example, the age-adjusted effect of diabetes mellitus will be
1.5, as coincidentally, both stratum-specific estimates are 1.5.
As 1.7 differs from 1.5, it may be concluded that adjustment
for the confounding effect of age is needed to derive an
estimate of the real effect of diabetes, as part of the crude
effect of 1.7 was found to be due to the effect of age.

Such adjustment for confounding by a particular variable
does not always remove all confounding by that variable.
There may be residual confounding. For example, a stratified
analysis controls confounding only between strata. When
there are relatively few strata of continuous variables, such as
in the example, where there were only two age strata, there
may be substantial residual confounding within each
stratum. Stratification can be refined by making more strata,
for example, 5-year age bands, and thus will have the effect of
improving the adjustment for confounding. Stratification is
an effective means for adjusting for confounding when the
number of confounding factors is limited. Increasing the
number of these factors will rapidly increase the number of
strata, as the numbers of categories are multiplied. The

Table 1 | Example of confounding in a hypothetical cohort
study of ischemic heart disease and diabetes mellitus

Ischemic heart disease

Yes No Total

Proportion with
ischemic heart
disease (%)

All RRT patientsa

Diabetes mellitus
Yes 184 376 560 32.9
No 278 1162 1440 19.3

RRT patients o65 years of ageb

Diabetes mellitus
Yes 36 114 150 24.0
No 136 714 850 16.0

RRT patients X65 years of agec

Diabetes mellitus
Yes 148 262 410 36.1
No 142 448 590 24.1

RR, relative risk; RRT, renal replacement therapy.
aCrude RR=32.9%/19.3%=1.7.
bStratum-specific RR =24.0%/16.0%=1.5.
cStratum-specific RR=36.1%/24.1%=1.5.
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stratification for sex and for the four age categories will use
eight strata; further stratification for the presence of diabetes
will increase the number of strata to 16. A more practical
method of controlling for many confounders at the same
time is multivariate analysis. This method will be discussed in
future papers in this series.

Finally, it should be noted that adjustment for confound-
ing does not always move the relative risk closer to 1.0, that
is, it does not always reduce the differences in outcome
between the groups. If the patients in a group with a relative
risk of death of 0.8 are older than those in the reference group
(by definition 1.0), adjustment for age will increase the
difference, by reducing the relative risk in the older group to,
for example, 0.7. In summary, adjustment for confounding
usually, but not always, reduces the differences in outcome.
The next paper in this series on multivariate analysis will
provide an example of this.

COMMONLY MADE ERRORS

Available software for statistical analysis has made adjustment
for confounding so easy that some investigators have a
tendency to ‘overadjust’ their results. Suppose Hsu et al.3 in
Example 2 had not carefully checked beforehand if blood
pressure satisfied all criteria for a potential confounder and,
like many others in the literature, had simply adjusted for
blood pressure to obtain the real effect of BMI. Adjustment
for blood pressure would have taken away part of the real
effect of BMI, because the effect of an increased BMI may
operate via a rise in blood pressure. As a result, the negative
effect of a high BMI would have been seriously under-
estimated. On the other hand, although ‘adjustment’ for
blood pressure is incorrect from the perspective of control-
ling for confounding, it may be useful to explore potential
causal pathways and to generate hypotheses. An example of
this can be found in the same paper by Hsu et al.3 These
authors showed that additional ‘adjustment’ for baseline
blood pressure levels attenuated the association between BMI
and the risk of ESRD: in the main adjusted model without
blood pressure, those with a BMI of 35.0–39.9 kg m�2 had a
relative risk of 6.12 (CI: 4.97–7.54) compared to those with a
BMI of 18.5–24.9 kg m�2. After additional ‘adjustment’ for
blood pressure, this relative risk decreased to 4.68 (CI:
3.79–5.79). The degree of change in the effect size of BMI
after this adjustment for blood pressure may give the
investigator an idea of how much of the effect of an
increased BMI acts via the working mechanism of elevated
blood pressure.

Similar problems of overadjustment may arise in case–-
control studies, when cases and controls are matched with
respect to a variable that is a potential effect of the exposure.
Such might have happened in the study of Janssen et al.11

studying the effect of a polymorphism on the development of
diabetic nephropathy in Example 3.

Example 3. CNDP1—Mannheim variant and the sus-
ceptibility to diabetic nephropathy Janssen et al.11 performed

a case–control study using diabetic patients with diabetic
nephropathy as cases and diabetic patients without diabetic
nephropathy as controls. They showed that the CNDP1—
Mannheim variant was more common in the absence of
diabetic nephropathy (odds ratio 2.56 (CI: 1.36–4.84)).

An example of incorrect matching would be if these
investigators would have decided to match for BMI (or even
for glucose intolerance), which are factors that may result
from the same polymorphism and may even be in the causal
pathway. Most of the real effect of the polymorphism would
disappear, and the adjusted odds ratio for the effect of the
polymorphism on the development of diabetic nephropathy
would be much closer to 1.0.

Both examples show that overadjustment, irrespective of
the technique used, may introduce bias instead of preventing
it. For this reason, in studies on etiology, the different
variables should be carefully checked to determine whether
they satisfy all the criteria for a potential confounder. Second,
in case–control studies, the matching procedure itself (that is
intended to reduce confounding) can introduce confound-
ing, even when the matching variable satisfies all criteria for a
confounder. This occurs because, by matching for this
confounder, the cases and controls will start to appear more
alike, not only for this specific confounder, but also for other
variables that are related to this confounder. For example,
matching for age and sex will also make cases and controls
more alike with respect to BMI. If the confounder that is used
as a matching variable is strongly related to the risk factor
causing the outcome, matching will lead to an under-
estimation of the effect of that risk factor. Therefore, in
case–control studies, matching for confounding may result in
overadjustment and even introduce confounding. To remove
this ‘new’ confounding, adjustment for the matching
variables is necessary.12

Another commonly made mistake arises from the use of
tests of statistical significance to detect confounding.13 The
amount of confounding, however, is the result of the strength
of the associations between the confounder on the one hand
and the exposure and the disease on the other hand. P-values
will therefore not provide information if a particular variable
is a confounder. As explained in one of the previous
paragraphs, the amount of confounding caused by a variable
that satisfies all criteria for a potential confounder can be
measured by looking at the difference between the crude and
adjusted effect size. If these are almost equal, there is no
confounding, but if the difference between the two is
important, there is confounding.

CONCLUSION

Confounding in etiological studies can be described as a
‘mixing’ of effects distorting the real effect of an exposure. As
a result, a crude effect may not equal the ‘true’ effect of a risk
factor. Before adjusting for confounding, the criteria for a
possible confounder should be carefully checked to prevent
the introduction of new bias through overadjustment for
variables that do not satisfy all criteria for confounding.
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