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SUMMARY

Mammalian cells export most proteins by the endo-
plasmic reticulum/Golgi-dependent pathway. How-
ever, some proteins are secreted via unconventional,
poorly understood mechanisms. The latter include
the proinflammatory cytokines interleukin(IL)-1b, IL-18,
and IL-33, which require activation by caspase-1
for biological activity. Caspase-1 itself is activated
by innate immune complexes, the inflammasomes.
Here we show that secretion of the leaderless pro-
teins proIL-1a, caspase-1, and fibroblast growth fac-
tor (FGF)-2 depends on caspase-1 activity. Although
proIL-1a and FGF-2 are not substrates of the prote-
ase, we demonstrated their physical interaction.
Secretome analysis using iTRAQ proteomics re-
vealed caspase-1-mediated secretion of other lead-
erless proteins with known or unknown extracellular
functions. Strikingly, many of these proteins are in-
volved in inflammation, cytoprotection, or tissue re-
pair. These results provide evidence for an important
role of caspase-1 in unconventional protein secre-
tion. By this mechanism, stress-induced activation
of caspase-1 directly links inflammation to cytopro-
tection, cell survival, and regenerative processes.

INTRODUCTION

Caspase-1 is a cysteine protease originally cloned as IL-1b-con-

verting enzyme (Cerretti et al., 1992; Thornberry et al., 1992). It is

an essential regulator of inflammatory responses through its ca-

pacity to process and activate proIL-1b, proIL-18, and proIL-33

(Ogura et al., 2006). IL-1b and IL-18 are potent proinflammatory

cytokines, and IL-33 promotes responses mediated by type 2

helper T cells (Dinarello, 2002; Ogura et al., 2006). Caspase-1

knockout mice cannot activate proIL-1b and proIL-18, and

they are resistant to endotoxic shock (Kuida et al., 1995; Li

et al., 1995; Los et al., 1999). Therefore, caspase-1 is considered

as an ‘‘inflammatory’’ caspase. In contrast to mice lacking the

apoptotic caspases-3, -8, or -9, caspase-1-deficient mice

show no developmental defects, and cells isolated from these
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mice are sensitive to most apoptotic inducers (Kuida et al.,

1995; Li et al., 1995; Los et al., 1999).

Caspase-1 is initially expressed as an inactive precursor. Sim-

ilar to the activation of the proapoptotic caspases-9 and -8 by

the apoptosome or the death-inducing signaling complex, re-

spectively, inflammasome complexes that are required for acti-

vation of caspase-1 have been identified (Martinon et al., 2002;

Martinon and Tschopp, 2004). Oligomeric NOD-like receptors

such as NALP1, NALP3, or IPAF act as stress sensors for inflam-

masome assembly and subsequent activation of caspase-1,

which in turn is responsible for activation of proIL-1b and secre-

tion of the mature cytokine (Mariathasan and Monack, 2007;

Ogura et al., 2006). We recently demonstrated that the inflamma-

some is also responsible for UV-induced secretion of IL-1b from

human keratinocytes (Feldmeyer et al., 2007), suggesting that

proIL-1b maturation by the inflammasome is not restricted to

professional immune cells.

ProIL-1b, proIL-18, and -33 lack a signal peptide, and they are

secreted by an unconventional, endoplasmic reticulum (ER)/

Golgi-independent pathway, which is poorly characterized (Qu

et al., 2007; Ogura et al., 2006; Donaldson et al., 1998; Dinarello,

2002; Carta et al., 2006; Andrei et al., 2004). Several other leader-

less but secreted proteins have been identified, which may leave

the cell by a similar pathway as IL-1b (Cleves, 1997; Nickel, 2005;

Rubartelli, 2005). Some of them, e.g., the proangiogenic growth

factor FGF-2 (basic FGF), clearly fulfill an extracellular function,

whereas such a function is less obvious for annexins 1 and 2, ga-

lectins, or EBBP/TRIM16 (Rubartelli, 2005; Nickel, 2005; Feld-

meyer et al., 2007; Cleves, 1997). Interestingly, caspase-1 and

other inflammasome proteins are also released from activated

macrophages or UV-irradiated keratinocytes, although all these

proteins lack a signal peptide (Martinon et al., 2002; Martinon

and Tschopp, 2004; Mariathasan et al., 2004; Feldmeyer et al.,

2007). Secretion occurs quickly after activation of the inflamma-

some, which is thought to prevent apoptosis (Mariathasan et al.,

2004; Martinon et al., 2002; Martinon and Tschopp, 2004). The

correlation between inflammasome activation and secretion

also raises the questions of whether inflammasome activation

and unconventional protein secretion are linked and whether

the inflammasome and caspase-1 in particular are components

of the secretion machinery (Ogura et al., 2006).

ProIL-1a, the functional analog of proIL-1b, is also secreted in-

dependently of the ER/Golgi system (Dinarello, 1998). However,

it is not a substrate of caspase-1 and does not require
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processing for receptor binding (Dinarello, 1998). Surprisingly,

activated macrophages from caspase-1- or NALP3-deficient

mice are not only impaired in IL-1b secretion but also release

less IL-1a (Kuida et al., 1995; Li et al., 1995; Sutterwala et al.,

2006). Although it is not known whether this is a direct effect of

caspase-1 expression or activity, it raises the possibility that

caspase-1 and the inflammasome are generally involved in se-

cretion of leaderless proteins.

Here we demonstrate that caspase-1 activation by the inflam-

masome is directly linked to IL-1a secretion from activated mac-

rophages and UV-irradiated keratinocytes. In addition, secretion

of FGF-2 also depends on caspase-1 expression and activity.

Both proteins bind to caspase-1, suggesting a role of the prote-

ase as a carrier in an ER/Golgi-independent protein secretion

pathway. Interestingly, secretion of caspase-1 itself requires

enzymatic activity, and caspase-1 inhibition therefore prevents

secretion of its binding proteins. Finally, using a proteomics ap-

proach, we identified known as well as unknown leaderless pro-

teins, which are secreted in a caspase-1-dependent manner.

RESULTS

Secretion of proIL-1a Requires Caspase-1 Activity
To confirm the reduced secretion of IL-1a from caspase-1-defi-

cient macrophages (Kuida et al., 1995; Li et al., 1995) and to de-

termine the underlying mechanism, we isolated peritoneal mac-

rophages from these mice and their wild-type littermates and

activated them with lipopolysaccharide (LPS) and ATP. We mea-

sured the percentage of released IL-1a and -b by ELISA. As a con-

trol for unspecific lysis, we analyzed the ratio between the activity

of the cytoplasmic enzyme lactate dehydrogenase (LDH) in the

supernatant and the total activity (cell lysate plus supernatant

[Figure 1A]). As expected, we found significantly reduced levels

of IL-1a in the supernatant of caspase-1-deficient cells, although

the reduction in IL-1b secretion was more pronounced

(Figure 1A). Activated wild-type macrophages treated with

a specific caspase-1 inhibitor (ac-YVAD-cmk) or a pan-caspase

inhibitor (z-VAD-fmk) showed a similar reduction in IL-1a and

-b secretion to caspase-1 knockout macrophages (Figure 1A),

demonstrating that the enzymatic activity of caspase-1 is re-

quired. In contrast to previous studies (Kuida et al., 1995; Li

et al., 1995), we still detected secretion of low amounts of IL-1b

by caspase-1-deficient cells. This result may be in part due to

a minor crossreactivity of our ELISA with the pro-form of the cy-

tokine or it may indicate that (pro)IL-1b secretion is predominantly

but not fully dependent on caspase-1 activity in macrophages.

Keratinocytes secrete proIL-1a and -b upon UVB irradiation,

and we recently showed that maturation of proIL-1b is inflamma-

some dependent (Feldmeyer et al., 2007). In contrast to macro-

phages, keratinocytes do not process proIL-1a. This allows

a quantitative determination of its secretion, irrespective of dif-

ferences in the affinity of the ELISA to the pro- or mature forms.

siRNA-mediated reduction of caspase-1 levels strongly de-

creased the secretion of IL-1b as well as of proIL-1a upon irradi-

ation with a physiological dose of 50 mJ/cm2 UVB (Figure 1B). As

a positive control we reduced the expression of EBBP/TRIM16,

which is an enhancer of IL-1b secretion (Munding et al., 2006).

These results revealed that secretion of both types of IL-1 by
UVB-irradiated keratinocytes correlates with expression of cas-

pase-1 and EBBP.

Furthermore, treatment of keratinocytes with caspase-1 in-

hibitors strongly inhibited maturation and secretion of proIL-1b

and also reduced secretion of proIL-1a to the same extent

(Figure 1C). Therefore, efficient secretion of proIL-1a by kerati-

nocytes also depends on caspase-1 activity and not only on

expression of the protease.

To exclude the possibility that proIL-1a secretion is a result of

caspase-1-mediated release of IL-1b or other factors, we incu-

bated keratinocytes with conditioned medium of UVB-irradiated

keratinocytes. This treatment did not enhance proIL-1a secre-

tion but rather reduced it (Figure 1D).

To determine the specificity of the effect for IL-1 we analyzed

the release of various other cytokines from UVB-irradiated kera-

tinocytes using a multiplex cytokine assay. Whereas secretion of

IL-1b was clearly reduced by caspase-1 siRNA, secretion of cy-

tokines, which harbor a signal peptide, was not affected (data

not shown).

Caspase-1 is activated by inflammasome complexes in mac-

rophages and keratinocytes (Ogura et al., 2006; Feldmeyer et al.,

2007). Since macrophages from mice lacking the inflammasome

protein NALP3 secrete lower amounts of IL-1a than macro-

phages from wild-type littermates (Sutterwala et al., 2006), we

analyzed the influence of several inflammasome proteins on

the UVB-induced proIL-1a secretion from keratinocytes by

siRNA-mediated knockdown (Figure 1E). Interestingly, knock-

down of Asc and NALP3, which are required for proIL-1b matu-

ration, also affected proIL-1a secretion. These results suggest

that a common mechanism involving caspase-1 and inflamma-

some components underlies the secretion of both IL-1 variants.

Secretion of IL-1 and Caspase-1 Depends on Enzymatic
Activity of Caspase-1
Upon assembly of inflammasome complexes caspase-1 is acti-

vated, resulting in the formation of an a2b2 heterotetramer, which

consists of two p20 (containing the active site) and two p10 sub-

units (Dinarello, 1998; Ogura et al., 2006). Since proIL-1a is not

a substrate of the active caspase-1 heterotetramer, it is unclear

why secretion of IL-1a is reduced by caspase-1 inhibitors (Fig-

ures 1A and 1C). Either the active heterotetramer has secre-

tion-promoting activity or this function can be fulfilled by the het-

erotetramer, irrespective of its activity. Caspase-1 inhibitors

prevent tetramerization of caspase-1 and could therefore block

IL-1a secretion by this mechanism. To distinguish between these

possibilities, we performed experiments with recombinant pro-

teins expressed in COS-1 cells, which allowed us to determine

the influence of active or inactive a2b2 heterotetramers with a mu-

tated active site cysteine. First, we compared the effect of wild-

type and inactive procaspase-1 on maturation of proIL-1b and

secretion of proIL-1a and IL-1b (Figure 2A). As expected, COS-

1 cells overexpressing caspase-1 with a mutated active site cys-

teine (C285A, C285S) secreted less proIL-1a, mature IL-1b, and

interestingly also proIL-1b. This was not due to unspecific re-

lease after cell lysis, as we found the same amount of b-actin

and similar LDH activities in the supernatants of all transfected

cells (Figure 2A). Second, transfection of cells with expression

vectors encoding the individual p20 and p10 subunits of
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Figure 1. Secretion of proIL-1a Requires Caspase-1 Activity

(A) Peritoneal macrophages from caspase-1-deficient (�/�) or wild-type (+/+) mice were stimulated with LPS (1 mg/ml; 16 hr) followed by ATP (5 mM; 30 min) or

mock treated. Before ATP stimulation, cells were treated with a pan-caspase inhibitor (VAD; 10 mM) or a caspase-1 inhibitor (YVAD; 10 mM) or mock treated. The

percentages of IL-1a and -b release were determined by ELISA measurements of cytokine levels in supernatant and cell lysates. LDH activity served as a control

for cell lysis.

(B and E) Human primary keratinocytes were transfected with random (ctr.) or specific siRNAs (S1, S2) against caspase-1, EBBP (B), or the indicated inflamma-

some proteins (E). Forty-eight hours after transfection, cell lysates were analyzed by western blot analysis with the indicated antibodies (B) or 24 hr after trans-

fection by real-time RT-PCR (E, for knockdown efficiencies at the protein level see similar experiment in Feldmeyer et al., 2007). Alternatively, they were irradiated

24 or 48 hr after transfection with 50 mJ/cm2 and incubated for 4 hr. The percentages of released IL-1a and -b and cell lysis were determined as in (A).
820 Cell 132, 818–831, March 7, 2008 ª2008 Elsevier Inc.



caspase-1 resulted in formation of an active enzyme as reflected

by processing of proIL-1b, and secretion of IL-1b and proIL-1a

(Figure 2B). This activity was absent when p10 or p20 were trans-

fected alone. Upon transfection of the inactive p20(C285A) sub-

unit instead of the wild-type subunit, maturation of proIL-1b was

hardly detectable. Most importantly, the concentration of IL-1a

found in the supernatant under these conditions was also

much lower. These results demonstrate that enzymatically active

full-length caspase-1 or active heterotetramer are required for

efficient secretion of proIL-1a and IL-1b.

Since secretion of caspase-1 itself required an intact active site

(Figure 2A), we determined if this is also the case for the a2b2 tet-

ramer. For this purpose we transfected cells with Myc-tagged

p20. Processing of proIL-1b and secretion of IL-1b and proIL-

1a demonstrated the formation of a functional heterotetramer

(Figure 2C). Similar to procaspase-1 (Figure 2A), only active p20

was secreted but not the inactive mutants. Furthermore, secre-

tion of p20 was only detected in the presence of the p10 subunit,

demonstrating that only the tetramer but not the isolated p20

subunit is secreted (Figure 2D). However, secretion of enzymati-

cally inactive procaspase-1 was restored in the presence of

wild-type caspase-1 (Figure 2E). As expected, only caspase-1 in-

duced IL-1b secretion under these conditions, but not caspases-

5 or -9 (Figure S1 available online). To further address the role of

caspase-1 activity for secretion we performed an siRNA-medi-

ated knockdown of caspase-1 in keratinocytes and restored

the levels of caspase-1 by transfection with plasmids encoding

either wild-type or active site-mutated caspase-1. Upon UV irra-

diation, only the wild-type protein restored secretion but not the

mutated protein (Figure S2). Similarly, YVAD treatment of kerati-

nocytes before irradiation reduced the secretion of procaspase-1

and particularly of activated caspase-1 (Figure 2F).

We conclude from these experiments that procaspase-1 and

the a2b2 heterotetramer require enzymatic activity to promote

secretion of IL-1 and their own secretion.

Caspase-1 Binds to proIL-1a

ASC is an example of an unconventionally secreted protein,

which is not a substrate of caspase-1 but a binding partner

(Mariathasan et al., 2004). To determine if proIL-1a binds to

caspase-1, we immunoprecipitated IL-1a from lysates of UVB-

irradiated or control keratinocytes. Indeed, caspase-1 was pres-

ent in the precipitate of both samples. Interestingly, the amount

of caspase-1 bound to IL-1a was clearly enhanced 30 min after

irradiation (Figure 3A). Therefore, UV irradiation enhances direct

or indirect association of both proteins and concomitant secre-

tion of IL-1a. Binding was confirmed by coimmunoprecipitation

of proteins overexpressed in COS-1 cells (Figure 3B), indicating

a direct interaction. ProIL-1a bound to the p20 subunit of cas-

pase-1 but not to the CARD, which is an adaptor domain for ho-

motypic interactions (Figure 3B). Interaction between proIL-1a
and the p20 subunit was independent of the active site cysteine

(Figure 3C).

Caspase-1 Is a Binding Partner of FGF-2 and Enhances
Its Secretion
The effect of caspase-1 on secretion of both IL-1 variants raises

the possibility of a more general role of caspase-1 in unconven-

tional secretion. To address this question we determined if cas-

pase-1 affects release of FGF-2. The latter is a secreted growth

factor, although it lacks a signal peptide (Nickel, 2005). Interest-

ingly, FGF-2 exhibits a weak homology to IL-1 and shares the

same b strand fold (Dinarello, 1998). We used primary skin-de-

rived fibroblasts to study FGF-2 secretion because expression

of this growth factor is very low in macrophages and keratino-

cytes (data not shown). Irradiation of human fibroblasts with

a physiological dose of 5 mJ/cm2 UVA strongly increased

FGF-2 secretion (data not shown). Interestingly, knockdown of

caspase-1 in fibroblasts significantly reduced FGF-2 secretion

compared to cells transfected with scrambled siRNA or siRNA

corresponding to the unrelated VEGF-A (Figure 4A). The depen-

dence of FGF-2 secretion on caspase-1 expression was con-

firmed with fibroblasts from caspase-1 knockout mice and

wild-type littermates (Figure 4B). Furthermore, treatment of

human fibroblasts with caspase-1 inhibitors significantly re-

duced the amount of secreted FGF-2 (Figure 4C), demonstrating

that efficient FGF-2 secretion requires not only caspase-1 ex-

pression but also caspase-1 activity. However, UV-induced se-

cretion of FGF-2 was not fully dependent on caspase-1 since

low amounts were still secreted in the absence of this proteinase.

We next examined a possible interaction between caspase-1

and FGF-2 in UVA-irradiated human fibroblasts by coimmuno-

precipitation (Figure 4D). Indeed, interaction of the endogenous

proteins was observed in these cells. As shown for the interac-

tion with IL-1a, caspase-1 interacted with FGF-2 through the

p20 subunit (Figure 4E). These experiments revealed that cas-

pase-1 is also important for secretion of FGF-2, and that this

effect is most likely mediated via physical interaction.

As FGF-2 plays an important role in vascularization during cu-

taneus wound repair (Broadley et al., 1989), we analyzed this

process in 5 day wounds of caspase-1 knockout mice and

wild-type littermates. Interestingly, wound angiogenesis was

significantly reduced in caspase-1 knockout mice, suggesting

that the caspase-1-mediated release of FGF-2 may be relevant

in vivo under stress conditions (Figure S3).

iTRAQ Analysis Identifies Proteins that Are Secreted
in a Caspase-1-Dependent Manner
Finally, we used an unbiased proteomics approach to determine

a possible role of caspase-1 as a general regulator of unconven-

tional protein secretion. The mass-spectrometry-based iTRAQ

method (Ross et al., 2004) allows quantitative comparison of
(C) Human keratinocytes were treated with caspase inhibitors as in (A) and subsequently UVB-irradiated as in (B).

(D) Human keratinocytes were either incubated with conditioned medium (CM) or control medium and UVB-irradiated as in (B) or mock treated. CM was from

UVB-irradiated keratinocytes incubated for 4 hr and contained 73 ± 2 pg/ml IL-1a and 251 ± 22 pg/ml IL-1b. These values were subtracted accordingly before

calculating the IL-1 release of the cells grown in CM.

Bars represent mean ± standard deviation (SD) of three independent experiments. In (A) and (C), p values were calculated by Student’s t test against mock-

treated cells. In (B) and (E), p values were calculated by ANOVA with post Dunnett’s test against control cells.
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protein abundance by comparing MS-peak intensities of differ-

ent labels. We used keratinocytes for this experiment, as they

are less sensitive to cell lysis and concomitant unspecific protein

release than macrophages or fibroblasts. Using this approach

we identified proteins that are secreted from keratinocytes within

4 hr after UVB irradiation in the presence or absence of YVAD.

Proteins from the culture supernatants were concentrated,

digested, labeled with distinct iTRAQ labels, and mixed (ctr.

iTRAQ-116; YVAD iTRAQ-114). After two-dimensional LC-frac-

tionation, peptides were identified and quantified by tandem

mass spectrometry.

In total, 961 proteins were identified (see Supplemental Data).

The iTRAQ 116/114 ratios of the identified proteins ranged from

0.420 (secretion inhibited by caspase-1) to 1.889 (secretion pro-

moted by caspase-1). IL-1 receptor antagonist (IL-1Ra) was the

protein with the lowest iTRAQ ratio (1.220) for which we could ver-

ify a caspase-1-dependent secretion by western blot analysis or

multiplex cytokine array (Figure 5A and data not shown). There-

fore, we set the threshold to 1.220. Seventy-seven proteins re-

mained, which are likely to be secreted in a caspase-1-dependent

manner. The function of at least 26 of these proteins is known (Ta-

ble 1). Interestingly, seven of them are known to be secreted via

an ER/Golgi-independent pathway. They include annexin A2

(Danielsen et al., 2003), peroxiredoxin-1 (Chang et al., 2006), thy-

mosin b-10 (Huang et al., 2006a), cystatin-A (Heidtmann et al.,

1997), HMGI-C/HMGA2 (Donaldson et al., 1998), as well as mac-

rophage migration inhibitory factor (MIF) and galectin-3 (Rubar-

telli, 2005; Nickel, 2005). Eight other proteins harbor a signal pep-

tide. Four proteins, contactin-1, MMP14/(MT1-MMP), jagged-1,

and desmoglein-3, are transmembrane proteins, suggesting

that their detection in the supernatant is due to shedding.

To verify the results of the screen we analyzed the secretion

of several identified proteins in independent experiments. For

this purpose we performed western blot analyses of lysates

and supernatants from UV-irradiated cells after YVAD treatment

(Figure 5A) or after caspase-1 knockdown (Figure 5B). We

verified caspase-1-dependent secretion for uncleaved Bid,

Aip-1/Wdr-1, annexin A2, and peroxiredoxin-1. Secretion

of the leaderless protein thioredoxin-1 (Rubartelli, 2005) was

also dependent on caspase-1, although its iTRAQ ratio

suggested a caspase-1-independent secretion. In addition, cas-

pase-1-independent release or secretion was verified for b-ac-

tin, gelsolin, and FGF-BP.

Annexin A2 has been reported to be associated with exo-

somes (Fevrier and Raposo, 2004). Therefore, we analyzed the

possibility that annexin A2, caspase-1, and other unconvention-
ally secreted proteins are associated with vesicles in the super-

natant. However, ultracentrifugation of supernatant from UV-

irradiated keratinocytes (4 hr after irradiation) revealed that the

investigated proteins were not in vesicles but were in the soluble

fraction (Figure S4 and data not shown).

Finally, we determined whether the observed influence of cas-

pase-1 on secretion of various proteins is restricted to keratino-

cytes. For this purpose we analyzed cell lysate and supernatant

of activated THP-1 macrophages in the presence or absence of

YVAD (Figure 5C). The caspase-1-dependent secretion of the in-

vestigated proteins strongly correlated with the results obtained

with keratinocytes.

In summary, these experiments demonstrate a general role of

stress-activated caspase-1 and the inflammasome in unconven-

tional protein secretion.

DISCUSSION

Caspase-1 has a well-established function in inflammation via

the activation of proinflammatory cytokines (Dinarello, 1998). In

addition, it has been reported to mediate either cell death (Cook-

son and Brennan, 2001) or survival (Gurcel et al., 2006) upon in-

fection by certain pathogens. Here we found that activation of

caspase-1 by inflammasome complexes is directly linked to un-

conventional secretion of a variety of leaderless proteins, most

likely via a direct or indirect physical interaction.

Unconventional secretion has been a mystery since its discov-

ery but can be clearly distinguished from the classical secretion

pathway. Nevertheless, a generally accepted mechanism of

leaderless secretion is still missing, although several models ex-

ist (Andrei et al., 2004; Carta et al., 2006; MacKenzie et al., 2001;

Nickel, 2005; Qu et al., 2007; Rubartelli, 2005). It seems to be

a fast process, making it difficult to track proteins during their re-

lease. In addition, analysis of unconventional secretion has been

hampered by the fact that secretion was studied in different cell

types, making a comparison of the results very difficult. Further-

more, it is usually activated by cellular stress (e.g., heat shock for

FGF-2 release), which also results in cell lysis and in unspecific

release that masks regulated secretion.

In this study we demonstrate a role of enzymatically active

caspase-1 in secretion of leaderless proteins: (1) We confirmed

that activated macrophages from caspase-1 knockout mice se-

crete lower levels of IL-1a, which is not a substrate of caspase-1

(Figure 1A). Dependency of proIL-1a secretion on caspase-1

was also observed in UV-irradiated human keratinocytes (Fig-

ures 1B–1E), which represent an even better model because
Figure 2. Secretion of IL-1 and Caspase-1 Depends on Enzymatic Activity of Caspase-1

COS-1 cells were transiently transfected with expression plasmids coding for the indicated proteins (A–E). Lysates and supernatants were collected 12 hr after

transfection. Expression and secretion were determined by western blot analysis with the indicated antibodies. When tagged proteins were expressed, anti-

bodies against these epitopes were used. Cells were transfected with vectors encoding proIL-1a and -b and wild-type (wt) or an active site mutated (C285A,

C285S) procaspase-1 (A), the p10 subunit and the wt or C285A/C285S p20 subunit of caspase-1 (B), or the Myc-tagged wt or C285A/C285S p20 subunit (C).

(A–C) The percentages of IL-1a and -b release were determined by ELISA measurements of cytokine levels in the supernatants and cell lysates. LDH activity

served as control for cell lysis. Bars represent mean ± SD of three independent experiments; p values were calculated by ANOVA with post Dunnett’s test against

wt transfected cells. (D) Cells were transfected with expression vectors coding for p10 and Myc-tagged wt or C285A p20 subunits as indicated. (E) Cells were

transfected with vectors encoding Myc-tagged wt procaspase-1 and HA-tagged wt or C285A procaspase-1. (F) Human keratinocytes were treated with YVAD or

mock treated and irradiated with 50 mJ/cm2 UVB. Four hours post-irradiation, cell lysate and supernatant were collected and analyzed by western blot. Proteins

from the supernatant were either acetone precipitated (concentration factor = 3 in comparison to the amount of lysate) or concentrated by ultrafiltration (concen-

tration factor = 65 in comparison to the amount of lysate). The antibodies used are indicated.
Cell 132, 818–831, March 7, 2008 ª2008 Elsevier Inc. 823



Figure 3. Caspase-1 Binds to proIL-1a

Coimmunoprecipitation (CoIP) of proIL-1a and procaspase-1 or subdomains

of this protein from cell lysates is shown. Antibodies used for IP or western

blot analysis are indicated. When tagged proteins were expressed, antibodies

against these epitopes were used.

(A) Endogenous proIL-1a was precipitated from lysate of human primary ker-

atinocytes, which had been irradiated with 50 mJ/cm2 UVB 30 min before lysis

or not irradiated. Incubation with antibodies against the unrelated HA-epitope

was performed as a negative control (ctr.).

(B) COS-1 cells were transiently cotransfected with expression plasmids en-

coding the indicated proteins. Where indicated, HA- or Myc-tagged versions

of the proteins were expressed. Incubation with protein A sepharose alone

served as control (ctr.).

(C) As in (B) but with wild-type p20 compared to enzymatically inactive p20

(C285A).
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proIL-1a is not processed in these cells. We further demon-

strated that activation of caspase-1 and therefore secretion of

proIL-1a is mediated by the inflammasome (Figure 1E); (2) We

found that proIL-1a physically interacts with caspase-1 (Fig-

ure 3), suggesting that caspase-1 binding is a prerequisite for un-

conventional secretion and/or that caspase-1 acts as a transport

vehicle in this pathway. This interaction is enhanced by UV irra-

diation but is independent of the active site cysteine; (3) We

showed that the active site cysteine in procaspase-1 and in the

activated a2b2 tetramer is required for secretion of proIL-1a

and of pro- and mature caspase-1 itself (Figure 2). However, it

is not clear whether active caspase-1 is the carrier in the trans-

port process or whether it activates a secretion machinery via

its activity; (4) Secretion of FGF-2, which is released indepen-

dently of a signal peptide, was also dependent on UV-induced

caspase-1 activity in fibroblasts (Figures 4A and 4B), and FGF-

2 also interacted with caspase-1 in these cells (Figures 4D and

4E); and (5) iTRAQ proteomics identified additional proteins,

which are secreted upon activation of caspase-1. Because the

vast majority of identified proteins were found at similar concen-

trations in the supernatant of caspase-1 inhibitor-treated as well

as mock-treated cells (see Supplemental Data), these proteins

can be considered as controls for unspecific release due to cell

lysis (e.g., LDH) or to be secreted via the classical or another cas-

pase-1-independent pathway (e.g., gelsolin). Most importantly,

we identified several proteins that are secreted independently

of the ER/Golgi pathway. Caspase-1 may regulate the secretion

of some proteins indirectly, e.g., by enhancing their expression,

since only the supernatant was analyzed in the screen. At least

expression of IL-1Ra and RNase 7 is enhanced by IL-1 (Mee

et al., 2005; Harder and Schroder, 2002) and, therefore, indirectly

by caspase-1 activity. However, this possibility could be ruled

out for Bid, Aip-1/Wdr-1, annexin A2, and peroxiredoxin-1 by

western blot analysis of the lysates (Figure 5). Caspase-1 secre-

tion may also play a direct or indirect role in shedding because we

identified different amounts of transmembrane proteins in

caspase-1 inhibitor- and mock-treated cells (contactin-1,

MMP14/MT-MMP, desmoglein-3, jagged-1). Interestingly, amino-

terminal fragments of desmoglein-3, which cover the iTRAQ pep-

tide identified by MS/MS analysis, are present in human serum

and are the targets of autoantibodies in Pemphigus Vulgaris

(Lanza et al., 2006). Therefore, the stress-induced caspase-1 ac-

tivation may result in higher levels of antigen in patients suffering

from this autoimmune disorder.

Thioredoxin-1 is also secreted without a signal peptide (Rubar-

telli, 2005). Nevertheless, the average iTRAQ ratio of all detected

thioredoxin-1 peptides suggests a caspase-1-independent se-

cretion. We noticed, however, that the standard deviation be-

tween detected iTRAQ peptides was rather high in this case.

By western blotting we found that thioredoxin-1 secretion was

in fact strongly dependent on caspase-1 expression and activity.

The reason for this discrepancy between iTRAQ and the western

blot results may be due to posttranslational modifications of

thioredoxin-1 (Haendeler, 2006), which may give rise to variants

that are differentially detected by MS and by our antibody.

Although caspase-1 enhances secretion of various proteins,

low amounts of these proteins seem to be secreted in a cas-

pase-1-independent manner. This is especially true for proIL-1a



Figure 4. Caspase-1 Binds to FGF-2 and Promotes Its Secretion

(A–C) The percentage of FGF-2 release was determined by ELISA measurements of the growth factor in supernatants and cell lysates. LDH activity served as

control for cell lysis. Bars represent mean ± SD of three independent experiments. (A) Human primary fibroblasts were transfected with random (ctr.) or specific

siRNAs (S1, S2) against caspase-1 or VEGF. Forty-eight hours later, cells were either harvested for western blot analysis with the indicated antibodies or UVA-

irradiated with 5 mJ/cm2 and incubated for 6 hr. p values were calculated by ANOVA with post Dunnett’s test against control cells. (B) Caspase-1-deficient murine

fibroblasts (�/�) and wild-type (+/+) cells were UVB-irradiated with 40 mJ/cm2 UVB or mock treated. Cells and supernatants were harvested 6 hr later. p values

were calculated by Student’s t test against stimulated wild-type cells. (C) As in (A) but treated with caspase-1 inhibitors. p values were calculated by Student’s t

test against mock-treated cells.

(D and E) CoIP of FGF-2 and procaspase-1 or its subdomains is shown. Antibodies used for IP or western blot analysis are indicated. When tagged proteins were

expressed, antibodies against these epitopes were used. Treatment with protein A sepharose alone served as a negative control (ctr.). (D) CoIP of endogenous

FGF-2 and procaspase-1 from lysates of human primary fibroblasts. (E) COS-1 cells were transiently cotransfected with expression plasmids coding for the in-

dicated HA- or Myc-tagged proteins; lysates were used for CoIP.
(e.g., Figure 1A) and FGF-2 (Figures 4A and 4B). Importantly,

however, the relative amount of these proteins found in the

supernatant is significantly higher than the corresponding LDH

activity. This argues against unspecific release of these proteins
due to cell lysis and for a partial caspase-1-independent secre-

tion of these leaderless proteins. This may also explain why the

phenotype of mice lacking FGF-2 differs from that of caspase-

1 knockout mice under homeostatic conditions. However, we
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Figure 5. Identification of Proteins Secreted in a Caspase-1-Dependent Manner

Western blot analysis of selected secreted proteins using cell lysate and supernatant 4 hr after irradiation with 50 mJ/cm2 UVB (A and B) or 6 hr after LPS stim-

ulation (C). (A) Human keratinocytes were treated with YVAD or mock treated. (B) Human keratinocytes were transfected with specific siRNAs (S1, S2) against

caspase-1 or VEGF as a control. (C) THP-1 cells were differentiated with TPA (20 ng/ml; 72 hr). Cells were either YVAD or mock treated and stimulated with LPS

(1 mg/ml) or solvent.
found reduced wound angiogenesis in caspase-1 knockout

mice, which correlates with the known role of FGF-2 in vascular-

ization of skin wounds (Broadley et al., 1989). This suggests that

caspase-1-mediated release of FGF-2 may be particularly

important under stress conditions.

Interestingly, many of the proteins, which are secreted in a

caspase-1-dependent manner, are involved in inflammation,

cytoprotection, and/or tissue repair. Therefore, activation of

caspase-1 by various environmental challenges, e.g., UV

irradiation, infection, or wounding, seems to be coupled to the
826 Cell 132, 818–831, March 7, 2008 ª2008 Elsevier Inc.
release of proteins, which helps to restore the cell and tissue ho-

meostasis. This hypothesis is consistent with the predominant

expression of caspase-1 by inflammatory and epithelial cells

(Lin et al., 2000), which are particularly involved in cellular de-

fense mechanisms. Proteins such as IL-1, MIF, and thioredoxin

are critical extracellular regulators of inflammation (Rubartelli,

2005; Schwertassek et al., 2007). FGF-2 plays an important

role in tissue repair and angiogenesis, processes that are re-

quired during and after acute or chronic inflammation (Nickel,

2005; Rubartelli, 2005). Peroxiredoxin-1 and thioredoxin are



Table 1. Function and Properties of Selected Proteins Identified by iTRAQ

Protein Function

Subcellular

Localization SP Secretion

iTRAQ

116/114

iTRAQ

STDEV

iTRAQ

Peptides

Verification (Western Blot)

Keratinocytes

(UVB Irradiated)

Macrophages

(THP-1;

LPS/ATP stim.)

Inhibitor

(YVAD) siRNA

Inhibitor

(YVAD)

Bid (P55957) apoptosis,

cytochrome

C release

CP, mt

membrane

� unknown 1.889 � 1 YY Y YY

Aip1/Wdr1

(O75083)

cell motility,

actin

disassembly

CP � unknown 1.813 1.345 3 YY Y �

Coronin-3

(Q9ULV4)

actin

dynamics,

signal

transduction

CP � unknown 1.448 � 1 � � �

Annexin A2

(P07355)

Ca2+-

dependent

phospholipid

binding,

membrane

dynamics

membrane-

associated

basement

membrane,

EC

� nonclassical

[1–3]

1.408 0.405 48 Y Y YY

Glutathione

S-transferase

theta 2

(P30712)

detoxification CP � unknown 1.402 � 1 � � �

Contactin-1

(Q12860)

GPI-anchor,

cell

adhesion,

Notch

ligand

cell

membrane

(EC)

+ unknown 1.379 � 1 � � �

MMP14

(P50281)

activates

progelatinase,

angiogenesis,

tumor

invasion

single-pass

type I

membrane

protein

+ unknown 1.365 � 1 � � �

Macrophage

migration

inhibitory

factor

(P14174)

inflammation,

cell motility,

macrophage

regulation

at sites

of

inflammation

CP, EC � nonclassical

[4, 5]

1.347 0.488 3 � � �

Calnexin

(P27824)

ER chaperone ER

membrane,

single-pass

type I

membrane

protein

+ unknown 1.341 � 1 � �

Fli-1 (Q01543) transcription

factor

nucleus � unknown 1.335 � 1 � � �

Desmoglein-3

(P32926)

component of

desmosomes,

cell-cell

contact

single-pass

type I

membrane

protein

+ unknown 1.332 0.001 2 � � �

ARPC1

(O15143)

actin

dynamics

CP � unknown 1.330 � 1 � � �

(Continued on next page)
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Table 1. Continued

Protein Function

Subcellular

Localization SP Secretion

iTRAQ

116/114

iTRAQ

STDEV

iTRAQ

Peptides

Verification (Western Blot)

Keratinocytes

(UVB Irradiated)

Macrophages

(THP-1;

LPS/ATP stim.)

Inhibitor

(YVAD) siRNA

Inhibitor

(YVAD)

Kallikrein 10

(O43240)

protease EC + classical 1.289 � 2 � � �

PAI-1

(P05121)

protease

inhibitor

EC + classical 1.283 0.090 6 � � �

Peroxire-

doxin-1

(Q06830)

redox

regulation,

interacts with

the

thioredoxin

system

CP, EC � nonclassical

[6]

1.265 0.190 13 Y Y YY

Laminin b3

(Q13751)

mediates cell-

ECM contacts

EC + classical 1.261 0.083 7 � � �

Thymosin

b-10 (P63313)

cytoskeletal

organization

CP, EC � nonclassical

[7]

1.255 0.221 5 � � �

Cystatin-A

(P01040)

cathepsin

inhibitor

CP, EC � nonclassical

[8]

1.251 � 1 � � �

Jagged-1

(P78504)

notch

signaling

single-pass

type I

membrane

protein

+ unknown 1.247 0.028 2 � � �

Galectin-3-

binding

protein

(Q08380)

mediates

integrin-

mediated

cell adhesion

EC + classical 1.241 0.205 4 � � �

LEI (P30740) regulates

various

proteases

CP � unknown 1.240 0.137 7 � � �

RNase 7

(Q9H1E1)

antimicrobial,

induced by

IL-1b

EC + classical 1.235 � 1 � � �

Laminin a3

(Q6VU68)

ECM

component

EC + classical 1.233 0.227 20 � � �

HMGA2

(P52926)

chromatin

regulation

nucleus, EC � nonclassical

reported

for other HMG

proteins [9]

1.231 � 1 � � �

Galectin-3

(P17931)

Lectin, which

binds IgE,

stimulates

endothelial

cell migration

nucleus, EC � nonclassical

[5, 10]

1.220 0.137 8 � � �

IL-1Ra

(P18510)

inhibits IL-1R

type I

CP, EC + classical 1.220 0.178 3 � � �

FGF-binding

protein

(Q14512)

tissue repair,

angiogenesis,

enhances

FGF signaling

ES + classical 1.208 0.032 2 / / �

Gelsolin

(P06396)

cell motiliy CP, EC + classical 1.077 0.154 5 / / /

LDH (P00338) metabolism,

lysis marker

CP � no 1.071 0.255 6 � � �
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Table 1. Continued

Protein Function

Subcellular

Localization SP Secretion

iTRAQ

116/114

iTRAQ

STDEV

iTRAQ

Peptides

Verification (Western Blot)

Keratinocytes

(UVB Irradiated)

Macrophages

(THP-1;

LPS/ATP stim.)

Inhibitor

(YVAD) siRNA

Inhibitor

(YVAD)

Thioredoxin-1

(P10599)

redox

regulation

CP, EC � nonclassical

[8, 11–12]

0.957 0.472 13 YY Y YY

Galectin-1

(P09382)

apoptosis,

differentiation

CP, EC � nonclassical

[5, 10, 13]

0.939 0.240 12 � � �

EPLIN

(Q59FE8)

actin

dynamics

CP � unknown 0.742 0.144 10 � � �

GAPDH

(P04406)

metabolism CP � unknown 0.699 0.139 30 � � �

Lamin-A/C

(P02545)

nuclear lamina nuclear lamina � unknown 0.551 0.113 17 � � �

Selection of representative proteins identified by an iTRAQ secretome screen. Proteins with a known biological function as well as those for which

secretion is described in the literature are listed. The complete list of proteins with iTRAQ quantification can be downloaded (see Supplemental

Data). The verification by western blot corresponds to data in Figure 5. Abbreviations and symbols: CP, cytoplasm; EC, extracellular; mt, mitochondria;

SP, (ER) signal peptide; Y, reduced; YY, strongly reduced; /, secretion unaltered. Selected References: [1] Danielsen et al., 2003; [2] Faure et al.,

2002; [3] Zhao et al., 2003; [4] Lolis and Bucala, 2003; [5] Nickel, 2003; [6] Chang et al., 2006; [7] Huang et al., 2006b; [8] Di Quinzio et al., 2007; [9]

Nickel, 2005; [10] Hughes, 1999; [11] Nakamura et al., 2006; [12] Rubartelli et al., 1995; [13] Cooper and Barondes, 1990.
cytoprotective enzymes through their ability to detoxify reactive

oxygen species (Nakamura et al., 2006; Rubartelli, 2005). In

contrast, an extracellular function of caspase-1, Bid, and Aip-

1/Wdr-1 has not been described yet. It may well be that release

of these proteins is a means to reduce their intracellular concen-

tration. It has been suggested that secretion of active caspase-1

prevents cell death (Martinon et al., 2002; Martinon and

Tschopp, 2004). This could also be the case for Bid. Aip-1/

Wdr-1 regulates cell migration via cofilin-mediated actin depoly-

merization (Li et al., 2007). It can interact with caspase-11, which

in turn binds to caspase-1 (Wang et al., 1998). Therefore, this link

between Aip-1/Wdr-1 and caspase-1 suggests that a caspase-

1-mediated reduction in Aip-1/Wdr-1 via secretion inhibits cell

migration (Li et al., 2007). For annexin A2 and thymosin b-10 an

extracellular function has as yet not been described. However,

it has been demonstrated that these proteins regulate exocytosis

(Lorusso et al., 2006; Muallem et al., 1995). Therefore, the ob-

served secretion of these proteins may indicate a function in

the secretion process itself. It remains to be determined if

some of these proteins are direct caspase-1 substrates, which

regulate unconventional secretion, or if additional caspase-1

substrates are involved in this pathway. Recently, several cas-

pase-1 substrates have been identified, of which some are in-

volved in the regulation of the cytoskeleton and its dynamics

(Shao et al., 2007). In addition, some of the unconventionally se-

creted proteins that we identified in our iTRAQ screens (Supple-

mental Data and data not shown) may also be caspase-1-binding

proteins and substrates, and this should be tested in the future.

Possible candidates are involved in the dynamics of microtubuli

(e.g., EB1) or of the actin cytoskeleton (ADF, Aip-1, cofilin, ERM

proteins). Others are involved in exocytosis and membrane pro-

tein mobility (synaptotagmin, annexins) or in the regulation of

membrane composition (phospholipases and their regulators,
e.g., annexin A1). In support of this hypothesis, phospholipases

play a prominent role in lysosome-mediated secretion of IL-1b

(Andrei et al., 2004). All these proteins may be involved in vesic-

ular trafficking and may thus be components of a complex ma-

chinery that mediates unconventional secretion. The character-

ization of the latter will be a major task for the future.

In summary, our results demonstrate a role of caspase-1 in

ER/Golgi-independent protein secretion, one of the most poorly

characterized processes in cell biology. In particular, they

strongly suggest that stress-induced activation of the inflamma-

some and thereby of caspase-1 has unexpected consequences:

It not only induces inflammation via activation and secretion of

proinflammatory cytokines, but it also regulates the extracellular

levels of proteins involved in tissue repair and cytoprotection.

Therefore, it directly links inflammation to protective and regen-

erative processes.

EXPERIMENTAL PROCEDURES

Plasmid or siRNA Transfection of Cells

COS-1 cells were transiently transfected with expression plasmids using Lip-

ofectamine 2000 (Invitrogen, Basel, Switzerland). Cells were grown to 80%

confluency in 6-well plates. Immediately before transfection with 8 mg of plas-

mid DNA, growth medium was replaced by OptiMEM (Invitrogen).

Human keratinocytes were transfected with siRNA in 12-well plates using

Profectin65 (Atugen, Berlin, Germany) as described (Feldmeyer et al., 2007)

or INTERFERin (Polyplus, Illkirch, France). Human fibroblasts were grown to

semiconfluency and transfected with siRNAs (final concentration: 100 nM) in

12-well plates using INTERFERin.

Stimulation of Protein Secretion

Murine macrophages (2 3 105 cells/cm2) were grown in 24-well plates and

stimulated with 1 mg/ml LPS for 16 hr and subsequently with 5 mM ATP for

30 min. Medium was changed, and conditioned medium was harvested after

3 hr. Cells from four animals per genotype were pooled.
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THP-1 cells (2 3 105 cells/cm2) were differentiated with 20 ng/ml TPA for 3

days. Medium was changed and 10 mM caspase-1 inhibitor or solvent (DMSO)

was added. Thirty minutes later, cells were treated with 1 mg/ml LPS. Cells and

supernatant were harvested after 4 hr.

Human keratinocytes were either transfected with siRNA or treated with

10 mM caspase inhibitors or solvent (DMSO) only. Forty-eight hours after trans-

fection the medium was changed if not otherwise indicated and cells were

irradiated with UVB (50 mJ/cm2). For treatment with inhibitors the medium

was changed before addition of inhibitor; cells were irradiated 45 min later.

Secreted proteins were collected after 4 hr.

Murine and human fibroblasts were grown to confluency in 12-well plates in

medium lacking FCS but supplemented with 1 U/ml heparin. Cells were then

irradiated (40 mJ/cm2 UVB for murine cells, 5 mJ/cm2 UVA for human cells)

in medium lacking phenol red, and conditioned medium was harvested 6 hr

later. Irradiation was performed 48 hr after siRNA transfection or 30 min after

addition of inhibitor. For experimental replicates, explant cultures from differ-

ent animals were used.

COS-1 cells were left untreated, but medium was replaced 24 hr posttrans-

fection, and secreted proteins were collected 12 hr later.

Measurement of Protein Release from Stimulated Cells

After stimulation of cells, the supernatant was removed and adherent plus

pelleted cells (1500 3 g for 10 min) from the supernatant were lysed in 2%

Triton X-100 in PBS. For immunoblotting, the supernatant was acetone pre-

cipitated. For ELISA, multiplex cytokine, and LDH measurements, the lysate

was diluted with culture medium to the initial culture volume. The percent of

release was individually calculated for each well according to the formula:

% release = SN
SN + Lys, where SN is the amount in the supernatant and Lys the

amount in the lysate.

Each experiment was performed with triplicate dishes. ELISA and LDH mea-

surements were performed in duplicate. ELISA kits against human and murine

IL-1a, IL-1b, and FGF-2 were from R&D systems (Minneapolis, MN, USA). LDH

activity assay was from Promega (Madison, WI, USA). Multiplex cytokine mea-

surements were performed with the Bioplex multiplex cytokine measurement

system (Bio-Rad, Hercules, CA, USA).

iTRAQ Labeling

Human keratinocytes were grown in 14 cm dishes to 70% confluency. After

three PBS washes, medium was replaced with Hanks’ balanced salt solution

(H 6648, Sigma) supplemented with 0.09 mM CaCl2 and 0.5 mM MgCl2. Cells

were either treated with 10 nM caspase inhibitors or solvent only and UVB-ir-

radiated as described above. After centrifugation the supernatant was cleared

by filtration (0.45 mm pore size). Supernatant of 10 dishes was concentrated to

a volume of 1 ml with Amicon ultrafiltration units (5 kDa MWCO, Millipore, Bill-

erica, MA, USA). Protein concentrations were determined by Bradford assay

and by optical density at 280 nm.

Both samples were adjusted to the same protein concentration, and 150 mg

of each was precipitated with acetone. Trypsin digestion and labeling with

iTRAQ reagents were performed according to the supplier’s instructions (Ap-

plied Biosystems, Foster City, CA, USA). The inhibitor-treated sample was la-

beled with the 114-dalton label, the DMSO treated sample with the 116-dalton

label, respectively.

Statistical Analysis

Statistical analysis was performed using the Prism Software (GraphPad Soft-

ware, San Diego, CA, USA). Where multiple groups were compared to one

control group, one-way ANOVA with posterior Dunnett’s correction was per-

formed. Different treatments were compared to control treatment by Student’s

t test. All tests were one-tailed; * p < 0.05; ** p < 0.01; *** p < 0.001; ns, not

significant.

SUPPLEMENTAL DATA

Supplemental Data include Experimental Procedures, four figures, and one ta-

ble and can be found with this article online at http://www.cell.com/cgi/

content/full/132/5/818/DC1/.
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