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Abstract

We present conditions under which one can bound the probabilistic relationships

between random variables in a Bayesian network by exploiting known or induced

qualitative relationships. Generic strengthening and weakening operations produce

bounds on cumulative distributions, and the directions of these bounds are maintained

through qualitative influences. We show how to incorporate these operations in a state-

space abstraction method, so that bounds provably tighten as an approximate network

is refined. We apply these techniques to qualitative tradeoff resolution demonstrating an

ability to identify qualitative relationships among random variables without exhaus-

tively using the probabilistic information encoded in the given network. In an appli-

cation to path planning, we present an anytime algorithm with run-time computable

error bounds.
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1. Introduction

In the past decade, the Bayesian network has emerged as a premier modeling

formalism for representing and reasoning about uncertainty in complex ap-

plications [19,21]. A Bayesian network captures, respectively, structural and

numeric probabilistic relationships among random variables in terms of a di-

rected acyclic graph and conditional probability tables [24,40]. Given obser-

vations about some random variables, we evaluate the Bayesian network to

obtain the conditional probability distributions of random variables of interest.

The evaluation process is also known as inference in Bayesian networks, and
this active research field has seen a wide variety of approaches for computing

exact and approximate probability distributions [9]. Approximation algorithms

allow us to obtain useful information about the desired probability distribu-

tions at reduced computational costs when applications do not need or permit

exact inference. Development of improved approximation techniques for

Bayesian networks has in consequence become an active subject of research

[28,34].

D’Ambrosio [9] classifies approximation procedures into two categories.
Approximate inference methods compute distributions with special algo-

rithms using the original network [8,41], and model reduction methods em-

ploy exact algorithms after simplifying the original network [27,33,49]. We

can also distinguish approximation procedures in terms of the form of their

outcomes: whether they produce point-valued approximations [8,33,49], or

upper and/or lower bounds [12,23,25] of the desired probability distribu-

tions.

A common way of conducting approximate evaluation of Bayesian net-
works is to take advantage of special properties of the probability distributions

encoded by the given network. Many attempt to find and ignore relatively

irrelevant information in the network. For instance, Kjærulff and van Engelen

propose to approximate based on weak dependence among random variables

[27,49], and Liu and Wellman abstract away relatively unimportant states of

random variables [33]. Other approaches, such as variational methods [25],

exploit functional properties of the probability distributions.

In this paper, we report methods for computing bounds on probability dis-
tributions in Bayesian networks when some random variables have known

qualitative influences on others. Given such a Bayesian network, we can con-

struct an approximate network that encodes bounds on the original probability

distributions. Evaluating this approximate network can yield bounds on the

desired probability distributions at reduced computation time in applications

[31]. We illustrate the application of these bounds in two contexts: resolving

ambiguous qualitative probabilistic relationships among variables in Bayesian

networks, and searching for the best travel plan in stochastic transportation
networks. In the first application, it is possible to resolve the ambiguities
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without using complete probabilistic information [30]. In the second, it is pos-

sible to find travel plans with bounded degrees of suboptimality [29,32].
Section 2 provides background information for the remainder of this paper.

In Section 3, we explain how given qualitative influences among random

variables allow us to transform a Bayesian network into another that expresses

bounds on its original probability distributions. We operationalize the basic

concepts in the context of a method for state-space abstraction, with special-

ized operations to exploit the given qualitative information [33]. We then re-

port applications of the techniques to two different problems in the following

sections. In Section 4, we apply the bounding procedures to derive additional
qualitative relationships among random variables in Bayesian networks. Sec-

tion 5 tackles path-planning problems in stochastic transportation networks.

Our algorithm compares merits of paths based on bounds on probability dis-

tributions over travel times of alternative paths. We also discuss some gener-

alization of our basic bounding concepts.

2. Background

Bayesian networks are directed acyclic graphs augmented with conditional

probability tables. Nodes in the network represent variables, and links denote
unconditional dependence relationships between variables [40]. We denote

variables by capital letters and sets of variables by bold-faced capital letters.

Since we use nodes to represent variables, we use ‘‘variables’’ and ‘‘nodes’’

interchangeably henceforth. Values of variables are called states and denoted

by corresponding small letters. When necessary, we use superscripts to dis-

tinguish variables that belong to a set of variables, and subscripts to distin-

guish states of a variable. For instance, X represents a set of variables, and

this set may contain three nodes X 1, X 2, and X 3. The state space of the var-
iable X 1 may contain three possible states x11, x

1
2, and x

1
3. The cardinality of a

variable is the number of states in its state space. Hence, the cardinality of X 1

is three.

Each node in a Bayesian network has a conditional probability table that

specifies the probability distribution of the node given the states of parent

nodes of the node. Variables at the tail of the incoming links of X are parents of

X , denoted PðX Þ, and variables at the head of the outgoing links of X are

children of X , denoted CðX Þ. The definitions of parents and children have
natural extensions. Ancestors of a node consist of its parents and, recursively,

ancestors of its parents. Analogously, descendants of a node consist of its

children, and recursively, descendants of its children. We use the shorthand

PrðxjpðX ÞÞ to represent an entry, PrðX ¼ xjPðX Þ ¼ pðX ÞÞ, in the conditional

probability table associated with node X .
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2.1. Qualitative relationships

A qualitative method for reasoning about uncertainty attempts to support

valuable inferences without full numeric specification of uncertain relationships

[38]. The qualitative relationships used in our algorithms were first defined for

qualitative probabilistic networks (QPNs) [50]. QPNs are abstractions of

Bayesian networks, with conditional probability tables summarized by the

signs of qualitative relationships between variables. Each arc in the network is

marked with a sign––positive (+), negative ()), or ambiguous (?)––denoting the
sign of the qualitative probabilistic relationship between its terminal nodes.
The interpretation of such qualitative influences is based on first-order sto-

chastic dominance (FSD) [15]. Let F ðxÞ and F 0ðxÞ denote two cumulative dis-

tribution functions (CDFs) of a random variable X . Then F ðxÞFSDF 0ðxÞ holds
if and only if (iff)

F ðxÞ6 F 0ðxÞ for all x:

We say that one node positively influences another iff the latter’s conditional

distribution is increasing in the former, all else equal, in the sense of FSD.

Definition 1 [50]. Let F ðyjxi; pxðY ÞÞ be the cumulative distribution function of Y
given X ¼ xi and the rest of Y ’s parent nodes PXðY Þ ¼ pxðY Þ. We say that

node X positively influences node Y , denoted SþðX ; Y Þ as illustrated in Fig. 1,
iff

8xi; xj; pxðY Þ; xi6 xj ) F ðyjxj; pxðY ÞÞFSDF ðyjxi; pxðY ÞÞ:

Analogously, we say that node X negatively influences node Y , denoted
S	ðX ; Y Þ, when we reverse the direction of the dominance relationship in

Definition 1. The arc from X to Y in that case carries a negative sign. When the

dominance relationship holds for both directions, we denote the situation by

S0ðX ; Y Þ. However, this entails conditional independence, and so we typically
do not have a direct arc from X to Y in this case. When none of the preceding

relationships between the two CDFs hold, we put a question mark on the arc,

Fig. 1. X positively influences Y (xi6 xj). The ‘‘cloud’’ represents all parents, excluding X , of Y , and
the thick link represents the links from the cloud to Y .
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and denote such situations as S?ðX ; Y Þ. We may apply the preceding definitions

to Boolean nodes under the convention that false< true.
A particularly useful implication of the dominance relationship

F1ðxÞFSDF2ðxÞ [53] is that for all monotonically increasing functions g,Z
gðxÞdF1ðxÞP

Z
gðxÞdF2ðxÞ: ð1Þ

2.2. Bounds of probability distributions

Definition 2. A CDF F ðxÞ is an upper bound of F ðxÞ, if F ðxÞFSDF ðxÞ. A CDF

F ðxÞ is a lower bound of F ðxÞ, if F ðxÞFSDF ðxÞ.

Our algorithms compute bounds of CDFs that are defined in terms of FSD

relationships. As illustrated in Fig. 2, the curves for an upper and a lower

bound run through the area, respectively, above and below the curve for

the original CDF. Assume that X positively influences Y , and apply EH ½Y � ¼R
x gðyjxÞdHðxÞ with (1). We can verify that the mean values, EF ½Y �, EF ½Y �, and
EF ½Y � of Y computed with HðxÞ ¼ F ðxÞ, HðxÞ ¼ F ðxÞ, and HðxÞ ¼ F ðxÞ has the
relationship: EF ½Y �6EF ½Y �6EF ½Y �.
Bounds on CDFs induce lower and upper probabilities [6] on particular

events. Let M denote the event that xi < X 6 xj. The lower and upper proba-
bilities of M , denoted by PrðMÞ and PrðMÞ, respectively, are:

PrðMÞ ¼ maxð0; F ðxjÞ 	 F ðxiÞÞ ð2Þ

and

PrðMÞ ¼ F ðxjÞ 	 F ðxiÞ: ð3Þ

PrðMÞ is guaranteed to be between 0 and 1 since 1P F ðxjÞP F ðxiÞP F ðxiÞP 0.

We can show, by simple algebraic manipulation, that the lower and upper

probabilities defined in (2) and (3) have several desirable properties as bounds

for the probability distribution of X , including superadditivity, subadditivity,
and 2-monotone properties [6].

Fig. 2. Bounds of CDFs are defined in terms of FSD relationships.
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2.3. State-space abstraction methods

In previous work [33], we reported an iterative state-space abstraction

(ISSA) algorithm for approximate evaluation of Bayesian networks. The ISSA

algorithm aggregates states of variables into superstates to construct abstract

versions of the original Bayesian networks (OBNs) that specify exact proba-

bility distributions. We use these abstract Bayesian networks (ABNs) to com-
pute point-valued approximations of the probability distributions of interest.

To construct ABNs, we select some nodes, called abstracted nodes, from the

OBNs, and aggregate their states. As a consequence of state aggregation, we
need to assign the CPTs of both the abstracted nodes and their child nodes.

Since a superstate is an aggregation of original, consecutive states, its con-

ditional probability is the sum of conditional probabilities of its constituent

original states. Using cPrð�Þ to denote probability values in abstract Bayesian

networks, we have

cPrð½ak;l�jpðAÞÞ ¼ Xl
j¼k

PrðajjpðAÞÞ; ð4Þ

where ½ak;l� is the superstate aggregating ak through al, k6 l. We determine the

CPTs of children of the abstracted nodes according to the average policy [33]:

cPrðyj½ai;j�; pxðY ÞÞ ¼ 1

j	 iþ 1

Xj
k¼i

Prðyjak; pxðY ÞÞ: ð5Þ

We adopt uniform assumptions in assigning probability values of the super-

states, and weigh the components of Y ’s conditioning states equally. If we have
information about the relative importance of Prðyjak; pxðY ÞÞ, such as marginal
probabilities Prðak; pxðY ÞÞ for some ak and pxðY Þ, we may assign the new

conditional probability tables more precisely. In Section 3.2 we introduce a

new policy that enables ISSA to compute bounds of cumulative distribution

functions.

Algorithm 1 (ISSA [33]). Iterative State-Space Abstraction

1. Abstraction: Construct an approximated network of the original network by

aggregating states and reconstructing CPTs.

2. Inference: Evaluate the approximated network to obtain approximations of
interest.

3. Termination?: Check whether the algorithm should stop, using application-

dependent criteria. If yes, return the current solution. Otherwise, go to the

next step. The algorithm will stop when there is no superstate in the current

network.

4. Refinement: Select which superstate should be split, return to step 1.
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The methods that we employ to select superstates for refinement at step 4

greatly influence the quality of approximations. The so-called Most Probable
SuperState (MPSS) method splits the superstate that has the largest marginal

probability [33]. Splitting the most probable superstate has the intuitive im-

plication of making the ABNs more similar to their original OBNs, and has

performed well in some of our tests. Some other control heuristics are discussed

in the original work [33].

3. Bounding probability distributions

In this section we apply the state space abstraction methods [33] for com-

puting bounds of probability distributions. The first subsection discusses the

general concepts for computing bounds of selected conditional CDFs in

Bayesian networks. The second subsection provides methods that realize the

concepts in the ISSA algorithm. These methods take advantage of qualitative

relationships among nodes for bounding probability distributions. We also

present methods for tightening the bounds.

3.1. Strengthening and weakening operators

We can compute bounds of some probability distributions by strengthening

and weakening selected CDFs in Bayesian networks. Let Y be a child of A, and
denote the set of parents of Y excluding A by PXðY Þ.

Definition 3. We strengthen F ðyja; pxðY ÞÞ with respect to A by replacing

F ðyja; pxðY ÞÞ with F 0ðyja; pxðY ÞÞ such that

F 0ðyja; pxðY ÞÞFSDF ðyja; pxðY ÞÞ; for all a:

We weaken F ðyja; pxðY ÞÞ when the FSD relationship is reversed.

The most important effect of strengthening the CDF F ðyja; pxðY ÞÞ with
respect to A is to increase the probability of Y being a larger value for some

states of A. For instance, if we replace F ðyjxi; pxðY ÞÞ by F ðyjxj; pxðY ÞÞ in Fig. 1,
the cumulative probability for Y being smaller than any y is either reduced or
not changed. Analogously, weakening F ðyja; pxðY ÞÞ with respect to A implies

that we decrease the probability of Y being a larger value for some states of A.
Using these strengthening and weakening operations, we may compute the
bounds of selected conditional probability distributions when some links

in a Bayesian network can be marked with decisive qualitative signs: ‘‘+’’ or

‘‘)’’.
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Example 1. Consider the network in Fig. 3, and assume that we strengthen

F ðyjxÞ with respect to X by replacing F ðyjxÞ with F 0ðyjxÞ such that
F 0ðyjxÞFSDF ðyjxÞ for all states of X . Since F ðzjxÞ ¼

R
y F ðzjyÞdF ðyjxÞ, we can

apply (1) to analyze the effects of strengthening F ðyjxÞ. Given that SþðY ; ZÞ
implies that F ðzjyÞ is decreasing in y, our strengthening F ðyjxÞ will increase the
probability of Y being a larger value, thereby decreasing F ðzjxÞ and obtaining a
lower bound of F ðzjxÞ for all x. As a result, we also have obtained a lower

bound of F ðzjwÞ for all w because F ðzjwÞ ¼
R
x F ðzjxÞdF ðxjwÞ.

This example illustrates that we may compute bounds of CDFs by locally
strengthening selected CDFs. Specifically, given SþðY ; ZÞ, we are able to

compute a lower bound of F ðzjwÞ by strengthening F ðyjxÞ with respect to X .
The strengthening of F ðyjxÞ can be carried out by using the values in the

conditional probability tables (CPT) associated with Y .
In the following theorem statements, we use ancestral ordering of nodes as

defined below.

Definition 4 (cf . [35]). Let J denote a set of nodes fJ 1; . . . ; Jng in a Bayesian
network. ½J 1; . . . ; Jn� is an ancestral ordering of the nodes in J if, for every

J i 2 J, all the ancestors of J i are ordered before J i.

The following theorem presents conditions for computing bounds of a

conditional CDF of a variable Z given the evidence E ¼ e by strengthening and
weakening the distributions of the children of a distinguished node A. We call

nodes whose values are instantiated evidence nodes, and we denote the set of

evidence nodes by E. Let Y be the children of A and Y i be a node in Y . The
theorem is applicable when children of A meet the stated requirements. We

denote the subset of the siblings of Y i in Y , Y n fY ig, by SBðY iÞ, and we use
the notation SriðY i; Zke;XÞ to represent that SriðY i; ZÞ given E ¼ e and all

possible instantiations of X , where ri is a sign for the qualitative relationship
between Y i and Z. The notation CIðX ; Y ; ZÞ means that X and Z are inde-

pendent conditional on the values of Y .

Theorem 1. Assume that:

1. For all i, SriðY i; Zke;SBðY iÞÞ, where ri is either +, ), or 0.
2. CIðZ; fE;Yg;AÞ.
3. E, A, and Y appear in order in an ancestral ordering.
4. For all i, Y i is not a descendant of nodes in SBðY iÞ. SBðY jÞ for all j.

Fig. 3. A Bayesian network with a link marked with a decisive qualitative sign.

38 C.-L. Liu, M.P. Wellman / Internat. J. Approx. Reason. 36 (2004) 31–73



When ri ¼ 	, we obtain, respectively, a lower bound and an upper bound of
F ðzjeÞ by weakening and strengthening F ðyija; pxðY iÞÞ with respect to A. When
ri ¼ þ, we obtain, respectively, an upper bound and a lower bound of F ðzjeÞ by
weakening and strengthening F ðyija; pxðY iÞÞ with respect to A. When ri ¼ 0,
neither strengthening nor weakening F ðyija; pxðY iÞÞ with respect to A affects
F ðzjeÞ.

Proof. Proof for this theorem is in Appendix A. h

Example 2. In the network shown in Fig. 4, the following conditions hold: (a)
SþðY 1; Zke; Y 2Þ and S	ðY 2; Zke; Y 1Þ for all e, (b) CIðZ; fE; Y 1; Y 2g;AÞ, (c)
½E;A; Y 1; Y 2� is an ancestral ordering, and (d) Y 1 is not a descendant of Y 2 and

vice versa. Therefore, we can obtain a lower bound of F ðzjeÞ for any E ¼ e by
strengthening F ðy1jaÞ or weakening F ðy2jaÞ with respect to A.

Theorem 1 can be applied to cases where we strengthen and weaken multiple

such F ðyija; pxðY iÞÞ, as long as these strengthening and weakening operations
are coordinated consistently so that the effects are to find a lower or an upper
bound of F ðzjeÞ. This extended interpretation of the theorem can be proved

inductively as follows. The theorem dictates that we obtain a bound of the

exact F ðzjeÞ by strengthening or weakening one particular F ðyija; pxðY iÞÞ.
Then, we can obtain a new bound of F ðzjeÞ by strengthening or weakening a
F ðyjja; pxðY jÞÞ in the ABN where some F ðykja; pxðY kÞÞ has been strengthened
or weakened. Therefore, by induction, we may coordinate the strengthening

and weakening operations to obtain lower (or upper) bounds of F ðzjeÞ by
strengthening or weakening the conditional probability distributions of all
nodes in Y with respect to A.
The first condition of Theorem 1 requires that Y i have a nonambiguous

qualitative relationship with Z. This qualitative relationship determines the

selection of strengthening and weakening operations for computing desired

bounds. The remaining conditions ensure that we can compute desired bounds

by locally modifying F ðyija; pxðY iÞÞ. Specifically, when A has multiple child

nodes Y , we can, simultaneously and independently, strengthen or weaken

the conditional probability distribution of each node in Y to obtained bounds
of F ðzjeÞ. Notice that this and the following theorem do not require a decisive

Fig. 4. An applicable example for Theorem 1.
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qualitative relationship between the evidence nodes E and the node of inter-

est Z.
The third and the fourth restrictive conditions are required, sufficient con-

ditions in the proof for Theorem 1. In the previous and the following examples,

although E, A, and Y form different topologies, we can compute the bounds of
the F ðzjeÞ. However, when the restrictions are violated, e.g., abstracting an-

cestors of E, we might not obtain desired bounds.

Example 3. Theorem 1 may be applicable to networks that are as complex as

the one shown in Fig. 5. In this network, we assume all links point from the left

to the right-hand side, and we use thick links to represent bunches of links that

might exist between clouds of nodes and individual nodes. With E ¼
fE1;E2;E3g, we can verify that CIðZ; fE;Yg;AÞ holds in this network. Also,
½E;A;Y � is an ancestral ordering, and Y i is not a descendant of SBðY iÞ for all
Y i. Therefore, Theorem 1 is applicable to any Y i that satisfies the first condition
in the theorem.

Theorem 1 cannot be applied to cases where A is a parent node of Z because
Y and Z represent distinct nodes. The following theorem specifies conditions

and methods for abstracting the parents of Z to compute bounds of F ðzjeÞ.

Theorem 2. In addition to conditions 3 and 4 of Theorem 1, assume that Z 2 Y .
We obtain, respectively, a lower and an upper bound of F ðzjeÞ by strengthening
and weakening F ðzja; pxðZÞÞ with respect to A.

Proof. Proof for this theorem is in the Appendix A. h

Example 4. In the network shown in Fig. 4, we have (a) ½E; Y 1; Z� is an ancestral
ordering and (b) Z is the only descendant of Y 1. Therefore, Theorem 2 is ap-
plicable, and we can obtain a lower bound of F ðzjeÞ by strengthening F ðzjy1Þ
with respect to Y 1. Analogously, we obtain a lower bound of F ðzjeÞ by

strengthening F ðzjy2Þ with respect to Y 2.

Theorems 1 and 2 also provide guidelines for obtaining tighter bounds. For

convenience, we say that GðxÞ is less dominating than HðxÞ if HðxÞFSDGðxÞ

Fig. 5. Another applicable example for Theorem 1.
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FSDF ðxÞ. Roughly speaking, the following corollary, which follows from

Theorem 1, states that we can obtain tighter bounds of F ðzjeÞ by setting
F ðyija; pxðY iÞÞ to a less (or more) dominating alternative.

Corollary 1. Let Gðyija; pxðY iÞÞ and Hðyija; pxðY iÞÞ be alternatives for weakening
F ðyija; pxðY iÞÞ with respect to A. Assume that Hðyija; pxðY iÞÞ is less dominating
than Gðyija; pxðY iÞÞ for all a and pxðY iÞ. Then, weakening F ðyija; pxðY iÞÞ by
Gðyija; pxðY iÞÞ rather than Hðyija; pxðY iÞÞ provides a tighter lower bound of
F ðzjeÞ when ri ¼ 	, and a tighter upper bound of F ðzjeÞ when ri ¼ þ.
Analogously, strengthening F ðyija; pxðY iÞÞ by a less dominating CDF provides

a tighter upper bound of F ðzjeÞ when ri ¼ 	, and a tighter lower bound of F ðzjeÞ
when ri ¼ þ.

Similarly, we may derive the following corollary from Theorem 2.

Corollary 2. Applying Theorem 2, we obtain tighter lower (upper) bounds of
F ðzjeÞ by setting F ðzja; pxðZÞÞ to a less (more) dominating alternative.

Notice that neither Theorem 1 nor Theorem 2 requires any particular

qualitative relationship between A and nodes in Y . The existence of a particular
qualitative relationship between A and nodes in Y facilitates, but is not re-

quired for, the application of the theorems.

3.2. State-space abstraction with the dominance policy

We can exploit these bounding relationships in ISSA by replacing the policy

for determining the CPTs of children of abstracted nodes. In place of the av-
erage policy (5), we adopt the dominance policy, which sets the CPTs to extreme
values. We may choose to strengthen or weaken selected conditional proba-

bility distributions, depending on whether we want to compute lower or upper

bounds of the desired CDFs. Let Y be a child node of abstracted node A, and
PXðY Þ be the subset of parent nodes of Y excluding A. If we choose to

strengthen the conditional probability distributions of Y with respect to A, we
assign the CPT of Y as follows:bF ðyj½ak;l�; pxðY ÞÞ ¼ min

j2½k;l�
F ðyjaj; pxðY ÞÞ: ð6Þ

Similarly, to weaken the conditional probability distributions of Y with respect

to A, assignbF ðyj½ak;l�; pxðY ÞÞ ¼ max
j2½k;l�

F ðyjaj; pxðY ÞÞ: ð7Þ

Application of (6) and (7) becomes easier when the links from the abstracted

node to its child nodes can be marked with decisive qualitative signs. For
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instance, if the sign from A to Y is ‘‘+’’, we can move the min operator into F ð�Þ
in (6). The operator becomes maxj2½k;l� aj, so the right-hand side becomes
F ðyjal; pxðY ÞÞ. Analogously, using the same rewriting procedure, the right-

hand side of (7) becomes F ðyjak; pxðY ÞÞ. However, the application of (6) and

(7) does not require any particular qualitative relationship between A and Y .

3.2.1. Single node abstraction

We discuss the application of Theorem 1 and Corollary 1. The application
of Theorem 2 and Corollary 2 is analogous. We operationalize Theorem 1

using the dominance policy in the state-space abstraction methods. To com-

pute bounds of the desired CDFs F ðzjeÞ, we can abstract the state space of any
node A that meets the conditions of the theorem. We may apply the inference

algorithms for QPNs [14] to locate those nodes whose children have unam-

biguous qualitative relationships with Z as specified in the first condition of the
theorem. We apply (4) to assign the CPT of A, and we apply (6) or (7) to assign
the CPTs of the child nodes of A. The selection of (6) or (7) depends on whether
we want to compute lower or upper bounds of the desired CDFs, and Theorem

1 provides guidelines for the selection.

The CDF F ðzjeÞ specified in the ABNs constructed with the dominance

policy is a bound of the CDFs of the F ðzjeÞ specified in the OBNs. This is due
to Theorem 1 and the fact that we can show that the effects of applying the

dominance policy in abstracting nodes are equivalent to strengthening (or

weakening) the conditional probability distributions of the children of the

abstracted nodes.
To prove this, we need to compare the probability values of the states aj,

j ¼ k; . . . ; l, aggregated in a superstate ½ak;l� in the OBNs and ABNs in order to
apply the aforementioned theorems in analyzing the effects of the dominance

policy. In terms of Theorem 1, we want to strengthen or weaken F ðyija; pxðY iÞÞ
to obtain desired bounds when we abstract node A. However, the state space of
A in an ABN is smaller than that of A in the OBN due to state space ab-

straction, so we do not have corresponding Prðyijaj; pxðY iÞÞ for all j ¼ k; . . . ; l
in the ABN. Fortunately, we may show that the strengthening and weakening
operations in the dominance policy have the effects of strengthening and

weakening distributions that we defined in Section 3.1. We show this by

transforming the ABNs into equivalent abstract Bayesian networks and

comparing these equivalent networks with the OBNs.

Definition 5 [33]. An equivalent abstract Bayesian network (EABN) adopts the

state space of the OBN, and preserves the joint probability distribution of the

unabstracted nodes in the ABN.

We have shown that it is already possible to construct an EABN based on

the given OBN and its ABN [33]. When we abstract only one node, A, in the

42 C.-L. Liu, M.P. Wellman / Internat. J. Approx. Reason. 36 (2004) 31–73



OBN to obtain the ABN, we construct the EABN by duplicating the graphical

structure of the OBN. Then we set the CPTs of A and its children in the EABN,
denoted by fPrð�Þ, by the following formula when l 2 ½si; ti�.fPrðaljpðX ÞÞ ¼ PrðaljpðX ÞÞ andfPrðyjjal; pxðY jÞÞ ¼ cPrðyjj½asi;ti �; pxðY jÞÞ: ð8Þ

Notice that the CPTs of the children of the abstracted node in the EABN are

copied from those in the ABN. The procedure can be generalized to multiple

nodes as well [33]. Given the preservation of the joint distribution of the un-
abstracted nodes, we can use the EABN as a surrogate for the ABN when we

look into the probability distributions of the unabstracted nodes.

Now that the OBN and the EABN have the same state space, we can

compare their probabilities. As described above, the CPTs of the OBN and the

EABN differ only in the CPTs of the children of the abstracted node. Speci-

fically, (8) reveals the difference. The right-hand side of (8) comes from either

(6) and (7), depending on whether we strengthen or weaken the target distri-

butions. If we apply (6), we will have, for all aj, eF ðyjaj; pxðY ÞÞ6 F ðyjaj; pxðY ÞÞ.
Namely, the main difference between the OBN and the EABN is thateF ðyjaj; pxðY ÞÞFSDF ðyjaj; pxðY ÞÞ. Analogously, if we apply (7), the difference
will be that F ðyjaj; pxðY ÞÞFSD eF ðyjaj; pxðY ÞÞ.
Recall that we have proved that the EABN and the ABN have the same

joint distribution of the unabstracted nodes in [33]. Hence, we infer that, as

long as we do not abstract the evidence nodes, E, and the target node, Z, we
can obtain lower and upper bounds of F ðzjeÞ by respectively employing (6) and
(7) when we abstract A that meets all conditions in Theorem 1.
Furthermore, we can show that ISSA returns bounds that tighten in each

iteration using Corollary 1. The tightening bounds are due to the fact that, as

we split superstates, the reassigned CDFs, respectively, become less and more

dominating when we strengthen and weaken the original CDFs. Consider the

case in which we want to strengthen F ðyja; pxðY ÞÞ with respective to A. When

we split the superstate ½ak;l� into two superstates ½ak;m� and ½amþ1;l�, m 2 ðk; lÞ,
F ðyj½ak;l�; pxðyÞÞ for every y is replaced with corresponding F ðyj½ak;m�; pxðyÞÞ
and F ðyj½amþ1;l�; pxðyÞÞ. Using (6), we can easily verify that F ðyj½ak;l�; pxðyÞÞ is
not larger than F ðyj½ak;m�; pxðyÞÞ and F ðyj½amþ1;l�; pxðyÞÞ. As a result, the newly
reassigned CDFs are less dominating, and, according to Corollary 1, the

bounds of F ðzjeÞ tighten in each iteration of ISSA.

3.2.2. Multiple node abstraction

We may compute bounds of CDFs by abstracting multiple nodes that do
not share child nodes. With an analogous method used in the previous section,

we also can show that the bounds obtained by evaluating network with mul-

tiple abstracted nodes tighten as we split superstates.
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We assume that the purpose of abstracting nodes is to compute an upper

bound of F ðzjeÞ. The steps and analysis for computing lower bounds are again
analogous. We analyze the effects of abstracting multiple nodes by assuming

that we abstract one node at a time and that we abstract nodes Ai,
i ¼ 1; 2; . . . ;m. Let ABNi denotes the ABN that is constructed by sequentially

abstracting node A1 up to node Ai. Clearly, by applying the result from the

previous section, the F ðzjeÞ specified in ABNi is an upper bound of the F ðzjeÞ
specified in ABNi	1 since one more node is abstracted in ABNi than in ABNi	1.

Hence, by induction, we can show that the F ðzjeÞ specified in ABNm is an upper

bound of the F ðzjeÞ specified in the OBN.
The remaining problem is to show that the ABNm that is constructed by

sequentially abstracting node A1 through Am is the same as the ABN that is

constructed by simultaneously abstracting all Ais. Recall that we use maximal
and minimal operations for strengthening and weakening CDFs in (6) and (7).

As a result, the order that we abstract the nodes matters only when the ab-

stracted nodes share child nodes. When abstracted nodes share child nodes,

abstracting nodes in different orders may result in different abstract networks

due to the fact that maximal and minimal operations are not commutative.
However, when the abstracted nodes do not share child nodes as in our case,

the ordering of these nodes being abstracted will not affect the resulting net-

work, so the ABNm that is constructed by sequentially abstracting node A1

through Am is the same as the ABN that is constructed by abstracting all Ais in
any order. Therefore, we have shown that we can abstract multiple nodes that

do not share child nodes to obtain bounds of CDFs.

4. Application: tradeoff resolution in Bayesian networks

In this and the following sections we demonstrate the applications of the

techniques of bounding probability distributions to the tasks of tradeoff res-

olution in Bayesian networks and path planning in stochastic transportation

networks, respectively.
Researchers in uncertain reasoning regularly observe that to reach a desired

conclusion (e.g., a decision), full precision in probabilistic relationships is

rarely required, and that in many cases purely qualitative information (for

some conception of ‘‘qualitative’’) is sufficient [16]. In consequence, the liter-

ature has admitted numerous schemes attempting to capture various forms of

qualitative relationships [37,43,51], useful for various uncertain reasoning

tasks. Unfortunately, we generally lack a robust mapping from tasks to the

levels of precision required, and indeed, necessary precision is inevitably var-
iable across problem instances. As long as some potential problem might re-

quire precision not captured in the qualitative scheme, the scheme is potentially

inadequate for the associated task. Advocates of qualitative uncertain rea-
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soning typically acknowledge this, and sometimes suggest that one can always

revert to full numeric precision when necessary. However specifying a nu-
merically precise probabilistic model as a fallback preempts any potential

model-specification benefit of the qualitative scheme, and so it seems that one

may as well use the precise model for everything. 1 This is perhaps the primary

reason that qualitative methods have not seen much use in practical applica-

tions of uncertain reasoning to date.

The case for qualitative reasoning in contexts where numerically precise

models are available must appeal to benefits other than specification, such as

computation. Cases where qualitative properties justify computational short-
cuts are of course commonplace (e.g., independence), though we do not usually

consider this to be qualitative reasoning unless some inference is required to

establish the qualitative property itself in order to exploit it. Since pure qual-

itative inference can often be substantially more efficient than its numeric

counterpart (e.g., in methods based on infinitesimal probabilities [17] or or-

dinal relationships [14]), it is worth exploring any opportunities to exploit

qualitative methods even where some numeric information is required.

4.1. The tradeoff resolution task

We consider the task of deriving the qualitative relationship between a pair
of variables in a Bayesian network. From an abstracted version of the network,

where all local relationships are described qualitatively, we can derive the en-

tailed sign between the variables of interest efficiently using propagation

techniques [14].

If we are fortunate, we may acquire decisive answers from the qualitative

inference algorithms. Often, however, the results of such qualitative reasoning

are ambiguous. This might be because the relationship in question actually is

ambiguous (i.e., nonmonotone or context-dependent), or due to loss of in-
formation in the abstraction process.

This can happen, for instance, when there are competing influential paths

from the source node––whose value is tentatively modified––to the target

node––whose change in value is of interest. For example, whereas accept flu
shots may decrease the probability of get flu, it also increases the probability

and degree of feel pain. On the other hand, increasing either get flu or feel pain
decreases overall bodily well-being, all else equal. 2 As a result, qualitative

1 If the qualitative formalism is a strict abstraction, then any conclusions produced by the

precise model will agree at the qualitative level. Even in such cases, qualitative models may have

benefits for explanation or justification [22], as they can indicate something about the robustness of

the conclusions (put another way, they can concisely convey broad classes of conclusions).
2 We interpret low<medium< high as ordinal values.
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reasoning about the problem of whether we should accept flu shots will yield
only an ambiguous answer. The situation is illustrated by the QPN in Fig. 6,

where there is one positive path and one negative path from accept flu shots to
bodily well-being. The combination of these two paths is qualitatively ambig-

uous. Worse, the ambiguity of this relationship would propagate within any

network for which this pattern forms a subnetwork. For example, if this issue

plays a role in a decision whether to go to a doctor, the result would be am-

biguous regardless of the other variables involved.

Had we applied more precise probabilistic knowledge, such as a numerically
specified Bayesian network, the result may have been decisive. Indeed, if accept
flu shots and bodily well-being are binary, then a fully precise model is by ne-
cessity qualitatively unambiguous. However, performing all inference at the

most precise level might squander some advantages of the qualitative ap-

proach. In the developments below, we consider some ways to apply numeric

inference incrementally, to the point where qualitative reasoning can produce a

decisive result.

Definition 6. Tradeoff resolution is the inference task that computes the qual-

itative relationships between two random variables in a given Bayesian net-

work.

This task of obtaining more specific qualitative relationships between vari-

ables has attracted the interest of several researchers. Parsons and Dohnal

discuss a semiqualitative approach for inference using Bayesian networks [39],

based on a calculus for computing probability intervals for network variables.
Osseiran [36] quantizes ranges of variables into seven intervals in a style similar

to interval-based probabilities [18], and propose a calculus for this special class

of Bayesian networks.

Fig. 6. A simple case of qualitative ambiguity.
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Some tackle the task by introducing more qualitative relationships, hoping

to find decisive qualitative relationships that would be hidden otherwise.
Parsons exploits more special numerical relationships among variables, and

define positively categorically influences and negatively categorically influences
[37]. Renooij and van der Gaag take a similar approach, and introduce more

specific qualitative relationships such as strongly positive qualitative influence
(++) and strongly negative qualitative influence ())) in QPNs [43]. Renooij

et al. also explore the application of context-specific qualitative influences [44],

extending the concept and employing it in an augmented sign-propagation

algorithm [45].
Before presenting our techniques, we demonstrate that in the worst case,

qualitative tradeoff resolution in Bayesian networks may be no easier than full

numerical inference.

4.2. Tradeoff resolution in Bayesian networks is NP-hard

Theorem 3. Tradeoff resolution in Bayesian networks is NP-hard.

Proof. We reduce the problem of computing absolute approximations to the

task of qualitative tradeoff resolution. An estimate c is an absolute approxi-

mation of PrðyÞ if

PrðyÞ 	 d6 c6 PrðyÞ þ d;

where d is the range of error. The problem of computing absolute approxi-

mations has been shown NP-hard [7].
Consider the task of computing absolute approximations for PrðyÞ in a given

Bayesian network in which Y is a Boolean variable. We construct a corre-

sponding tradeoff resolution problem for this task as follows. The network for

this tradeoff resolution problem includes the given Bayesian network and two

Boolean variables D and T . The tradeoff resolution task is to determine the

qualitative influence of D on T in the network shown in Fig. 7. The cloud where
Y resides represents the given Bayesian network. We use x and �x to denote that
X is true and false, respectively.

Fig. 7. Resolving qualitative influence of D on T yields an approximate probability for Y .

C.-L. Liu, M.P. Wellman / Internat. J. Approx. Reason. 36 (2004) 31–73 47



To check the overall influence of D on T , we need to know whether

PrðtjdÞP Prðtj�dÞ. Using the data shown in Fig. 7,

PrðtjdÞP Prðtj�dÞ
() Prðtjd;yÞPrðyÞþPrðtjd;�yÞPrð�yÞP Prðtj�d;yÞPrðyÞþPrðtj�d;�yÞPrð�yÞ
() Prð�yÞP ePrðyÞ
() 1	PrðyÞP ePrðyÞ ð9Þ

Thus, the overall influence of D on T is positive iff PrðyÞ6 1
1þe. Notice that the

range of 1
1þe is ½1=2; 1� when we vary e between 1 and 0.

Therefore, using an efficient algorithm for tradeoff resolution, we can effi-

ciently determine the range of PrðyÞ if its range is in ½1=2; 1�. We set e to a very
small number a 2 ½0; 1� in Fig. 7 such that (9) holds. We can apply the efficient

algorithm for tradeoff resolution to verify whether a selected a satisfies (9),

since the resolved qualitative relationship dictates the truth of PrðtjdÞP Prðtj�dÞ
and PrðyÞ6 1

1þa. Once we have this very small a, we can gradually set e to
multiples of a, i.e., 2a; 3a; . . . ; na, and 1, where n ¼ b1=ac, until PrðtjdÞP
Prðtj�dÞ does not hold. Let ma be the smallest multiple of a that makes

PrðtjdÞP Prðtj�dÞ fail. We have 1
1þma < PrðyÞ6 1

1þðm	1Þa.

As a result, when the range of PrðyÞ is in ½1=2; 1�, we will find a more precise
range of PrðyÞ by executing the efficient algorithm for tradeoff resolution Oð1aÞ
times. Similarly, we can determine the range of PrðyÞ when the range is in

½0; 1=2�, by executing the efficient algorithm for tradeoff resolution Oð1aÞ times.
This can be done by setting Prðtjd; �yÞ and Prðtj�d; yÞ to e and 1 in Fig. 7, re-

spectively. Therefore, the problem of computing absolute approximations in

Bayesian networks can be solved efficiently if we have an efficient algorithm for

qualitative tradeoff resolution. h

4.3. Tradeoff resolution via node reduction

4.3.1. Node reduction

The idea of incremental marginalization is to reduce the network node-by-

node until the result is qualitatively unambiguous. The basic step is Shachter’s

arc reversal operation.

Theorem 4 [47]. If there is an arc from node X to node Y in the given Bayesian
network, and no other directed paths from X to Y , then we may transform the
network to one with an arc from Y to X instead. In the new network, X and Y
inherit each other’s parent nodes.
Let PX , PY , and PXY respectively denote X ’s own parent nodes, Y ’s own parent

nodes, and X and Y ’s common parent nodes in the original network, and let
PY 0 ¼ PY 	 fXg. The new conditional probability distributions of Y and X are:
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PrnewðyjpX ; pY 0 ; pXY Þ ¼
X
X

ProldðyjpY ; pXY ÞProldðxjpX ; pXY Þ;

Prnewðxjy; pX ; pY 0 ; pXY Þ ¼
ProldðyjpY ; pXY ÞProldðxjpX ; pXY Þ

PrnewðyjpX ; pY 0 ; pXY Þ
:

ð10Þ

On reversing all the outgoing arcs from node X , the node becomes barren and
can be removed from the network. By appropriate arrangements, we can re-

move a node by local operations. The net effect of reversing arcs and removing

barren nodes as described is equivalent to marginalizing node X from the

network [47].

4.3.2. Incremental node reduction

Consider the QPN shown on the left-hand side of Fig. 8. Since there exist

both a positive path (through X ) and a negative path (direct arc) from W to Z,
the qualitative influence of W on Z is ambiguous. This local ‘‘?’’ would prop-

agate throughout the network, necessarily ambiguating the relationship of any

predecessor of W to any successor of Z.
Once we have detected the source of such a local ambiguity, we may attempt

to resolve it by numerically marginalizing node X . The new sign on the direct

arc from W to Z can be determined by inspecting the new conditional prob-

ability table of Z, given by (10). If we are fortunate, the qualitative sign r may

turn out to be decisive, in which case we have resolved the tradeoff.

This example illustrates the main idea of the incremental marginalization

approach to resolving tradeoffs in QPNs. If we obtain an unambiguous answer

to the desired qualitative relationship from the reduced network after mar-
ginalizing a selected node, then there is no need to do further computation. If

the answer is still ambiguous, we may select other nodes to marginalize. The

iteration continues until a decisive answer is uncovered. We present the skel-

eton of the Incremental TradeOff Resolution algorithm below. The algorithm is

designed to answer queries about the qualitative influence of a decision node on
a target node, using a given strategy for selecting the next node to reduce.

Algorithm 2. ITOR(decision, target, strategy)

1. Remove nodes that are irrelevant to the query about decision’s influence on
target [48].

Fig. 8. Marginalizing X potentially resolves the qualitative influence of W on Z.
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2. Attempt to answer the query via qualitative inference [14].

3. If the answer to the query is decisive, exit; otherwise continue.
4. Select a node to reduce according to strategy. If there is no node that can be
reduced, return ‘‘?’’, else perform the node reduction, and calculate the qual-

itative abstractions of the transformed relationships. Return to step 2.

We expect the incremental approach to improve performance over purely

numeric inference on average. Since qualitative inference is quadratic whereas

exact inference in Bayesian networks is exponential in the worst case, the

qualitative inference steps do not add appreciably to computation time. On
the other hand, when the intermediate results suffice to resolve the tradeoff,

we save numeric computation over whatever part of the network is re-

maining.

4.3.3. Prioritizing node reduction operations

The objective of carrying out node-reduction operations in ITOR is to
resolve qualitative tradeoffs. The optimal strategies for respective tasks will

differ, in general. For example, a node that is very expensive to reduce at a

certain stage of the evaluation might offer the best prospect for resolving the

tradeoff.

We exploit intermediate information provided in qualitative belief propa-

gation [14] in determining which node to reduce next. If we can propagate a

decisive qualitative influence from the decision node D all the way to the target

node T , we will be able to answer the query. Otherwise, there must be a node X
that also has an indecisive relationships with D. Recall that we have pruned
nodes irrelevant to the query, so any nodes that have indecisive relationship

with D will eventually make the relationship between D and T indecisive. We

have identified several conceivable strategies based on this observation, and

report on experience with two of them.

The first strategy is to reduce node X , as long as X is not the target node T .
When X is actually T , we choose to reduce the node Y that passed the message

to X changing its qualitative sign from a decisive one to ‘‘?’’. However, this Y
cannot be D itself. If it is, then either (1) there are only two nodes remaining in

the network, and there is no decisive answer to the query, or (2) there are other

nodes, and we randomly pick among those adjacent to D or T .
The second strategy is similar to the first, except that we exchange the pri-

ority of reducing X and Y . We handle the situations where X and/or Y happen

to be D and/or T in the same manner as in the first strategy.

These strategies have the advantage that finding the next node to reduce

does not impose extra overhead in the ITOR algorithm. The selection is a by-
product of the qualitative inference algorithm. However neither of these

strategies (nor any that we know) is guaranteed to minimize the cost of re-

solving the tradeoff.
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Renooij and colleague also exploit the existence of the node X with an in-

decisive relationship with D, when there is an indecisive qualitative relationship
between D and T for resolving qualitative tradeoffs in QPNs [46]. They identify
the pivot node that has an ambiguous relationship with D, and, as an extra

qualification, this pivot node must have a decisive qualitative relationship with

T if the pivot node itself had a decisive node sign. It is shown that, assuming

that there is only one new observation and that we are interested in the re-

sulting qualitative sign of one node, the pivot node is unique. Having identified

the pivot node, they then look for a set of special nodes, called resolution
frontier, that would lead to a decisive qualitative sign of the pivot node, if all
nodes in the resolution frontier have decisive node signs. The qualitative sign of

the pivot node is determined by comparing the strengths of the competing

influences over the pivot node from the nodes in the resolution frontier. The

preprocessing steps, including the identification of the pivot node and the

resolution frontier, systematically pinpoint the subnetwork that is directly

relevant to the tradeoff resolution task. They then infer the qualitative influence

of interest using information in the subnetwork that contains the pivot node

and the resolution frontier as a whole. The result is the qualitative sign of the
pivot node conditional on qualitative signs of the nodes in the resolution

frontier. In contrast, we incrementally marginalize selected nodes that have

ambiguous relationships with D in the relevant subnetwork until the resolution

of the tradeoffs. Also, as a result of our not employing the concept of the pivot

node, it is possible that we may marginalize some nodes that will not affect the

resulting qualitative relationship of interest, although these nodes will affect the

degree of influence quantitatively.

4.3.4. Experimental study

We have tested the effectiveness of the algorithm using randomly generated

network instances. The experiments are designed to examine how connectivity

of the network, sizes of state spaces, and strategies for scheduling node re-

duction affect the performance of the algorithm.

In the experiments, we use Bayesian networks in which arcs can be assigned
decisive qualitative signs. To this end, we construct QPNs with only decisive

signs on arcs, and then use the signs to govern the way we assign conditional

probability values for nodes in their corresponding Bayesian network. The

conditional probability distributions of nodes and the qualitative signs on arcs

must agree with each other.

To create a random QPN with n nodes and l arcs, we first create a complete
directed acyclic graph (DAG) with n nodes. Each arc in this DAG is assigned a

random number that is sampled from a uniform distribution. We then attempt
to remove the arc with the largest assigned number, under the constraint that

the DAG remains connected. If removing the arc with the largest assigned

number will make the DAG disconnected, we will attempt to remove the arc
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with the next largest number. We remove arcs until the DAG contains only l
arcs. After creating the network structure, we randomly assign qualitative signs
(positive or negative) to the arcs.

We then build a Bayesian network that corresponds to the generated QPN,

that is, respects its structure and qualitative signs. We select the cardinality of

each node by sampling from a uniform distribution over the range ½2;MC�,
where MC denotes the maximum state-space cardinality. For nodes without

parents, we assign prior probabilities by selecting parameters from a uniform

distribution and then normalizing.

For a node X with parent nodes PðX Þ, the qualitative signs in the QPN
dictate a partial ordering of the conditional probability distributions for var-

ious values of X , where the distributions are ordered based on the FSD rela-

tionship. Let paiðX Þ denote an instantiation of the parent nodes of X . To
enforce this ordering, we identify the paiðX Þ such that the distribution

F ðxjpaiðX ÞÞ must dominate distributions F ðxjpajðX ÞÞ for all other pajðX Þ. We

assign the parameters for F ðxjpaiðX ÞÞ (as for priors) by sampling from a uni-

form distribution. We then assign the remaining distributions in stages, at each

stage setting only those distributions dominated by the previously assigned
distributions. We make these assignments using the same random procedure,

but under the constraint that the resulting distribution must respect the qual-

itative signs given the previous assignments.

In each experiment, we specify the number of nodes, the number of arcs, and

maximum cardinality of state spaces for the randomly generated networks. In

all experiments, we create networks with 10 nodes before pruning. We query

the qualitative influence from the node 1 to node 10, and disregard the instances
in which the answer is ambiguous after exact evaluation of the network.
Since the first step of the ITOR algorithm prunes nodes irrelevant to the

query, the network actually used in inference is usually simpler than the ori-

ginal network. Table 1 shows the statistics collected for the first and the second

node selection strategy. In both tables, we record the average number of nodes
and links after the pruning step. There is no significant difference between the

performance achieved by these two strategies.

We measure the performance of ITOR with two metrics. The first metric,

Rnodes, is the ratio of the number of reduced nodes when the decisive answer is
found to the number of nodes that would be reduced in exact numerical

evaluation. The second metric, Rreversals, is the ratio of number of arc reversal

operations already done when the solution is found to the number of arc re-

versal operations that would be carried out for exact numerical evaluation. The

latter figure is based on an arbitrary strategy for reducing the remaining net-

work after the tradeoff is resolved, however, and so would tend to be an op-

timistic estimate of the saving. Table 1 reports averages for each metric. The

savings due to incremental tradeoff resolution are 1	 Rnodes and 1	 Rreversals,
respectively, and so lower values of the metrics indicate better performance.
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The statistics in both tables suggest that ITOR offers greater performance

for sparsely connected networks and smaller state spaces. A possible reason for

this phenomenon is that, as the cardinality and connectivity increased, the

‘‘numerical cause’’ that made the qualitative relationship of interest appear to

be ambiguous became more complex. For instance, resolving the qualitative

ambiguity might require us to fully utilize numerical information of more

nodes due to the increased connectivity. Although these experimental results

support the intuition that ITOR provides chance to resolve qualitative ambi-
guities at reduced computational costs, we do not consider the results as being

conclusive. Further experimentation may lead us to more precise character-

ization of the expected savings achievable through incremental marginaliza-

tion.

4.4. Tradeoff resolution via approximation

Since only qualitative relationships among variables are of interest, exact

calculation of the values of the CDFs may not be necessary if we can use

approximate CDFs to determine whether FSD holds. In this section, we apply

the dominance policy in ISSA for resolving ambiguous qualitative relation-

ships.

4.4.1. Motivation

Consider the task of determining whether F ðxjdiÞ dominates F ðxjdjÞ. Assume
that we have ways to control approximation methods to obtain approximate
CDFs bF ðxjdiÞ and bF ðxjdjÞ such that F ðxjdiÞ6 bF ðxjdiÞ and bF ðxjdjÞ6 F ðxjdjÞ for
all x. Given these approximate CDFs, F ðxjdiÞFSDF ðxjdjÞ will hold if we have

Table 1

Experimental results for the prioritizing strategies

Nodes Links MC Rnodes Rreversals

(a) The first strategy

8.0 14.2 2 0.697 0.722

8.0 14.4 3 0.730 0.754

9.2 26.1 2 0.846 0.869

9.4 26.8 3 0.855 0.874

(b) The second strategy

7.9 14.2 2 0.697 0.734

8.0 14.4 3 0.731 0.767

9.2 26.2 2 0.848 0.886

9.4 26.8 3 0.861 0.895

Each experiment runs ITOR over 10000 random networks with decisive influence from node 1 to

node 10.
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bF ðxjdiÞ6 bF ðxjdjÞ for all x. In other words, it is possible to determine qualitative
relationship using bounds of probability distributions.

In terms of bounds defined in Definition 2, S	ðD;X Þ holds if there exist
F ðxjdiÞ and F ðxjdjÞ such that

for all x; di < dj ) F ðxjdiÞ6 F ðxjdjÞ: ð11Þ

Similarly, SþðD;X Þ holds if there exist F ðxjdjÞ and F ðxjdiÞ such that
for all x; di < dj ) F ðxjdjÞ6 F ðxjdiÞ: ð12Þ

In addition, we may be able to tell that D neither positively nor negatively

influences T by examining bounds. Specifically, a sufficient condition for

S?ðD;X Þ is that there exist xr, xs, and bounds such that, for some di < dj,

F ðxrjdiÞ < F ðxrjdjÞ and F ðxsjdjÞ < F ðxsjdiÞ: ð13Þ

When (13) holds, the curves for F ðxjdiÞ and F ðxjdjÞ must intersect as illustrated
in Fig. 9.

4.4.2. Tradeoff resolution via SSA methods

The approximation theorems and methods discussed in Section 3 are ap-
plicable to the tradeoff resolution problem.

Example 5. Consider the network in Fig. 10. Theorem 1 is applicable to this

network: We have (a) Y 1 positively influences X given D and Y 2, (b) Y 2 neg-

atively influences X given D and Y 1, (c) X and A are independent given D, Y 1,

and Y 2, (d) ½D;A; Y 1; Y 2� is an ancestral ordering, and (e) Y 1 is not a descendant

of Y 2 and vice versa in the network. Therefore, we can compute the bounds of
F ðxjdÞ when we abstract A with the dominance policy. Specifically, we obtain
lower (upper) bounds of F ðxjdÞ by weakening (strengthening) F ðy1ja; y2Þ and

Fig. 9. Bounds of F ðxjdÞ imply S?ðD;X Þ.

Fig. 10. We may use qualitative relationships for bounding probability distributions.
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strengthening (weakening) F ðy2ja; y1Þ with respect to A when we abstract A. In
addition, We can obtain lower (upper) bounds of F ðxjdÞ by strengthening
(weakening) F ðxjy1Þ with respect to Y 1 when we abstract Y 1, given that (a)

½D; Y 1;X � is an ancestral ordering and (b) X is the only child node of Y 1.

Analogously, we may abstract Y 2 in computing bounds of F ðxjdÞ to further

reduce computation time.

In addition, Corollary 1 guarantees that bounds computed by the ISSA

algorithm tighten as we refine the state space of the abstracted nodes. There-

fore, we are more likely to resolve qualitative tradeoffs as we carry out more

iterations of the ISSA algorithm. The computation can terminate whenever we
determine the qualitative relationship of interest.

As we discussed in Section 4.3.3, if the relationship between D and T is

ambiguous, there must be a node X such that X is marked with ‘‘?’’ when we

propagate the sign from D toward T . As an alternative to incremental mar-

ginalization, we may apply any approximate evaluation algorithm for Bayesian

networks at step 4 of ITOR, if the approximation algorithm can return bounds

of conditional probability distributions. We use ISSA with the dominance
policy as such an alternative in the following discussion.

Using the ISSA algorithm with dominance policy can save computation

time for the tradeoff resolution task. As we mentioned, the ISSA algorithm

may find the correct qualitative relationship by the time it needs to exactly

evaluate F ðxjdÞ using the conditions specified in (11)–(13). In addition, the

ISSA algorithm may compute the bounds of F ðxjdÞ by evaluating a portion of
the given Bayesian network. For instance, T in Fig. 10 is barren and can be

ignored for the computation of F ðxjdÞ.
Notice that we should not terminate ITOR when ISSA returns a ‘‘?’’ for the

relationship of D and X at step 4. When this occurs, we need to continue ITOR

as usual. It is possible that we find a decisive relationship between D and T even
when some nodes in the network have an ambiguous relationship with D. For
instance, using ISSA, we might find that D positively influences T even if D
neither negatively nor positively influences X in the network shown in Fig. 11.

Therefore, ITOR should run until either a decisive relationship between D and

T has been found at step 2 or an ambiguous relationship between D and T is
confirmed by ISSA at step 4.

Some results obtained by ISSA may be reused in later iterations of ITOR.

Take the network in Fig. 10 as an example. Assume that we find that D neg-

atively influences X by exactly computing the values of F ðxjdÞ, and that we are

Fig. 11. ITOR should not terminate when ISSA reports S?ðD;X Þ.
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about to use the ISSA algorithm to determine the qualitative relationship be-

tween D and T . In this case, if we do not reuse previous results, we may abstract
A, Y 1, Y 2, and X in computing the bounds of F ðtjdÞ at step alg1:step4. How-
ever, given that CIðT ; fD;Xg; fA; Y 1; Y 2gÞ and that we have computed the exact
values of F ðxjdÞ, the network has been reduced to the one shown in the fol-

lowing figure. Therefore, we could save computation time by running ISSA

over the network in Fig. 12, and should not run ISSA over the network in Fig.

10 from scratch.

Whether we reuse the information about the bounds that are obtained from

running ISSA is a design issue. For instance, assume that we find that D
negatively influences X in Fig. 10 by applying (11). Given this result, the
qualitative relationship between D and T is still ambiguous since there are still

two competing influential paths from D to T as indicated in Fig. 12. Upon

locating this ambiguity, ITOR uses ISSA to resolve the ambiguity, and the

issue is whether we reuse the quantitative information we have about F ðxjdÞ
that is obtained from the previous execution of ISSA. Given that

CIðT ; fD;Xg; fA; Y 1; Y 2gÞ and that D decisively influences X in the network, a

heuristic is that we use the knowledge about F ðxjdÞ obtained in the previous

run of ISSA first. To do so, we set the conditional probability of X given D
according to bounds of F ðxjdÞ in the network shown in Fig. 12, and use this

approximate network for resolving the ambiguity. It is possible that we find a

decisive qualitative relationship using the bounds in the network. If this op-

portunistic approach does not resolve the qualitative ambiguity between D and

T , we then use ISSA to evaluate a network that includes A, Y 1 and Y 2. Another

alternative is to directly compute bounds of F ðtjdÞ using the original network.
It is possible that we can resolve the ambiguity when A, Y 1, Y 2, and X have very

small numbers of states in ISSA. The optimal choice for this design issue varies
from network to network, depending on their underlying probability distri-

butions.

5. Application: path planning in stochastic networks

Path planning––the problem of finding an optimal route in a transportation

network––has been widely studied, resulting in a variety of well-known algo-
rithms [1,10,11,13]. We denote a transportation network with a weighted graph

G ¼ ðV ;E;wÞ, where the set of vertices V represents locations, the set of edges

E represents roads that connect locations, and the cost function w encodes the

Fig. 12. A possible reduced version of the network in Fig. 10.
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total costs of traversing an edge. Following the traditional terminology, we call

an edge in the transportation network a link, and the cost of traversing across
an edge the link travel time.
Many path-planning algorithms assume that the link traversal costs are

deterministic, that is, w is a function associating edges with travel times. This is
typical for algorithms seeking plans that will travel the least surface distance. In

actual transportation networks, however, link travel times are rarely certain,

and thus should be treated as random variables. Moreover, in such stochastic
networks, the probability distributions over link travel times also depend on the
time one traverses the link. Hall [20] shows that such dependent relationships
among link travel times violate the optimality principle underlying standard

shortest-path algorithms.

Kaufman and Smith [26] study time-dependent networks, in which w is a

deterministic function of both the link being considered and the time the

traveler enters the link. They show that algorithms such as Dijkstra’s remain

applicable when the link travel times satisfy the following consistency property.
Let t16 t2 be alternative departure times that one may enter a link e, the
consistency property requires the following inequality holds for the arrival time
at the other end of the link for all links:

t1 þ wðe; t1Þ6 t2 þ wðe; t2Þ:

Wellman et al. [52] generalize this approach, and consider networks in which

costs are time-dependent random variables. They show that standard search

algorithms, such as A�, can find the shortest path when link travel times have

the stochastic consistency property. This property requires that the following
hold for all links e, and all times t1 P t2:

F ðt1 þ wðe; t1ÞÞFSDF ðt2 þ wðe; t2ÞÞ:

In other words, the probability of arriving by any particular time cannot in-

crease by leaving later.

Boyan and Littman [3] present a general model of time-dependent Markov

Decision Processes, which can solve stochastic path-planning problems with
piecewise linear time dependencies. Chabini and Lan [4] report and analyze an

application of the A� algorithm to stochastic transportation networks, which

replies on a first-in-first-out property that is similar to the stochastic consistent

property.

In this section, we study the problem of computing travel times in stochastic

transportation networks. In particular, we consider situations in which com-

putation time is insufficient for obtaining exact probability distributions over

travel times of interest. To this end, we propose a path-planning algorithm that
applies results, including Theorem 1 and Corollary 2, reported in Section 3 for

computing gradually tightening bounds on probability distributions over travel

times. We show that our anytime algorithm may find the actual shortest path,
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and that we can compute the maximum deviation of the distribution over the

travel time on the path selected by our algorithm from the distribution over the
travel time on the actual shortest path. Moreover, we exploit special properties

of distributions over travel times to design specific state-space abstraction

methods for tighter bounds of travel times, and extend applicability of the

proposed algorithm to situations in which the FSD relationships among travel

times do not hold perfectly.

5.1. Approximate travel times

As in typical path-planning problems, we assume that we have specifications

of the link travel times, which in our case comprise distributions given each

possible time that one may enter the links. Let (1; 2; . . . ; n) index locations on a
path, and PrðtiÞ be the probability of arriving at location i at time Ti ¼ ti. Given
a departure time from location 1, say �t1, the distribution of the arrival time at
location 2 is F ðt2j�t1Þ. As we expand the partial path in a search algorithm, we
compute the CDF F ðtjþ1Þ of arrival time at location jþ 1 based on the arrival

time at location j: 3

F ðtjþ1Þ ¼
X
tj

F ðtjþ1jtjÞPrðtjÞ: ð14Þ

Since the uncertainty about arrival time increases with the traveling distance,

the number of possible values of Tj grows with j, and makes computing of

PrðTjÞ for all candidate paths with (14) very time consuming. One way to limit
the computational cost is to restrict the number of states of Tj [32]. We can

achieve this by aggregating the states of Tj, say into b states, before we compute
the distribution of Tjþ1. Therefore, in general, we would still like to abstract the
state space of Tj in computing the distribution of Tjþ1 after obtaining bF ðtjÞ. We
apply (4) and (7) discussed in Sections 2.3 and 3.2 to obtain the following

formula.ccPr ð̂tjÞ ¼ X
tj2t̂j

cPrðtjÞ; ð15Þ

bF ðtjþ1 ĵtjÞ ¼ max
tj2̂tj

F ðtjþ1jtjÞ: ð16Þ

We can let cPrðt2Þ � Prðt2Þ without any loss, although we have obtained the

exact distribution for T2 already. Hence we can apply (15) and (16) to Tj for all

3 For simplicity, we assume that one would not stop at intermediate locations. As a result, there

is no need to distinguish arrival and departure times; we use arrival time for both. Moreover, since

all expressions are conditional on the original departure time, �t1, we express this implicitly

henceforth.
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jP 2. In (15), the double ‘‘hats’’ signify that the approximate probabilities are

determined based on other approximated probabilities. For simplicity, a single
‘‘hat’’ rather than double ‘‘hats’’ will be used to denote any approximate

probabilities when there is no risk of confusion. Also we use the ‘‘hat’’ symbol

over tj to denote that the state space of Tj is aggregated when we compute an
approximate distribution of Tjþ1.

4

Theorem 5. We obtain an optimistic approximation of F ðtjþ1Þ, i.e.,
F ðtjþ1ÞFSD bF ðtjþ1Þ, when we use (15) and (16) in computing bF ðtjþ1Þ.
Proof

bF ðtjþ1Þ ¼ X
t̂j

bF ðtjþ1 ĵtjÞccPr ð̂tjÞ
¼

X
t̂j

max
tj2̂tj

F ðtjþ1jtjÞ
" #X

tj2t̂j

cPrðtjÞ
24 35

P
X
tj

F ðtjþ1jtjÞcPrðtjÞ ¼ X
tj

F ðtjþ1jtjÞdbF ðtjÞ
P

X
tj

F ðtjþ1jtjÞdF ðtjÞ ¼ F ðtjþ1Þ: ð17Þ

Since every tj is covered by exactly one t̂j when we aggregate states, cPrðtjÞ will
occur exactly once after we completely expand the summations in the sec-

ond equality. Also each component cPrðtjÞ of
ccPr ð̂tjÞ is multiplied by

maxtj2̂tj F ðtjþ1jtjÞ which must be larger than F ðtjþ1jtjÞ for all tj covered by t̂j, so
we obtain the first inequality in (17) after recollecting all terms. Now, as we

have assumed that Tj positively influences Tjþ1, we have F ðtjþ1jtjÞFSDF ðtjþ1jt0jÞ
if tj P t0j. In other words, F ðtjþ1jtjÞ is a nonincreasing function of tj. Also recall
that bF ðt2Þ is actually an exact distribution, so it is trivially true that F ðt2Þ
FSD bF ðt2Þ. Using proof by induction, we can assume that F ðtjÞFSD bF ðtjÞ, and
go on to show that F ðtjþ1ÞFSD bF ðtjþ1Þ. Now given that F ðtjÞFSD bF ðtjÞ and that
F ðtjþ1jtjÞ is a nonincreasing function of tj, we can apply (1) to obtain the second
inequality, and establish F ðtjþ1ÞFSD bF ðtjþ1Þ. h

Using an analogous procedure, we can show by induction that replacing (16)

with the following assignment:

4 Theorem 5 is a special case of Theorem 1. We repeat the theorem and proof in a context

specifically for the path-planning problem in stochastic transportation networks.
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bF ðtjþ1 ĵtjÞ ¼ min
tj2t̂j

F ðtjþ1jtjÞ

yields pessimistic approximations of the true distributions, that is, bF ðtjþ1Þ
FSDF ðtjþ1Þ.
Recall that an upper bound, as defined in Section 2.2, is an optimistic es-

timation of the actual arrival time because probability mass is shifted toward

earlier arrival times. Similarly, a lower bound provides a pessimistic approxi-

mation. To avoid possible confusion, we use optimistic and pessimistic bounds

of travel times in places of upper and lower bounds in the path-planning

context. In summary, applying different assignments of the dominance policy

we can choose to compute the optimistic or pessimistic bounds of the exact

travel times by the state-space abstraction methods.

5.2. Path planning based on optimistic approximations

We can apply our approximate arrival-time calculations to find shortest

paths from a given origin O to a given destination D. The algorithm attempts to

find the best solution, without necessarily computing exact distributions over
the travel times in comparing paths.

5.2.1. Algorithm

Our algorithm is a form of priority-first search, maintaining a priority

queue (PQ) of partially expanded paths from O toward D. We prioritize paths
by bounds on their projected arrival times at D. A projected arrival time at D
of a path O! � � � ! X is the random variable TX þ hðX Þ, where hðX Þ is a
lower bound on the time required to travel from X to D. We can estimate hðX Þ
from standard information such as straight-line distance and maximal travel

rate.

In addition, we use the optimistic envelope of the projected arrival times of
all paths in PQ to determine whether the algorithm should terminate. Let

OBiðtÞ be the optimistic bound on the distribution over the projected arrival
time at D of path Pi in PQ. The optimistic envelope OEðtÞ of the projected
arrival times of all paths in PQ is defined as:

OEðtÞ ¼ max
Pi2PQ

OBiðtÞ:

Maintaining the optimistic envelope is easy. When new paths are added to

PQ, we compare the current envelope with the lower bounds of the newly added
paths, and update the optimistic envelope when necessary. When a path Pi is
being removed, we only need to update OEðtÞ for those ts such that OEðtÞ ¼
OBiðtÞ before the removal of Pi. We describe the algorithm in the following

elements:
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Algorithm 3. Path planning with bounds of travel times

Input: a stochastic network, the origin O with departure time, the destination

D, and the maximal number of states b used to specify arrival times at
intermediate locations after state-space aggregation.

Output: a selected path from O to D along with the maximum deviation of the

distribution over its arrival time from the distribution over the arrival

time of the actual shortest path.

Data structures:
• PQ, a priority queue: Items associate a partial path with bounds on its
path cost, with path costs prioritized by the method explained below.

• Optimistic envelope: The optimistic bound of all paths in PQ as is ex-

plained.

• Solution list (SL): Undominated candidate paths that connect O and D.
Procedure:

1. Add O! O to PQ with cost 0.

2. If PQ is empty and the solution list is empty, report an error. If PQ is

empty and the solution list is not empty, terminate and return the best
candidate in the solution list.

3. Remove the highest-priority path P ¼ O! � � � ! X from PQ, and up-
date the optimistic envelope. If X 6¼ D, go to the next step. Otherwise,
add P into the solution list unless there is a candidate solution with

dominant priority in the solution list. Go to step 5.

4. Construct new paths for each possible next link the traveler could take

from X , and insert the resulting items into PQ. Update the optimistic
envelope.

5. If the optimistic envelope dominates the pessimistic bound of a known

path in the solution list, return the best candidate in the solution list.

Otherwise, go to step 3.

Notice that one path does not necessarily dominate the other, or vice versa,

even if we have exact distributions over arrival times. This could happen when

the curves of the CDFs of their arrival times intersect.

We employ heuristics for prioritizing paths in PQ and the solution list. We
can choose an arbitrary measure that is consistent with the dominance or-

dering. For instance, we may prioritize paths based on expected values of their

optimistic bounds.

The procedure terminates when the optimistic envelope of projected arrival

times of paths in PQ dominates the upper bound of a known path in the so-

lution list. When this condition does occur, the known path must be better than

all the paths in PQ since the projected arrival times are the earliest arrival time

achievable by traveling on all paths that are not yet fully expanded. We show
this proposition next.

C.-L. Liu, M.P. Wellman / Internat. J. Approx. Reason. 36 (2004) 31–73 61



5.2.2. Properties of the algorithm

We show that, when the procedure terminates, the solution list must include
the actual shortest path. Then, based on this result, we discuss how to compute

maximum deviation of the distribution over the arrival time of the recom-

mended path from the distribution over the arrival time of the actual shortest

path.

Theorem 6. The solution list must include the optimal path when the algorithm
terminates.

Proof. We show this by contradiction. First, notice that all partial paths de-

parting from O must reside in the priority queue or in the solution list. Let Q be

the known path found at step 5, AQðtÞ denote the actual distribution over the
arrival time at D of Q, and UQðtÞ the pessimistic bound of AQðtÞ. Denote the
optimistic envelope of all paths in PQ by OEðtÞ. Fig. 13 shows a generic picture
of the scenario. If the actual shortest path R is not in the solution list and is still
in PQ, then the actual distribution of R must fall into the lower-right hand side
to the curve of OEðtÞ. This implies that the actual arrival time at D of R is a
pessimistic bound of that of Q. However, if the actual arrival time of R is

a pessimistic bound of that of Q, Q will be better than R, and R cannot be a

shortest path. Therefore, we have shown that, if R is a shortest path, it must be
in the solution list when the procedure terminates. h

As a result, when the procedure terminates, we can compute the maximum

deviation of the distribution over the arrival time of the recommended path,

RP, from the distribution over the arrival time of the actual shortest path.
Let OBSiðtÞ and PBSiðtÞ be the optimistic and pessimistic bounds on path Pi
in the solution list, respectively. Let OESLðtÞ and PESLðtÞ be the lower and
upper envelopes of all paths in the solution list, respectively. Namely, we

define

OESLðtÞ ¼ max
Pi2SL

OBSiðtÞ and PESLðtÞ ¼ min
Pi2SL

PBSiðtÞ:

Since the exact distribution over the arrival time of the actual shortest path

must fall in between OESLðtÞ and PESLðtÞ, these envelopes can be used to

Fig. 13. The actual shortest path must be in the solution list when Algorithm 3 terminates.
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compute the maximum deviation. For instance, assume that we choose to use

the expected arrival time at D as the measure for the deviation. We can com-
pute the expected arrival time calculated with OESLðtÞ, and report the differ-
ence between this expected arrival time and that of RP as the maximum

deviation.

Corollary 3. The distribution of arrival time of the actual shortest path is bounded
by OESLðtÞ and PESLðtÞ.

5.2.3. Approximation strategies

The superstate selection problem for computing the fastest path in Algo-

rithm 3 is not the same as that for evaluating Bayesian networks in Algorithm

1. At step 4 of Algorithm 1, we have to split selected superstates for improving

the quality of approximations. As we split the superstates, we recover some

distinction among the original states, and expect the results of evaluating
Bayesian networks to improve.

In contrast, as we gradually expand partial paths L1 ! L2 ! � � � ! Ln to
the next intermediate location Lnþ1 in Algorithm 3, we have an approxi-

mate probability distribution for Tn already. In order to confine the growth

of the state spaces of arrival times for intermediate locations, we aggre-

gate the states of Tn before computing the CDF of Tnþ1. The problem is how

we group states into a set of superstates, not selecting superstates for

splitting.
We consider an approximation strategy that considers a specific condition

in transportation networks in this section, although the strategies we re-

ported in [33] can be applicable for the problems of bounding travel times

too. Let tjk be the kth state of Tj. We assume that the values of F ðtjþ1j
tjkÞ will not deviate from those of F ðtjþ1jtjðkþ1ÞÞ significantly. Namely, for a
small e,

F ðtjþ1jtjkÞ 	 F ðtjþ1jtjðkþ1ÞÞ6 e for all k and tjþ1: ð18Þ

This assumption should hold for transportation networks, as we typically do
not expect normal traffic conditions to change drastically within a short time

period. The assumed inequality deviates from reality when tjþ1 is extremely
small or large. F ðtjþ1jtjkÞ will be 0 and 1, respectively, for all tjk, and the

differences should be 0. Nevertheless, the inequality still holds.

Now, although we are computing bounds for the desired distributions, we

would like to make the bounds as close to the actual distributions as possible.

Assume that Tj has m states: tj1; tj2; . . . ; tjm and that we aggregate these states

into n groups: S1 ¼ ftj1; . . . ; tjb1g, S2 ¼ ftjðb1þ1Þ; . . . ; tjb2g; . . . , and Sn ¼ ftjðbn	1þ1Þ;
. . . ; tjmg. Let g0ðtjkÞ denote the group that contains tjk. To minimize the errors of
approximations, referring to (17) and its derivation, we would like to minimize

the following difference.
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d ¼
X
t̂j

bF ðtjþ1 ĵtjÞccPr ð̂tjÞ 	X
tj

F ðtjþ1jtjÞcPrðtjÞ
¼

X
t̂j

max
tj2t̂j

F ðtjþ1jtjÞ
" #X

tj2t̂j

cPrðtjÞ
24 35	

X
tj

F ðtjþ1jtjÞcPrðtjÞ
¼

X
tj

F ðtjþ1
�� min
tk2g0ðtjÞ

tkÞ
""

	 F ðtjþ1jtjÞ
#cPrðtjÞ#

6 ð0þ ecPrðtj2Þ þ � � � þ ðb1 	 1ÞecPrðtjb1ÞÞ þ ð0þ ecPrðtjðb1þ2ÞÞ þ � � �
þ ðb2 	 b1 	 1ÞecPrðtjb2ÞÞ þ � � � þ ð0þ ecPrðtjðbn	1þ2ÞÞ þ � � �
þ ðbn 	 bn	1 	 1ÞecPrðtjmÞÞ: ð19Þ

The first two equalities follow directly from (17). The third equality also fol-

lows from (17), adding that maxtj2t0j F ðtjþ1jtjÞ is equal to the CDF of Tjþ1 given
the smallest tk in g0ðtjÞ because Tj positively influences Tjþ1. Applying (18) will
give us the inequality in (19), where the zeros result from the fact that in each

Si, one and only one CDF will subtract itself.

The right-hand side of the inequality in (19) gives us an upper bound of the

difference d. Therefore, one way to minimize d is to minimize the upper bound.
Letting b0 ¼ 0 and bn ¼ m, we ignore the common factor e, and rewrite the

bound in a more compact form. As a result, a heuristic for determining how we

aggregate the states of Tj into n group is to minimize the following quantity.Xn	1
k¼0

Xbkþ1
i¼bkþ1

ði	 bk 	 1ÞcPrðtjiÞ:
Notice that the contribution of each tjk is cPrðtjkÞ multiplied by a weighting
factor that is determined by the location of tjk in its group g0ðtjkÞ. In contrast,
the MPSS heuristic, that was proposed for general Bayesian networks and

discussed in Section 2.3, leads us to use
P

tj2t0j
cPrðtjÞ as the guidance for su-

perstate selection.

5.3. Anytime extensions by incremental state-space refinement

We may apply the algorithm in the context in which the deadlines for re-

turning recommended paths are unknown at the time the algorithm is imple-

mented. We may apply Algorithm 3 in an iterative manner, setting the maximal

number of states a random variable can have, b, to 2 initially. If we can finish
the procedure with b ¼ 2, we will have a candidate solution at our disposal. We

may then set b to a larger quantity, say 3, and run the algorithm again to

obtain another candidate solution. We can repeat the algorithm until the
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deadlines are reached, and return the candidate solution found in the latest

completed run of the algorithm. If the deadlines are long enough, we may
choose to terminate the computation if the candidate solution is good enough.

This can happen, for example, when the maximum deviation of the candidate

solution from the actual shortest path is considered small enough.

Several factors influence the variation of the computation time of the al-

gorithm from iterations to iterations. On one hand, increasing b tends to in-

crease the costs for computing travel times of individual paths; on the other

hand, increasing b may also reduce the number of candidate paths because we

gather more information about path costs in each iteration. Also, Theorem 6
guarantees that the solution list must contain the actual shortest path when the

procedure terminates at step 5. Therefore, in the subsequent run of the pro-

cedure with a larger b, we need not consider any path that cannot be expanded
into paths in the solution list in a previous run of the algorithm. Moreover,

Corollary 2 provides that, as we use more states in the computation when we

increase b, the bounds will become tighter than their counterparts in previous
runs of the algorithm. Together, these factors make nonoptimal paths less

likely to survive. In other words, the number of alternative paths that may be
considered as candidate solutions should decrease as we increase b, thereby
helping to contain the growth of the computational costs.

This extended algorithm can demonstrate the desirable anytime property as
discussed in [2]. Our algorithm can be interrupted and return a solution any-

time after we finish the first run of the algorithm. Also, the quality of the

recommended path will improve monotonically as we finish more iterations, if

we define the quality as the maximum deviation between OESLðtÞ and

PESLðtÞ. However, the actual deviation between the recommended and the
shortest path is not guaranteed to dwindle. There are always chances that the
algorithm recommends the actual shortest path in early iterations and sub-

optimal paths in subsequent iterations.

5.4. Weak stochastic dominance

When the relationships of positive or negative influence do not hold, the

theorems reported in Section 3 and methods reported in this section become

inapplicable. The second inequality in (17) would not hold because we lose the

condition that F ðtjþ1jtjÞ is a nonincreasing function of tj. However, if the as-
sumption of positive or negative influence is slightly violated, we can still apply

the SSA methods, with some modifications, to find bounds of probability

distributions.

Consider the distributions shown in Fig. 14, where tjk represents the kth state
of Tj. Assume that tj1 < tj2 < tj3 < tj4. An interpretation of the curves in this

figure is that leaving the origin early almost guarantees earlier arrival at the

destination. The crossing curves show that Tj does not positively influence Tjþ1.
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Nevertheless, the trend of the curves seems to support that Tj weakly positively
influences 5 Tjþ1. In particular, both F ðtjþ1jtj3Þ and F ðtjþ1jtj4Þ first order dom-
inate F ðtjþ1jtj1Þ and F ðtjþ1jtj2Þ. A formal definition follows.

Definition 7. Assume that a random variable X has m states: x1; x2; . . . ; xm
and that these states form nP 1 groups: G1 ¼ fx1; . . . ; xb1g, G2 ¼ fxb1þ1;
. . . ; xb2g; . . . , and Gn ¼ fxbn	1þ1; . . . ; xmg. A node X weakly positively influences
its child Y if and only if, F ðyjxi; pxðY ÞÞFSDF ðyjxk; pxðY ÞÞ, for all xi 2 Gj,
xk 2 Gl, and pxðY Þ, where j > l and pxðY Þ denotes value of other parents

PXðY Þ of Y .

When Tj weakly positively influences Tjþ1 in the stochastic transportation

network, methods reported in this section remain applicable after we ap-
proximate the probability distributions of the link travel times. Let gðtjkÞ be the
state group that contains a particular value tjk of Tj. To compute the bounds,
we approximate the CDF F ðtjþ1jtjkÞ for all possible value tjk of Tj by the fol-
lowing formula before applying the SSA methods.bF ðtjþ1jtjkÞ ¼ max

tjl2gðtjkÞ
F ðtjþ1jtjlÞ: ð20Þ

Consider the example shown in Fig. 14, where we have G1 ¼ ftj1; tj2g and

G2 ¼ ftj3; tj4g. After we apply (20) to the distributions of F ðtjþ1jtjÞ, both
F ðtjþ1jtj1Þ and F ðtjþ1jtj2Þ are set to the values of the upper, thick curve, while

F ðtjþ1jtj3Þ and F ðtjþ1jtj4Þ to the lower, thick curve in Fig. 15.
We can prove that the approximate CDF computed with these approxi-

mations first order dominates the exact CDF.

bF ðtjþ1Þ ¼ X
tj

max
tj2gðtjÞ

F ðtjþ1jtjÞ
� �

PrðtjÞP
X
tj

F ðtjþ1jtjÞPrðtjÞ ¼ F ðtjþ1Þ:

Fig. 14. Tj weakly positively influences Tjþ1.

5 Our notion of weakly qualitative influences are extensions of the generalized qualitative
influences proposed by the authors in [31]. The basic concept is not related to Renooij and van der
Gaag’s notion of weakly qualitative influences that are defined based on the magnitude of

probability-mass fluctuation of a random variable caused by changing the state of another variable

[43].
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After we apply (20) to the conditional CDFs, the resulting approximate CDFs

make the involved random variables assume the positive influence relationship.
As a result, we can apply the SSA methods to compute bounds of the already

approximated distributions using even less number of states. Due to transi-

tivity, the new bounds are also bounds of the exact distributions.

When the FSD relationship in Definition 7 reverses, we say that X weakly
negatively influences Y . Under such circumstances, we replace the max operator
in (20) by the min operator to obtain bounds of probability distributions

analogously.

6. Conclusion

Although the results of probabilistic inference can be quite sensitive to tiny

changes in the probability values in Bayesian networks [5], there are situations

where inaccuracy or nonspecificity in probability values will not affect quality
of the reached conclusions [42]. When the latter statement holds, we may be

able to do without full numeric precision, thus saving computational effort or

other costs of purely quantitative inference. The approximation methods pre-

sented here take advantage of decisive qualitative relationships between ran-

dom variables to find useful solutions without necessarily relying on all the

numbers, even when they are available.

When variables positively or negatively influence others, one can ensure

bounds of probability distributions through controlled adjustment of the ori-
ginal probability parameters. One embodiment of this idea is our use of a

specialized aggregation policy for abstracting states of variables in ways that

preserve bounding relationships. We show when the approximation techniques

work and how the acquired approximations behave over computation time.

One application of our state-space methods is an incremental tradeoff resolution

technique that determines qualitative relationships of interest using appropriate

bounds of involved probability distributions. A second application finds fastest

paths in stochastic transportation networks using gradually tightening upper
and lower bounds of travel times. This algorithm can respond to queries of

uncertain deadlines, and is able to compute the worst-case deviation in travel

times between the proposed travel plan and the unknown fastest plan.

Fig. 15. Using weakly positive influence for bounding distributions.
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Appendix A

A.1. Proof of Theorem 1

Theorem 1. Assume that

1. For all i, SriðY i; Zke;SBðY iÞÞ, where ri is either +, ), or 0.
2. CIðZ; fE;Y g;AÞ:
3. E, A, and Y appear in order in an ancestral ordering of nodes of the given
Bayesian network.

4. For all i, Y i is not a descendant of nodes in SBðY iÞ.

When ri ¼ 	, we obtain, respectively, a lower bound and an upper bound of
F ðzjeÞ by weakening and strengthening F ðyija; pxðY iÞÞ with respect to A. When
ri ¼ þ, we obtain, respectively, an upper bound and a lower bound of F ðzjeÞ by
weakening and strengthening F ðyija; pxðY iÞÞ with respect to A. When ri ¼ 0,
neither strengthening nor weakening F ðyija; pxðY iÞÞ with respect to A will affect
F ðzjeÞ.

Proof. We show the case that we compute a lower bound of F ðzjeÞ by weak-
ening F ðyija; pxðY iÞÞ when S	ðY i; Zke;SBðY iÞÞ. Other cases can be shown

analogously.

Assume that we construct a Bayesian network, XBN, by copying all in-

formation that specifies the OBN to the XBN and then weakening the con-
ditional probability distribution of Y i given its parent nodes with respect to A.
We can show that the F ðzjeÞ computed from this XBN is a lower bound of the

F ðzjeÞ computed from the OBN. We denote CDF functions in the XBN byeF ð�Þ, and expand eF ðzjeÞ as follows. (Notice that this XBN is actually the

EABN, introduced in Section 3.2, of the ABN in which A is the abstracted

node.)

eF ðzjeÞ ¼ Z
A
deF ðajeÞ Z

SBðY iÞ
deF ðsbðY iÞje; aÞ

�
Z
Y i

eF ðzja; y; eÞdeF ðyije; a; sbðY iÞÞ: ðA:1Þ
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We need to show the following properties of the factors in (A.1).

1. eF ðajeÞ ¼ F ðajeÞ
Given the third condition, Y i is a barren node for the task of computingeF ðajeÞ and F ðajeÞ. Therefore, removing Y i and its descendants from XBN and

OBN will not affect eF ðajeÞ and F ðajeÞ. After removing Y i and its descendants
from the networks, XBN and OBN become exactly the same, so we haveeF ðajeÞ ¼ F ðajeÞ.
2. eF ðsbðY iÞja; eÞ ¼ F ðsbðY iÞja; eÞ
Given the third and the fourth conditions, Y i is barren for the task of

computing eF ðsbðY iÞja; eÞ, and F ðsbðY iÞja; eÞ: Therefore, using an analogous

reasoning we use to show that eF ðajeÞ ¼ F ðajeÞ in this proof, we have this

equality.

3. eF ðpxðY iÞje; a; sbðY iÞÞ ¼ F ðpxðY iÞje; a; sbðY iÞÞ
Given the third condition, the weakening of F ðyija; pxðY iÞÞ cannot affect the

CDF F ðpxðY iÞje; a; sbðY iÞÞ by Theorem 3 in [33], so we have the equality.

4. eF ðzja; y; eÞ ¼ F ðzja; y; eÞ
Since CIðZ;E [ Y ;AÞ, we have eF ðzja; y; eÞ ¼ eF ðzjy; eÞ and F ðzja; y; eÞ ¼

F ðzjy; eÞ. Also because of CIðZ;E [ Y ;AÞ, the abstraction of A will not affect

the condition probability F ðzjy; eÞ by Theorem 1 in [33]. Namely, we haveeF ðzjy; eÞ ¼ F ðzjy; eÞ, and that eF ðzja; y; eÞ ¼ F ðzja; y; eÞ follows.
5. F ðyije; a; sbðY iÞÞFSD eF ðyije; a; sbðY iÞÞ
Recall that when we weaken a CDF, we make its values larger, soeF ðyija; pxðY iÞÞP F ðyija; pxðY iÞÞ. Using this inequality and the third facteF ðpxðY iÞje; a; sbðY iÞÞ ¼ F ðpxðY iÞje; a; sbðY iÞÞ, we have the following.

eF ðyije; a; sbðY iÞÞ ¼ Z
PXðY iÞ

eF ðyije; a; pxðY iÞÞdeF ðpxðY iÞje; a; sbðY iÞÞ
¼

Z
PXðY iÞ

eF ðyija; pxðY iÞÞdeF ðpxðY iÞje; a; sbðY iÞÞ
P

Z
PXðY iÞ

F ðyija; pxðY iÞÞdF ðpxðY iÞje; a; sbðY iÞÞ

¼ F ðyije; a; sbðY iÞÞ:

6.
R
Y i F ðzja; y; eÞdeF ðyije; a; sbðY iÞÞ6 R

Y i F ðzja; y; eÞdF ðyije; a; sbðY iÞÞ
S	ðY i;Zke;SBðY iÞÞ implies that F ðzjy; eÞ is an increasing function in yi, so is

F ðzja; y; eÞ because F ðzjy; eÞ ¼ F ðzja; y; eÞ due to CIðZ;E [ Y ;AÞ. Given these
and the fifth fact, the inequality (1) implies this inequality.

Given these six facts, we show that eF ðzjeÞ is a lower bound of F ðzjeÞ by
continuing expansion of (A.1) as follows. The first equality results from the
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application of the first, the second, and the fourth facts. The inequality is a

direct result of the sixth result.

eF ðzjeÞ ¼ Z
A
dF ðajeÞ

Z
SBðY iÞ

dF ðsbðY iÞje; aÞ
Z
Y i
F ðzja; y; eÞdeF ðyije; a; sbðY iÞÞ

6

Z
A
dF ðajeÞ

Z
SBðY iÞ

dF ðsbðY iÞje; aÞ
Z
Y i
F ðzja; y; eÞdF ðyije; a; sbðY iÞÞ

¼ F ðzjeÞ: �

A.2. Proof for Theorem 2

Theorem 2. In addition to conditions 3 and 4 in Theorem 1, assume that Z 2 Y .
We obtain, respectively, a lower and an upper bound of F ðzjeÞ by strengthening
and weakening F ðzja; pxðZÞÞ with respect to A.

Proof. We show the case for computing lower bounds of F ðzjeÞ. The case for
computing upper bounds of F ðzjeÞ can be done analogously. This proof is

similar to that for Theorem 1. First, we can expand F ðzjeÞ as follows:

eF ðzjeÞ ¼ Z
A
deF ðajeÞ Z

SBðZÞ
eF ðzja; sbðZÞ; eÞdeF ðsbðZÞje; aÞ: ðA:2Þ

Applying analogous reasons used in the proof for Theorem 1, we can show the

following results.

1. eF ðajeÞ ¼ F ðajeÞ.
2. eF ðsbðZÞja; eÞ ¼ F ðsbðZÞja; eÞ.
3. eF ðzje; a; sbðZÞÞ6 F ðzje; a; sbðZÞÞ when we strengthen F ðzja; pxðZÞÞ with re-

spect to A.

Given these, we continue the derivation of (A.2) to show that eF ðzjeÞ is a lower
bound of F ðzjeÞ as follows.

eF ðzjeÞ ¼ Z
A
dF ðajeÞ

Z
SBðZÞ

eF ðzja; sbðZÞ; eÞdF ðsbðZÞje; aÞ
6

Z
A
dF ðajeÞ

Z
SBðZÞ

F ðzja; sbðZÞ; eÞdF ðsbðZÞje; aÞ ¼ F ðzjeÞ: �
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