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Using order statistics, we prove Gauss '  2F1 identity probabilistically. As a 
consequence,  we show that Gauss '  2FI summat ion formula is related to an inverse 
P61ya distribution. We observe that  a relationship exists between WZ-pairs and our 
probabilistic approach. © 1994 Academic Press, Inc. 

INTRODUCTION 

Gauss' 2F1 summation theorem often appears as 

r ( c ) r ( c  -- a - b )  

2 F l [ a , b ; c ;  11 = F ( c  - a ) F ( c  - b ) '  (1) 

for c > a + b, where 2Fx[a, b; c; 1] is defined by 

a . . . ( a + k - 1 ) b  " . ( b  + k -  1) 
2Fl[a,  b; c;1] = ~ 

k=O c ( c +  1 ) ' ' ' ( c  + k -  1)k! 

see, for example, Slater [4, pp. 1, 27-28]. The primary purpose of this 
paper is to present a probabilistic proof of (1) where a, b, and c are 
positive integers. 

PROBABILISTIC PROOF 

Fix positive integers N, j, m, k, with 1 _< j < N. The probabilistic ap- 
proach involves identifying {Pk}~-0 as the probabilities of pairwise mutu- 
ally exclusive exhaustive events {~k}~-0, respectively, and proceeding to 
prove Gauss' identity in the form F-.k >_ oPK = 1. 

Draw N real numbers independently and uniformly from the interval 
(0, 1) and let Y(i) denote the j th  smallest of them. Then, continue 
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sampling such random numbers until Y(j~ is exceeded by m of the newly 
drawn values, for the first time. 

Let ~k denote the event that exactly m + k trials beyond the first N 
are needed, with Pk equal to the probability of event ~k" It is apparent 
that Pk is the probability that a permutation of N + m + k letters has 
exactly m of its last m + k values, including its final value, exceeding the 
j th  smallest of its first N values. To determine Pk, proceed as follows: 

Obtain the number of permutations 0., of N + m + k letters, that are 
of the following form: 

(a) Among the values 0-1 . . . .  ,0-N, exactly j - 1 values are less than r, 
r is some value, and N - j values are greater than r. 

(b) Among the values 0-N+1 . . . .  , OVX+m +k-1, exactly m -- 1 are greater 
than r and k are less than r. 

(c) The value 0-U+,~+~ is greater than r. 

The total number of values less than r must be equal to r - 1, but it is 
also equal to j - 1 + k, so r = j + k. Hence restate (a) through (c) as 
follows: 

(a) Among the (pas t )  values 0.1,. . . ,  0.N, exactly j -- 1 values are less 
than j + k, j + k is a value, and N - j values are greater than j + k. 

(b) Among the ( fu ture )  values 0-N+1 . . . . .  0-N+m+k-1, exactly m -- 1 
are greater than j + k, and k are less than j + k. 

(c) the value 0.U+m+k is greater than j + k. 

Now construct all such permutations. Choose the j - 1 past values that 
are less than j + k (in (k +Jl  1) ways), then choose the U - j past  values 

- J -  - N +  

that are greater than k + j (in ( N m 7 j ) ways); arrange the chosen past 

values in some sequence (in N. ways), then choose which one of the m 
remaining values that are greater than k + j shall be the final value 
0.U+m +k (in m ways), and finally, arrange the future values in sequence (in 
(m + k - 1)! ways). Multiply all of these counts together and divide by 
( N  + m + k)! to obtain the probability of such a permutation, namely 

(m + k -  1 ) ! ( N +  1 - j )  . . .  ( N  + m - j ) ( j )  . . .  ( j  + k - 1) 

Pk = k ! ( m -  1 ) ! ( N +  1 ) . . . ( U + m ) ( U + m  + 1) . . ' ( U + m  + k )  

( N  + m - j )  !N! 

( U  + m ) ! ( U - j ) !  

( m ) ( m  + 1 ) - . .  (m + k -  1 ) ( j )  . . . ( j + k -  1) 

k ! ( N + m  + 1) . . . ( N + m  + k )  
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The Pk'S are equal to the probabilities for an inverse P61ya distribution; 
see, for example, [1; 2, pp. 194-200; 6]. In particular, the Pk'S sum to 1. 

Since 

E Pk  = 1, 
k=0 

(1) follows. If we set a = m ,  b = j ,  and c = N + m  + 1, then N + m  + 
1 > j + m is equivalent to Gauss' condition c > a + b. 

REMARKS 

• For earlier probabilistic proofs of identities in the literature see 
[3, 5]. These both use order statistics, as does the present proof. 

• Many combinatorial identities can now be verified by means of the 
powerful Wilf-Zeilberger  certification theorems [7], which provide an 
elegant method for certifying couples of identities via WZ-pairs. A proba- 
bilistic approach provides a counterpoint to the method of WZ-pairs; 
begin that method also, when appropriate, by dividing the identity to be 
proved by its right hand side, to obtain a sum of terms that is equal to 1. 
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