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Renormalization schemes can be divided into various classes. For instance, they can be split into physical and unphysical or mass
dependent and mass independent schemes. One of the main schemes which is used in perturbative quantum field theories is the minimal
subtraction scheme, [1], or its more widely used extension which is the modified minimal subtraction scheme and abbreviated by MS,
[2]. A reason the latter is predominant is that it is the scheme in which one can compute to very high orders in perturbation theory. For
example, the four loop QCD B-function, [3,4], represents the current state of the art for the g-function of the theory of strong interactions.
Indeed computations proceed to this high order because MS is a mass independent renormalization scheme and thus one merely needs to
be able to compute massless Feynman diagrams. This is possible even for vertex functions where an external momentum can be nullified
to allow the simple extraction of the poles in the regulator. One consequence of this is that techniques such as integration by parts in d
spacetime dimensions, [5-7], which are implemented within computer algebra programmes such as ForM, [8], can be used systematically.
However, a drawback of the MS scheme is that the subtraction point for the vertex renormalization, and hence the definition of the
coupling constant renormalization constant, is at an unphysical point of the vertex Green’s function. Therefore, despite its attractiveness
with regard to computability MS is an unphysical scheme and thus one could encounter infrared inconsistencies if one were to compare
with the nonperturbative structure of the vertex Green’s function. By contrast it would be more appropriate to define the subtraction point
of the Green’s function at a physical point which avoids any potential infrared ambiguities and thus is more useful for nonperturbative
measurements such as those carried out using lattice regularization. Of necessity such schemes whilst being physical introduce a mass
scale within Feynman diagrams even in a theory which was originally massless in contrast to MS. Moreover, nullification of an external
momentum of a vertex is not permitted. As such these effectively massive Feynman integrals are more difficult to compute analytically,
and thus the renormalization group functions of QCD in such schemes are not available to as high a loop order as the MS scheme.

One class of physical and mass dependent schemes which is of importance to lattice gauge theory computations is the set referred
to as MOM which denotes the family of momentum subtraction schemes, [9]. Though the syntax MOM indicates a specific momentum
configuration of the QCD 3-point vertices. This is the situation where the squares of all the momenta coming in through the three vertices
are equal to one mass squared value. This is known as the symmetric subtraction point. The vertex renormalization is performed in
such a way that after the MOM renormalization constants are set then there are no O(a) corrections at the subtraction point where
a=g?/(16mw?) and g is the coupling constant of gluon with itself or the quarks and Faddeev-Popov ghost fields. In other words if the
integrals are dimensionally regularized, which we will use throughout, then not only are the poles in € removed, where d =4 — 2¢, but
also the finite part at the subtraction point. Indeed for the 2-point functions of the theory the same criterion is used so that at their
subtraction point there are no O(a) contributions after the wave function and gauge parameter MOM renormalization constants are set.
This outline is a summary of the original MOM scheme definition of [9]. There the full one loop renormalization of QCD was carried out.
However, as one has several 3-point vertices in the QCD Lagrangian when there is a linear covariant gauge fixing, it was noted in [9]
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that there are three types of MOM schemes. Each is associated with a particular 3-point vertex and are denoted by MOMggg, MOMq and
MOMM. These refer respectively to the schemes derived by ensuring triple gluon, quark-gluon and ghost-gluon vertices are subtracted by
the MOM criterion. Once each of these schemes is defined the structure of the remaining n-point functions of the theory are determined
by the Slavnov-Taylor identities of QCD, [9]. Indeed in [9] the full one loop renormalization of QCD in each of the three MOM schemes
was discussed.

Beyond one loop one runs into the difficulty of calculability. This is illustrated in particular in [10]. There the two loop relation between
the MS coupling constant and that of each of the three MOM schemes was derived numerically. This was partly because the basic scalar
master two loop Feynman integrals for the symmetric subtraction point for the 3-point topologies were not fully available. A subset of the
necessary integrals have been evaluated in [11-13] but the final master was only constructed as a corollary of the results of [14]. There
the basic 3-point functions were determined for the more general configuration of all three squared external momenta being independent.
Therefore in the absence of these results at the time, the approach of [10] was to approximate the 3-point integrals by using a large
mass expansion with respect to one of the independent momentum squared. This allowed for the use of the MINCER algorithm [15],
and application of the Exp package. With a sufficient number of terms in the expansion in the appropriate parameter an approximation
was determined for the 3-point vertices to two loops. Equipped with this the mapping of the coupling constants between MOM and
MS schemes was established. Hence through the renormalization group equation the three loop MOM scheme B-functions were given
numerically for SU(3), [10]. This was possible as the three loop MS B-function was already available [16-21]. Whilst this represents the
current status of these g-functions in the MOM schemes it is the purpose of this article to report on the exact evaluation of the three loop
MOM g-functions for an arbitrary colour group. This is possible with the advance not only in computer power but also because of the
development of the Laporta algorithm [22]. This allows one to systematically write all Feynman integrals of a certain topology in terms of
the basic scalar master integrals. As the two loop masters are available for the 3-point functions [11-14], it is merely a straightforward
exercise to repeat the approach of [10] and compute the vertex functions to two loops at the symmetric subtraction point. Although
the difference here is to avoid any numerical approximation to the integrals, we will still follow the ethos of constructing the mapping
between the parameters of both schemes. This will allow us to use the same conversion technique to establish the precise structure of
the three loop terms of the g-function in each of the three MOM schemes. We will focus specifically on the B-functions here as the
limited space excludes us from reporting on the full structure of each of the three vertices at the symmetric subtraction point. However,
this together with the parameter mappings and the explicit forms of all the anomalous dimensions of QCD in each of the three separate
schemes for an arbitrary linear covariant gauge and colour group will appear in a longer article [23]. Finally, as background we mention
that the triple gluon vertex has been examined at two loops previously in the on-shell configuration in [24].

More specifically we have computed the three Green’s functions which relate to each of the vertices associated with the renormalization
schemes. These are each written in terms of a set of Lorentz basis tensors built out of the two independent external momenta, p and g,
together with the metric tensor 7, as well as y-matrices in the case of the quark-gluon vertex. Denoting the basis tensors for the ith
vertex by P(ik){m}(p, q) where {u;} indicates the associated Lorentz indices for that vertex and k labels the tensor, then we have
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where Z‘Zk) (p, q) is the scalar amplitude associated with each basis tensor at the symmetric point. As we are focusing on the structure of

the vertices at the symmetric subtraction point then the momenta satisfy
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which imply
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where w is the mass scale introduced in dimensional regularization to ensure the coupling constant remains massless in d dimensions.
It ought to be noted that away from this point the tensor basis will be larger than that indicated in the decomposition. However, for the
purpose of the construction of the MOM B-functions the only tensor of interest, and hence its associated amplitude, is that which has the
same Lorentz structure as the original vertex in the QCD Lagrangian. By renormalizability it is this channel which contains the poles in €
which have to be removed in the scheme of interest. Indeed the definition of the MOM type schemes is to render the O (a) corrections
absent after subtraction in the channel, or channels in the case of the triple gluon vertex, with the divergences. The amplitudes of the
remaining channels do not necessarily have no O(a) contributions. As ultimately they do not affect the g-functions but instead will be
useful for lattice measurements of these Green’s functions we will record them in a longer article, [23], where the full tensor basis will
be provided.

To evaluate each of the amplitudes we use the method of projection where we determine the linear combinations of the basis tensors
which in turn determine the amplitude of interest. This combination is then applied to the vertex and the resulting scalar integral is
evaluated by using the Laporta algorithm, [22]. The major working tool in this respect was the use of the REDUZE package, [25], which
uses the symbolic manipulation formalism of GINAc, [26], which itself is written in C++. In order to handle the tedious algebra which arises
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with the rearrangement of the expressions resulting from each projection to a form in which the Laporta algorithm is applied we used
the symbolic manipulation language Form [8]. The underlying Feynman diagrams were generated using the QGRAF package, [27], before
the indices were appended and the Feynman rules substituted. For each of the vertices in turn, triple gluon, quark-gluon and ghost-gluon,
there were 8, 2 and 2 one loop diagrams. At two loops there were respectively 106, 33 and 33 graphs to determine. To perform the
renormalization itself in the various schemes we followed the method of [21] where all the diagrams are determined in terms of bare
parameters which here are the coupling constant and gauge parameter of the linear gauge fixing. Then the renormalized variables are
introduced by rescaling with the renormalization constants. The advantage of this approach is that one needs only to generate the results
for each of the Green’s functions once and then the renormalization constants for each scheme are deduced as simple corollaries without
having to regenerate the expressions for each individual diagram.

Once each of the Green’s functions of (1) has been renormalized in their respective schemes then the g-function in each scheme is
determined from, [10],

damomi S damomi
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where i represents ggg, q or h and yy(a, ) is the anomalous dimension of the linear covariant gauge parameter. The scheme the renor-
malization group functions and variables are in are denoted by the labels. Each of these B-functions requires the relation of the parameters
a and o in each MOM scheme to the same parameters in the MS scheme. The identification mapping indicated on the right-hand side is
a reminder that the variables are initially in the MS scheme and must then be mapped back to their MOMi counterparts. To achieve this

we define the relations between both parameters by
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where ggg, qqg and gcc indicate the respective triple gluon, quark-gluon and ghost-gluon vertices and
MOMi
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In the coupling constant definitions the contributions from the quark and Faddeev-Popov ghost 2-point functions are Xg(p) and X¢(p)
respectively whilst IT¢(p) is the contribution to the transverse part of the gluon 2-point function. In (5) we have included the contribution
from the MOMi scheme Green’s functions in order that the overall normalization is consistent even though there are no O(a) corrections
in their expansion. Also in constructing the mapping between the parameters a and « between schemes, (5) and (6) are solved iteratively.

As a consequence of this we can now record our main result which is the three loop expressions for the S-functions, gMMi(q, ), in
each of the three MOM schemes. Though due to space considerations we will only record the Landau gauge expressions. The full gauge
dependent results will be provided in [23]. With the convention that the scheme given in the superscript on the left-hand side is the
scheme the variables are defined in via (5) and (6), then we have
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where ¥ (z) is the derivative of the logarithm of the Euler I'-function, Ny is the number of massless quarks and Cr, C4 and Tf are the
usual colour group Casimirs. Aside from the usual class of numbers which appear in the renormalization group functions such as rationals
and the Riemann zeta function, ¢(z), numbers deriving from the basic one and two loop scalar master diagrams computed in [11-14] also
occur which are
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where Li,(z) is the polylogarithm function and X' is a particular combination of harmonic polylogarithms [14,28].

Having computed the three loop B-functions it is worthwhile evaluating them numerically in order to compare with [10]. We find
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for SU(3). Clearly the expressions have the same structure from the point of view of the Ny dependence as [10]. As the term in the
polynomial in Ny with the largest error estimate in [10] was the Ny independent term, then we can use that term for comparison.
Therefore, taking the ratio of the central value of the estimates in [10] to those of the exact expressions, (7), (8) and (9), we find that the
percentage errors are 2.227%, 0.184% and 1.954% for MOMggg, MOMq and MOMh respectively. Clearly MOMq is the most accurate whilst
MOMggg was the worst. Though it is worth noting that whilst the Ny independent coefficient of the MOMggg three loop term had a
relatively large 8% error estimate the exact result was comfortably within this. Also there was a large uncertainty for the N coefficient in
this scheme but we find the same sign where the actual coefficient turns out to be very small. Indeed this probably reflects the accidental
cancellation noted in [10] for this term. We obtain the precise coefficient for the cubic term in Ny in the MOMggg case. Despite the larger
discrepancy for this scheme it is still a testimony to the ingenuity of the authors of [10] and the software and hardware technology of
over a decade ago that results were produced which were very close to the exact answer for all three schemes. As [10] also commented
on a lattice based operator product expansion prediction, [29], of our benchmark coefficient for the MOMggg scheme in relation to the
corresponding Mgg scheme coefficient, we note that for comparison we have

MOMggg MOMgg
B, |Nf=0 =0.65127878, |Nf=0 (12)

which is very close and well within the error of the estimate of 0.64(5) of [10] than the 1.5(3) of [29].

We conclude with brief remarks. We have provided the explicit forms of the QCD B-function in the MOMggg, MOMq and MOMh
renormalization schemes in the Landau gauge where those for an arbitrary linear covariant gauge will be provided in [23]. The results
for all three schemes are consistent to within a few percent of the numerical estimates of [10] which involved a resummation based on
the 2-point function substructure at the symmetric subtraction point. Given this the method of [10] could actually prove useful now for
determining a numerical estimate of the four loop MOM scheme B-functions. This is partly due to the fact that [10] used MINCER [15],
which can handle the three loop computations required to extend the coupling constant mapping to the next order, but also because
computer power has increased significantly since the appearance of [10]. Moreover, with analytic results now available for the three MOM
schemes, there is independent information which will provide intermediate checks on such numerical computations.
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