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Diversity being inherent in classifiers is widely acknowledged as an important issue in con-

structing successful classifier ensembles. Although many statistics have been employed in

measuring diversity among classifiers to ascertain whether it correlates with ensemble per-

formance in the literature, most of these measures are incorporated and explained in a

non-evidential context. In this paper, we provide a modeling for formulating classifier out-

puts as triplet mass functions and a uniform notation for defining diversity measures. We

then assess the relationship between diversity obtained by four pairwise and non-pairwise

diversity measures and the improvement in accuracy of classifiers combined in different or-

ders by Demspter’s rule of combination, Smets’ conjunctive rule, the Proportion and Yager’s

rules in the framework of belief functions. Our experimental results demonstrate that the

accuracy of classifiers combined by Dempster’s rule is not strongly correlated with the

diversity obtained by the four measures, and the correlation between the diversity and

the ensemble accuracy made by Proportion and Yager’s rules is negative, which is not in

favor of the claim that increasing diversity could lead to reduction of generalization error of

classifier ensembles.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The combination of multiple classifiers (ensemble approach) is a rather powerful decision making and classification

technique that has been successfully used for modeling many practical problems such as text categorization [1], remote

sensing [2], person recognition (face, finger print) [3], and the handling of imperfect information composed of missing,

noisy and fuzzy values in classification [4,5]. In the modeling of classifier combination, many researchers believe that the

success of classifier ensembles not only depends on a set of appropriate classifiers, but also on the diversity being inherent in

the member classifiers. A good diversity measure would have the ability to find the extent of diversity among classifiers and

estimate the improvementordeterioration inaccuracyof individual classifierswhentheyhavebeencombined.Unfortunately

to date there has been no widely perceived concept of diversity and there exists no general accepted theoretical framework

underpinning the development of methods for capturing diversity among classifiers [6,7]. Although many statistics have

been employed to measure diversity with the intention to ascertain whether it correlates with ensemble performance

in the literature, results are often varied. Most commonly these measures are incorporated and explained in the context

of majority voting, linear sum and other non-evidential frameworks [8]. Presently there is a little effort concerning how

diversity measured by statistics imparts ensemble performance in the framework of the Dempster–Shafer (DS) theory of

evidence [9], especially, the research on this aspect in the blend of the DS theory and ensemble learning is in its infancy.

This study carries out an empirical analysis on the relationship between diversity and accuracy of classifiers based on four

pairwise and non-pairwise diversity measures and four evidential combination rules.
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Early studies on the relationship between diversity and ensemble performance have stimulated considerable interest and

they can be categorized into two contexts, regression and classification. In [10], Krogh and Vedeldby developed a seminal

idea of breaking down generalization errors of a classifier ensemble into a simple linear relationship E = Ē − Ā holding

for regression ensembles, where Ē is mean square error used to measure accuracy and Ā is variance used for measuring

diversity. This relationship implies that the reduction in generalization errors for an ensemble is directly proportionate to

the diversity in the constituent classifiers as measured by the variance of the classifier outputs. Unfortunately there is no

such intuitive means for quantifying diversity in classification such that can postulate a similar linear relationship to errors

reduction. Nevertheless this linear relationship provides an insight into capturing diversity in classification problems [11].

In the context of classification, Kuncheva and Whitaker carried out an experimental study on relationship between

diversity and accuracy [8]. In their work ten statistical diversity measures introduced in the literature, such as Q-statistic,

κ-statistic, correlation, etc. have been applied to the classifiers generated by the feature subspace, Bagging and the random

weak-classifiersmethods. Besides these the classifierswere combined using eight combinationmethods, includingmajority

vote, NaiveBayes, theBehavior Knowledge Space, themaximumoperator, to namebut a few. Their results show that although

there are proven connections between diversity and accuracy in some special cases, there is no strong linear and non-linear

correlation between diversity and accuracy. In [12], Tang et al. conducted a follow-up comprehensive study. They investigate

the correlation among the six statistical measures used in [8] and relate these measures to the concept of margin proposed

in [13],which is explained as a key factor to the success of Boosting algorithms. The various experimental results demonstrate

that large diversity may not consistently correspond to a better ensemble performance and the information perceived by

varying diversity cannot provide a consistent guidance on making a classifier ensemble to achieve good generalization

performance.

Most recently, Brown et al. proposed a mutual information formulation that measures the mutual dependence between

two classifiers [6], meanwhile Zhou and Li developed a multi-information measure that can be used to detect the depen-

dence among multiple classifiers [7]. Both of them are defined on the information theory, but the former formulation is

mathematically similar to the latter [7]. However compared with the mutual information, the multi-information formula-

tion is simpler and decomposable over constituent classifiers. These studieswould provide a step towards the understanding

of ensemble diversity.

A similar concept – conflict – has been covered in the DS theory literature [14,15]. The rationale of studying conflict of

evidence sources is rooted in the criticism on the counterintuitive results of applying Dempster’s rule of combination to

conflicting evidence items, where an almost impossible decision (with a very low degree of confidence) by both evidence

sources comes up as the most possible outcome (with certainty). In [14], Smets proposed to use the combined mass values

assigned to the emptyset before normalization as a measure of conflict (ME). However in [16], Liu used examples to show

that ME might not always be accurate and proposed an alternative method to measure conflict among evidence items by

incorporating ME with a constituent measure called distance between betting commitments (DBC), namely ME-DBC. In

the present context, if we model classifier decisions/outputs as pieces of evidence, the difference between conflict and

conventional diversity is that the former not only considers disagreement between classifiers on decisions like diversity, but

also accounts for difference between confidence values quantifying the support for the decisions made by classifiers. Thus

measures of conflict cannot be directly converted or reinterpreted in terms of diversity.

In the previous studies [17,18], we have developed newevidence structures called a triplet and quartet and a formalism for

modeling classifier outputs as triplet and quartet mass functions, and we also established a range of formulae for combining

thesemass functions in order to arrive at a consensus decision. However in those studieswedid not address the issues of how

diversity impacts theperformance of combined classifiers usingDempster’s rule of combination. This study extends thework

in [20], covering the important aspects of diversity effects on the performance of ensemble classifiers that are independently

generated by 13machine learning algorithms and are combined using purely evidential combination functions in decreasing

and mixed orders. We use the triplet as an underlying evidence structure for representing classifiers outputs and study

well-known alternative combination rules by incorporating this structure, including Smets’ conjunctive rule [14], Dubois

and Prade’s disjunctive rule [23], Yager’s combination [22], and the Proportional rule [21]. We analytically compare these

classical combination rules so as to examine their suitability for the triplet structure, and justify the treatment of the empty

set for absorbing the conflict with and without normalization operators in the course of combining classifiers and the final

classification decision making. Moreover due to the approximation in constructing triplet mass functions, it would breach

the associative law held in Dempster’s rule of combination, we thereby assess two decreasing and random orders to see

what role the orders of classifiers play in interacting with the accuracy of classifier ensembles and the diversity among the

member classifiers.

Presently there is a general lack of theory, and there is no general agreement about the notion of diversity and how to

quantify the diversity among classifiers. In this study we define the concept of diversity as disagreement among classifiers.

We employ statistical measures as diversity measures that are characterized into two types of pairwise and non-pairwise,

and develop a uniform notation to define these styles ofmeasures.We also select and implement four typical and commonly

used pairwise and non-pairwise measures of Q-statistic [32], disagreement [29], κ-statistic [31] and Kohavi–Wolpert vari-

ance [30]. In finding overall diversity of a group of classifiers, pair-wise measures average diversity over all classifiers, while

non-pairwise measures attempt to measure diversity among classifiers directly based on, for example, variance or entropy

of classifiers that fail on randomly selected patterns. In both cases, classifier outputs at the final stage are formulated in the

binary form of correct and incorrect, which is widely used by researchers.
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The paper is organized as follows. In Section 2, we describe the representation of classifier outputs. In Section 3, we

shortly summarize basics of theDS theory of evidence and the tripletmass function, and then analytically compare evidential

combination rules. We formulate pairwise and non-pairwise diversity measures in a uniformway and define four statistical

diversity measures in Section 4. Finally, we present our experimental methodology and experimental results in Section 5

and summarize the findings in Section 6.

2. Representation of classifier outputs

Inensemble learning, a learningalgorithmisprovidedwitha trainingdata setmadeupof D×C ={〈d1, c1〉, . . . , 〈d|D|, cq〉}
(1 ≤ q ≤ |C|) for deriving some unknown function f such that f (d) = c. Instance di ∈ D is characterized by a vector in

the form of (di1 , . . . , din) where dij is typically either a nominal or ordinal value, and ci is typically drawn from a set of

categorical classes C in terms of class labels. Given a set of training data D × C, a learning algorithm is aimed at learning a

function ϕ in terms of classifier, where classifier ϕ is an approximation to an unknown function f .

Given a new instance d, a classification task is to make decision for d using ϕ about whether d belongs to class ci. Instead

of single-class assignment, we regard such a classification process as a mapping:

ϕ : D → C × [0, 1], (1)

where C × [0, 1] = {(ci, si) | ci ∈ C, 0 ≤ si ≤ 1}, si is a numeric value that can be in different forms, such as a similarity

score, a class-conditional probability or other measurements, depending on the types of learning algorithms. This numeric

value represents the degree of support or confidence about the proposition of that instance d is assigned to class ci. The

greater the value of class si, the greater the amount of belief given to the proposition of instance d belonging to class ci.

Simply we denote a classifier output by ϕ(d) = {s1, . . . , s|C|}. Given a group of classifiers, ϕ1, ϕ2, . . . , ϕM , all the classifier

outputs on instance d can be organized into a matrix as illustrated in formula (2).

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ϕ1(d)

ϕ2(d)

...

ϕM(d)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

s11 s12 . . . s1|C|
s21 s22 . . . s2|C|
...

... . . .
...

sM1 sM2 . . . sM|C|

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (2)

3. Basics of the Dempster–Shafer (DS) theory of evidence, triplet mass function and combination rules

The Dempster–Shafer theory of evidence remedies the limitations of the traditional Bayesian belief model to allow the

explicit representation of uncertainty and management of conflict information involved in the decision making process [9].

The advantages of the DS theory over other approaches are the ability to (1) model the narrowing of the hypothesis set with

the accumulation of evidence (via the evidence combination operation) [25], (2) explicitly represent uncertainty in the form

of ignorance, and (3) handle the reliability of information sources by means of the discounting operation.

The DS theory formulates decision making process as pieces of evidence and propositions, and subjects these to a strict

formal process in order to infer conclusions from the given uncertain evidence, avoiding human subjective intervention to

some extent [18]. Formally DS formulates a proposition set as a frame of discernment, denoted by � = {c1, . . . c|�|}. The
power set 2� is all the subsets of�. The basis of a belief measure for focal elements in 2� is the basic probability assignment,

called mass function.

Definition 1. Let� be a frame of discernment. Letm be amass function, which is defined as a assignment function assigning

a numeric value in [0, 1] to X ∈ 2� with two conditions below.

(1)m(∅) = 0, (2)
∑
X⊆�

m(X) = 1,

where X ⊆ � is called a focal element, focus or singleton if m(X) > 0. It represents a proposition of interest.

Since mass functions are defined on all the subsets of the frame of discernment �, instead of reckoning the individual

propositions themselves as in probability theory, DS is capable of precisely apportioning the probabilitymass to propositions

that are supported by evidence without considering assignments to those levels of detail that there is no knowledge about

other propositions. Such a mechanism allows us to model any particular subset of � that is uncertain or unknown in

classification decision processes.

Given the general representation of classifier outputs in formula (2), on the basis of Definition 1, we define an application-

specific mass function below.
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Definition 2. Let� be a frame of discernment and letϕ(d) be a list of scores, an application-specificmass function is defined

a mapping function,m : 2� → [0, 1] as follows:

m({ci}) = si∑|�|
j=1 sj

, (3)

where ci ∈ � for 1 ≤ i ≤ |�|.
This mass function expresses the degrees of belief with respect to determining class labels to which a given instance

could belong.

Definition 3. Let � be a frame of discernment. Let bel be a belief function for X ⊆ � , which is defined as the sum of

probability masses supporting all the subsets of X .

bel(X) = ∑
A⊆X

m(A). (4)

On the basis of the mass function and belief function, a plausibility function for any focus X ⊆ � is further defined as

the probability mass not supporting X̄ as follows.

pls(X) = 1 − bel(X̄) = ∑
A∩X 
=∅

m(A) where A ⊆ �. (5)

Thedifference pls(X)−bel(X) is regarded as ameasure of ignorance aboutX , denoted by ign(X). The ignorance ign(X) = 0

indicates that the degree of belief about X is the same as that of plausibility, while ign(X) = 1 means that no probability

mass is assigned to X (or its subsets), and equally no mass is assigned to X̄ . In addition we utilize masses allocated to� as a

measurement for quantifying the degree of ignorance about a frame of discernment.

Definition 4. Let� be a frame of discernment. Letm1 andm2 be twomass functions defined for X, Y ⊆ �. Dempster’s rule

of combination (or Dempster’s rule) denoted by ⊕, is defined as

(m1 ⊕ m2)(A) =
∑

X∩Y=A m1(X)m2(Y)

1 − E
, (6)

where operator ⊕ is also called the orthogonal sum and E = ∑
X∩Y=∅ m1(X)m2(Y) is called the conflict factor. This rule

strongly emphasizes the agreement betweenmultiple independent sources and ignores all the conflicting evidence through

a normalization factor. Specifically, this rule can calculate themass for a newproposition A ⊆ � from the probabilitymasses

assigned to X and Y , resulting in the accumulation of knowledge from the evidence sources supporting X and Y , respectively.

As new pieces of evidence become available, masses committed to only those propositions that are supported by evidence,

are therefore combined using Demspter’s rule of combination to give a new set of propositions that are supported by the

combined evidence.

3.1. Triplet mass function and computation

Given the formulation of classifier outputs in formula (2), by formula (3), we can rewrite ϕ(d) as ϕ(d) = {m({c1}),
m({c2}), . . . ,m({c|�|})}, referred to as a list of decisions− a piece of evidence. By formula (6) two ormore pieces of evidence

can then be combined to make the final classification decision. To improve the efficiency of computing the orthogonal sum

operation and the accuracy of the final decision on the basis of the combined results, a new structure, called a triplet, has

been developed [17]. The following details this novel structure, partitioning a list of decisions ϕ(d) into three subsets.

Definition 5. Let� be a frame of discernment andϕ(d) = {m({c1}),m({c2}), ...,m({c|�|})},where |�| ≥ 2, an expression

of the form Y = 〈{u}, {v}, �〉 is defined as a triplet, where {u}, {v} are singletons, � is the whole set of classes C, and they

satisfy

m({u})+ m({v})+ m(�) = 1.

Based on the number of singleton decisions, we also refer to a triplet as a structure of two-point focuses, and call the

associatedmass function a two-point mass function. To obtain triplet mass functions, we define a focusing operation in terms

of the outstanding rule and denote it by mσ as follows:

{u} = arg max({m({c1}),m({c2}), ...,m({c|�|})}), (7)

{v} = arg max({m({c})| c ∈ {c1, ..., c|�|} − {u}}), (8)

mσ (�) = 1 − mσ ({u})+ mσ ({v}). (9)
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We refer tomσ as a triplet mass function or as a two-point mass function, simplym. By applying formulas (3), (7), (8), and

(9), formula (2) is simply rewritten as formula (10) below.

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ϕ1(d)

ϕ2(d)

...

ϕM(d)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

m1({u1}) m1({v1}) m1(�)

m2({u2}) m2({v2}) m2(�)

...
...

...

mM({uM}) mM({vM}) mM(�)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (10)

From the above formulation it can be seen that a triplet mass function is a support function to a set of possible classes

{{u}, {v}, �}, which in turn can be easily proved as a belief function [18]. Thus for a given instance belief value bel{u}
represents the maximum of quantitative judgments, indicating class u will be assigned to the instance. Thus we use the

maximal selection as the classification decision making rule, i.e. class with maximal belief value will be assigned to unseen

instances.

3.2. Alternative combination rules

This section reviews several well-known alternative combination rules and analyzes their common features in dealing

with conflict encountered in independent evidence sources. To make the rationale behind these rules more clear, let us first

consider a well-known example, showing what is a counterintuitive effect caused by the normalization of Dempster’s rule

of combination.

Example 1. Let two mass functionsm1 and m2 be defined on� = {x1, x2, x3}. Let
m1({x1}) = 0.80, m1({x2}) = 0.20;
m2({x3}) = 0.95, m2({x2}) = 0.05.

The mass values computed by Dempster’s rule are as follows.

E = ∑
X∩Y=∅ m1(X)m2(Y) = 0.99, where X, Y ∈ {{x1}, {x2}, {x3}},

(m1 ⊕ m2)({x1}) = 0/(1 − 0.99) = 0,

(m1 ⊕ m2)({x2}) = 0.01/(1 − 0.99) = 1,

(m1 ⊕ m2)({x3}) = 0/(1 − 0.99)

and

bel({x2}) = (m1 ⊕ m2)({x2}) = 1,

pls({x2}) = 1 − bel({x̄2}) = 1 − bel({x1, x3} = 1,

where the conflict factor E = 0.99, indicating that the two pieces of evidence of supporting m1 and m2 are largely in

conflicting. As a result, the application of Dempster’s rule to these pieces of evidence makes x2 with a full support. As

illustrated in the example, x2 is weakly supported by the respective evidence sources, but after combining the two pieces of

evidence, it is fully supported. This combined effect is counter-intuitive.

Such a counter-intuitive result has led a great deal of debate in the past decades. Many researchers believe that the

counter-intuitive result is due to the normalization operation in Dempster’s rule of combination, whereas others defend

Dempster’s rule in the sense that the counterintuitive result can be avoided if the respective masses are apportioned in

an appropriate way. In line with avoiding the counter effect caused by the normalization, several alternatives have been

proposed and well documented in the literature. In [22], Yager proposed to allocate the combined masses of conflict to

the frame of discernment �. Dubois and Prade [23] proposed a disjunctive combination rule. Smets [14] proposed an

unnormalized combination rule, which is known as the conjunctive combination rule. In [21], Anand et al. developed a

Proportion rule by taking into account average values of columns and rows in an intersection table. More recently, Denoeux

proposed a cautious rule thatwas claimed to design for combining non distinct (dependent) items of evidence by accounting

for dependence and overlapping of evidence bodies [26]. As opposite to the non distinct evidence, this study is focused on

formulating distinct (independent) items of evidence to be combined by Dempster’s rule and its classical alternatives. As

illustrated in Section 3.1, we formulate classifier outputs as triplet mass functions, in which the classifiers are generated by

different learning algorithms. In this way, the classifier outputs are treated as distinct (independent) bodies of evidence as

different algorithms were developed on the basis of the different theories and the classifiers generated thus utilize their
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own mechanisms to make classification decisions on any instances without use of “overlapping experience". The detailed

discussion on this aspect can be referred to our previous work in [18].

In the next subsections we therefore focus our study on the classical rules, i.e. comparatively analyze these alternatives

and examine their suitability for combining multiple classifiers whose outputs are represented in triplets.

Definition 6. Suppose m1 and m2 are two mass functions on the frame of discernment �. Let X and Y be subsets of �.

Yager’s combination rule is defined as:

(m1 γ© m2)(A) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if A = ∅,∑
X∩Y=A m1(X)m2(Y) if ∅ ⊂ A ⊂ �,∑
X∩Y=� m1(X)m2(Y)+ ∑

X∩Y=∅ m1(X)m2(Y) if A = �.

(11)

Yager’s rule keeps the condition ofm(∅) = 0 and adds masses allocated to both the empty set and the frame of discern-

ment together into�. The massm(�) represents the degree of ignorance about�.

Definition 7. Letm1,m2 be twomass functions defined on the frame of discernment�. Let X and Y be subsets of�. Dubois

and Prade’s rule, denoted by σ© , is then given below:

(m1 σ© m2)(A) =
⎧⎨
⎩

0 if A = ∅,∑
X∩Y=A m1(X)m2(Y)

∑
X∪Y=A, X∩Y=∅ m1(X)m2(Y) if A ⊆ �.

(12)

This rule is often referred to as the disjunctive combination rule. It keeps the condition of m(∅) = 0 as in Dempster’s

rule and transfers masses resulting from pairs of conflicting elements (X ∩ Y = 0) to the union of these elements.

Definition 8. Letm1,m2 be twomass functions defined on the frame of discernment�. Let X and Y be subsets of�. Smets’

rule of combination is given by

(m1 ∩© m2)(A) =
⎧⎨
⎩

∑
X∩Y=∅ m1(X)m2(Y) if A = ∅, and X, Y ⊆ �,∑
X∩Y=A m1(X)m2(Y) if A ⊆ �.

(13)

Smets’ rule is known as the conjunctive rule. This rule adds up all the masses resulting from the empty intersections of

subsets into m(∅) as the degree of conflict, but it violates the condition of m(∅) = 0 as specified in Dempster’s rule.

Definition 9. Suppose m1 and m2 are two mass functions on the frame of discernment �. Let m1 have n focal elements:

X1, . . . Xn, and m2 have m focal elements: Y1, . . . , Ym, where Xi, Yj be subsets of� (1 ≤ i ≤ n, 1 ≤ j ≤ m). The Proportion

combination rule is defined as:

(m1 a© m2)(A) =
⎧⎨
⎩

0 if A = ∅,(∑
Xi∩Yj=A mc(Xij)+ ∑

Xi∩Yj=A mr(Yij)
)/

2 if A 
= �,
(14)

wheremr(Xij) andmc(Yij) are the average of mass functions based on rows and columns in an intersection table, which can

be calculated below:

mr(Xij) =
⎧⎪⎨
⎪⎩

m1(Xi)× m2(Yj)∑
Xi∩Yk 
=∅ m2(Yk)

, where 1 ≤ k ≤ m,

m1(Xi), otherwise.

mc(Yij) =
⎧⎪⎨
⎪⎩

m2(Yj)× m1(Xi)∑
Xk∩Yj 
=∅ m1(Xk)

, where 1 ≤ k ≤ n,

m2(Yj), otherwise.

3.3. A comparison of the combination rules on triplet

The literature review on information fusion with the DS theory shows that much of the research has been devoted to

the theoretical justification of the alternative combination rules and their selection [28], and the conditions of applying

conjunctive or disjunctive combination [15]. To avail the strength of these alternatives in constructing ensemble classifiers,
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it would be very helpful to have an appropriate understanding of their properties and interoperability with the triplet

structure.

Theoretically, the rules given in Eqs. (6) and (11)–(13) share the same basis [15]. Suppose we have twomass functionsm1

and m2 defined on the frame of discernment� and the mapping function mτ : 2� → [0, 1] with:

mτ (A) = ∑
X∩Y=A

m1(X)m2(Y), A ⊆ �. (15)

Formulamτ (A) is the core part of these alternative rules, which is also called the conjunctive rule. This notation discloses

the fact that the difference between the alternatives is the way of apportioning the remaining masses committed to the

empty intersections (non-intersections) in terms of the conflict factor E. Specifically, Dempster’s rule reallocates them as a

normalization factor, Yager’s rule puts them into the frame of discernment, Dubois and Prade’s rule distributes them into

the unions of conflicting subsets and Smets’ rule retains them in the emptyset. These combination rules employ their own

strategies to handle the remaining masses and make up their own strengths. However it could be envisaged that none of

them offers a generalized solution to combining pieces of evidence that are largely in conflict.

As described in Section 3.1, the classifier outputs are modeled as triplet mass functions which can be obtained by Eqs.

(7)–(9). To see how these rules can be used to combine triplet mass functions, it is necessary to examine the relations

between any two pairs of focal elements in two triplets. Given a setting in which there are two triplets 〈{u1}, {v1}, �〉 and
〈{u2}, {v2}, �〉 where ui, vi ∈ � (i = 1, 2), and the associated triplet mass functions m1 and m2. The relation between

{u1}, {v1} and {u2}, {v2} canbepermutated into three situations: completely different focal points (completely inconsistent),

one focal point equal(partially consistent) and two focal points equal (totally consistent).

Now let us consider the case, for instance, where {u1}, {v1} in one triplet are completely inconsistent to {u2}, {v2} in

another triplet, i.e. u1 
= u2, u1 
= v2, v1 
= u2, and v1 
= v2. By applying Yager’s rule to combinem1 andm2, we have

mτ ({u1}) = (m1 γ© m2)({u1}) = m1({u1})m2(�), (16)

mτ ({v1}) = (m1 γ© m2)({v1}) = m1({v1})m2(�), (17)

mτ ({u2}) = (m1 γ© m2)({u2}) = m1(�)m2({u2}), (18)

mτ ({v2}) = (m1 γ© m2)({v2}) = m1(�)m2({v2}), (19)

(m1 γ© m2)(�) = m1(�)m2(�)+ m1({u1})m2({u2})+ m1({u1})m2({v2})+ m1({v1})m2({u2})
+m1({v1})m2({v2}). (20)

Eqs. (16)–(19) constitute the core part of calculation that are commonly required by these alternatives in calculating

masses associated with intersected subsets. However Eq. (20) provides its own way in computing masses resulted from the

non-intersections. This way cannot be generalized to calculating masses associated with the emptyset as required by the

other rules. Thus we need to work out how the masses associated with non-intersections can be computed by Dubois and

Prade’s rule and Smets’ rule, separately.

By applying Dubois and Prade’s rule to combine m1 andm2, we have

(m1 σ© m2)({u1} ∪ {u2}) = m1({u1})m2({u2}), (21)

(m1 σ© m2)({u1} ∪ {v2}) = m1({u1})m2({v2}), (22)

(m1 σ© m2)({v1} ∪ {u2}) = m1({v1})m2({u2}), (23)

(m1 σ© m2)({v1} ∪ {v2}) = m1({v1})m2({v2}), (24)

(m1 σ© m2)(�) = m1(�)m2(�). (25)

Intuitively the results given by Eqs. (21)–(25) on non-intersections are different from those produced by Eq. (20). But

if we transform these results into a triplet mass function, we only need to preserve two singletons whose masses are the

largest and second largest, andmerge the rest subsets along with the emptyset into the frame of discernment�. In this way,

the resulting triplet mass function is the same as the one obtained from the results produced by Yager’s rule.

Similarly, by applying Smets’ rule, we can obtain the respective calculation on non-intersections below,

(m1 ∩© m2)(�) = m1(�)m2(�), (26)

(m1 ∩© m2)(∅) = m1({u1})m2({u2})+ m1({u1})m2({v2})+ m1({v1})m2({u2})+ m1({v1})m2({v2}). (27)
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From the above derivations, it can be seen that the results obtained Eqs. (26) and (27) are different from those with Eqs.

(21)–(25) unless the masses calculated by the latter are transferred to m(∅). Theoretically the emptyset can be treated as

a valid focal element in �, naturally in the triplet structure. By contrast Smets’ rule permits m(∅) 
= 0, which violates the

condition of mass functions. Consequently the triplet mass functions obtained with Smets’ rule differ from those produced

by Dubois and Prade’s rule, and Yager’s rule, respectively.

What is gained by the preceding analysis is the different formulationswith the triplet functions for these alternative rules

in calculating masses for non-intersections. The differences between these formulas raise a question of how the emptyset

should be handled in the context of classification decision making. If we assume that the emptyset is a valid focal element

in triplets, it is likely that the emptyset will be assigned to a given instance. However such an assignment would result in

a meaningless class for the instance, violating the closed world assumption made in supervised machine learning tasks. To

avoid ameaningless assignment a realistic approach could thereby amalgamate the emptysetwith the frame of discernment.

As such, the role played by Yager’s rule in combining triplet mass functions is tantamount to that as Dubois and Prade’s rule,

and Smets’ rule, respectively. Meanwhile, to examine the effect of the emptyset in the course of combining evidence by

Smets’s rule, we keep the emptyset in the process of combining evidence and use it to absorb the conflict being inherent

in evidence sources, but the final classification decision will be made on the basis of the largest combined mass value

committed to a non-emptyset focal element, instead of the emptyset itself. Such a treatment not only conforms to the closed

world assumption held in ensemble learning tasks, but also preserves the conflict in the emptyset, reducing the impact of the

conflict in combiningmore pieces of evidence to someextent. Therefore to investigate the typical situations of normalization,

non-normalization with and without the emptyset, and proportion in the process of accumulating pieces of evidence, we

select Dempster’s rule, Smets’ rule, Yager’s rule and the Proportional rule for the further empirical study.

The above comparative analysis is based on the case where two triplets are completely inconsistent. In the same way we

can generalize the analysis to the other two cases and accordingly derive their formulas.

4. Diversity measures

Statistical diversity measures can be divided into pairwise and non-pairwise measures. The pairwise measures calculate

the average of a particular agreement/disagreementmetric between all possible pairings of classifiers in ensemble classifiers.

Thus the metric characterizes diversity measures. The non-pairwise measures either use the idea of entropy or calculate

a correlation of each ensemble member with the (weighted) arithmetic mean of the individual outputs. To date there has

been no convincing theory or experimental study to suggest which of statistical measures can be best and reliably used

to improve ensemble performance [8,12,6,7]. In this study, based on the way of measuring agreement and disagreement

between classifier outputs, we select fourmeasures,which have beenwidely discussed in the literature, tomeasure diversity

among classifiers in the form of binary outputs as done in most studies.

Formally suppose we are given M classifiers denoted by ϕ1, . . . , ϕM , a set of classes � = {c1, . . . , c|�|} and a test set

T = {x1, . . . , x|T|}. For any instance x ∈ T , each classifier produces an output vector ϕi(x). Conventionally, classifying x

means assigning it into one class in�, i.e., deciding if x belongs to ck, k = 1, . . . , |�| according to ϕi(x). For sake of binary

outputs of classifiers, we model the final output of ϕi(x) as a class label or a binary output, denoted by ψi. For the former,

ϕi(x) = c where c ∈ �. In the latter case,ψi(x) = 1 ifψi correctly classifies x, whereasψi(x) = 0 ifψi incorrectly classifies

x. We also denote ψ̂(x) = {ψ(x)|ψi(x) = 1, 1 ≤ i ≤ M, x ∈ T}. With this notation, The four statistical diversity measures

are defined below.

4.1. Kappa (κ) statistic

The κ statistic is themost widely used pairwisemethod tomeasure the level of agreement between classifiers [31]. It can

be thought of as chance-corrected Proportional agreement [33]. Given two classifiersψi andψj and a test data set T , we can

construct a global contingency table based on a set of classes�. The table entry n(ch, ck) contains the number of instances

x ∈ T for ψi(x) = ch and ψj(x) = ck . If ψi and ψj are identical on the data set, then all non-zero counts will appear along

the diagonal of the table, otherwise there will be a number of counts off the diagonal. Now we define

μ1 =
∑|�|

h=1 n(ch, ch)

|T| ,

μ2 =
|�|∑
h=1

⎛
⎝ |�|∑

k=1

n(ch, ck)

|T| ×
|�|∑
k=1

n(ch, ck)

|T|

⎞
⎠ ,

where μ1 is an estimation of the probability that two classifiers agree and μ2 is a correction term for μ1, estimating the

probability that the two classifiers agree simply by chance. Then the κi,j statistic over T is defined as follows:

κi,j = μ1 − μ2

1 − μ2

. (28)



592 Y. Bi / International Journal of Approximate Reasoning 53 (2012) 584–607

The average κ statistic over the whole set of classifiers over T is then defined as follows:

κ = 2

M(M − 1)

M∑
i=1

M∑
j=i+1

κi,j, (29)

where κ is within the range from 0 to 1. If κ = 0 then it means that the agreement of classifiers equals that expected

by chance, while κ = 1, indicating that classifiers agree on all the test instances, and negative values of κ mean that the

agreement is less than expected by chance.

4.2. Disagreement measure

The disagreement measure is used to characterize the diversity between one classifier and its complementary classi-

fier [29]. In [34], Ho employed it to assess the diversity in decision forests. It is the ratio between the number of binary

outputs onwhich one classifier is correct and the other is incorrect to the total number of classifier outputs in a binary form.

Formally, given two classifiers ψi and ψj , a and b, and a test instance x ∈ T , we can construct a contingency table based on

the binary outputs of ψi and ψj as detailed at the beginning of Section 4, where a takes value on 1 if ψi correctly classifies

x, 0, otherwise; and b performs in the same way forψj . The table entry n(a, b) is the total number of binary outputs over all

the test instances in T . The disagreement between two classifiers is measured by:

disi,j = n(0, 1)+ n(1, 0)

n(0, 0)+ n(0, 1)+ n(1, 0)+ n(1, 1)
. (30)

The disagreement diversity among the whole set of classifiers over T is then defined as an average over all the pairs of

disagreement below:

dis = 2

M(M − 1)

M∑
i=1

M∑
j=i+1

disi,j. (31)

Since for any pair of classifiers: n(0, 0)+ n(0, 1)+ n(1, 0)+ n(1, 1) = |T|, we thus have:

dis = 2

|T|M(M − 1)

M∑
i=1

M∑
j=i+1

(ni,j(0, 1)+ ni,j(1, 0)). (32)

The diversity increases with increasing values of the disagreement measure in the range from 0 to 1.

4.3. Q-statistic

The Q-statistic (qs) is a well studied measure in statistics [8,12]. As introduced in Section 4.2, a contingency for two

classifiersψi andψj over a test set T can be constructed. The disagreement between ψi andψj is then measured by:

Qi,j = n(0, 0)n(1, 1)− n(1, 0)n(0, 1)

n(0, 0)n(1, 1)+ n(1, 0)n(0, 1)
, (33)

where Qi,j is a measurement of diversity, and the notion of n(a, b) is the same as in Section 4.2. When Qi,j = 1 indicates

that all the class labels assigned by ψi for instances x ∈ T are exactly the same as ones assigned by ψj . Qi,j = −1 means

that all the class labels recognized byψi for instances x ∈ T are entirely different from those thatψj recognizes. For a set of

classifiers, the averaged Q statistic over all the pairs of classifiers with T is measured by

Q = 2

M(M − 1)

M∑
i=1

M∑
j=i+1

Qi,j, (34)

where Q varies in the range from −1 to 1. A positive Q means that a classifier ensemble tends correctly to classify the same

instance, otherwise it incorrectly classifies the instance.

4.4. Kohavi–Wolpert variance

Kohavi and Wolpert [30] proposed a formula for representing the classification errors of classifiers. This formula is built

on the basis of the bias-variance decomposition of errors of classifiers. The expression of the variability of a predicted class
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label c ∈ � for an instance x ∈ T is

variancex = 1

2

⎛
⎝1 −

|�|∑
i=1

P(c = ci|x)2
⎞
⎠ , (35)

where |�| is the total number of classes and P(c = ci|x) is the posterior probability of c = ci given the evidence of x. In [8],

Kuncheva and Whitaker adopted formula (34) to the problem of oracle outputs in classifier ensembles, where |�| = 2 and

P(c = 1|x)+ P(c = 0|x) = 1, formula (34) is thus rewritten as:

variancex = 1

2
(1 − P(c = 1|x)2 − P(c = 0|x)2),

= P(c = 1|x)P(c = 0|x), (36)

where P(c = 1|x) is estimated by
∣∣∣ψ̂(x)∣∣∣/M and P(c = 0|x) is estimated by

(
M −

∣∣∣ψ̂(x)∣∣∣)/
M. Averaged variance over the

whole set of testing data T , we have a revised measure, denoted by kw, which can be used to measure the diversity among

the whole set of classifiers:

kw = 1

|T|M2

⎛
⎝ |T|∑

i=1

∣∣∣ψ̂(xi)
∣∣∣ (

M −
∣∣∣ψ̂(xi)

∣∣∣)
⎞
⎠ . (37)

The diversity increases with increasing values of the kw variance in the range from 0 to 1.

5. Experimental analysis

5.1. Experimental settings

In our experiments, we used twelve data sets downloaded from the UCImachine learning repository [36]. All the selected

data sets have at least three or more classes as required by the triplet structure. The details about these data sets can be

found in Table 1.

For generating individual (base) classifiers, we used thirteen learning algorithms which are taken from the Waikato

Environment for Knowledge Analysis (Weka) version 3.4 (see Table 2). These algorithms were simply chosen on the basis

of the performance over three data sets which were randomly picked. They can make up various ensembles of classifiers.

Parameters used for each algorithm in this empirical study were set at the default settings. Detailed description of these

algorithms can be found in [37].

The experiments were performed using a ten-fold cross validation to avoid overfitting to some extent. We divided each

of the data sets into 10 mutually exclusive subsets – 10 folds. Each of the 10 subsets was in turn used as a test set and all the

remaining subsets were used for generating classifiers by the 13 learning algorithms (see Table 2). In this way, each of the

learning methods generated 10 classifiers to be combined, and each of the classifiers was tested once. Accordingly each of

the combined classifiers was tested once as well. The performance of a classifier ensemble was the average of the ten testing

results of the combined classifiers, which is more robust than any single tests. The detailed evaluation methodology can be

found in [37].

Due to the approximation in transforming the combined results into triplet functions, the associativity of triplets may

not be held in the combining process. To faithfully reflect the performance of combined classifiers, combining classifiers

has been carried out in two orders of decreasing and mixture by Dempster’s rule and its alternatives. For the combination

of classifiers in decreasing order, we first rank all the 13 classifiers generated by the 13 learning algorithms, and then we

combine the best classifierwith the second best as a classifier ensemble, denoted by 2C, and combine the combined result 2C

Table 1

The general description about the datasets.

Dataset Instance No classes Attribute

Anneal 798 6 38

Audiology 200 23 69

Balance 625 3 4

Car 1728 4 6

Glass 214 7 9

Autos 205 6 25

Iris 150 3 4

Letter 20000 26 16

Segment 1500 7 19

Soybean 683 19 35

Wine 178 3 13

Zoo 101 7 17
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Table 2

General description of the thirteen learning algorithms.

No Classifier Description

0 AOD Perform classification by averaging over all of a small space of alternative Naive–Bayes-likemodels that haveweaker
independence

assumptions than naive Bayes

1 NaiveBayes The Naive Bayes classifier using kernel density estimation over multiple values for continuous attributes, instead of
assuming a

simple normal distribution

2 SMO Sequential minimal optimization algorithm for training a support vector classifier using polynomial kernels

3 IBk A instance-based learning algorithm

4 IB1 The IBk instance-based learner with K = 1 nearest neighbors, in order to offset KStar with a maximally local learner

5 KStar The K instance-based learner using all nearest neighbors and an entropy-based distance

6 DecisionStump Building and using a decision stump, but it is not used in conjunction with a boosting algorithm

7 J48 Decision tree induction, a Java implementation of C4.5

8 RandomForest Constructing random forests for classification

9 DecisionTable A decision table learner

10 JRip A propositional rule learner – a Java implementation of Ripper

11 NNge Nearest neighbor-like algorithm using non-nested generalized exemplars

12 PART Generating a PART decision list for classification

with the third best as another ensemble, denoted by 3C, and so forth, until combine the combined result of the 12 classifiers

with the 13th classifier, denoted by 13C.With respect to the combination of classifiers inmixed order, the order of classifiers

is random.We first pick up two classifiers to combine, and then combine the combined result with the third classifier that is

randomly chosen, until combine the resulting ensemblewith the last classifier. The notation used inmixed order is the same

as in decreasing order. Additionally, we use 1C to represent the best classifiers in decreasing order and the first randomly

picked classifier in mixed order.

To assess how the accuracy of classifier ensembles and diversity among constituent classifiers is actually correlated, we

carried out correlation analyses over the 12 data sets, resulting in a set of pairing correlation coefficient r ∈ [−1, 1] and
p-value ∈ [0, 1]. A positive correlation coefficient r indicates a positive correlation between the ensemble accuracy and

diversity among its member classifiers, whereas a negative number indicates a negative correlation. In particular, a negative

correlation indicates that ensemble accuracy increases while diversity decreases. The closer the value of is to 0, the smaller

the correlation. The perfect relationship exists with a value of 1 or −1 whereas no correlation exists with a value of 0. On

the other hand, p-value indicates the degree of that the correlation is statistically significant.

To further quantify the relationship between the diversity and an improvement in accuracy over different groups of

classifiers, we calculate the mean accuracy of the different groups of classifiers that make up the corresponding classifier

ensembles, and then calculate differences between the ensemble accuracy and themean accuracy as suggested in [19,8]. For

example, given two classifiersϕ1 andϕ2, the accuracy ofϕ1 andϕ2 is denoted by F(ϕ1) and F(ϕ2), respectively, and itsmean

accuracy is calculated by [F(ϕ1)+ F(ϕ2)]/2, denoted by FM , the accuracy of ensemble ϕ1 and ϕ2 built by Dempster’s rule is

denoted by FDS = F(ϕ1 ⊕ ϕ2). Thus the difference FDS − FM is regarded as an improvement in accuracy over two classifiers

ϕ1 and ϕ2. In our experiment, we have 13 classifiers generated in terms of ϕ1, . . . , ϕ13. These classifiers are permuted

to form 2 × 12 groups of classifiers in decreasing and mixed orders, which in turn make up 2 × 12 classifier ensembles

denoted by 2C, . . . , 13C, respectively. For each group of classifiers in decreasing order, for instance, the diversity among the

member classifiers and an improvement in accuracy over the classifier group are calculated, finally ending up with 12 pairs

of diversity and improved accuracy in total. For each of the 12 pairs correlation analyses are performed over the 12 data sets.

The following subsections detail our experimental results.

5.2. Combinations of classifiers using the evidential rules in decreasing order

In this section, we study the performance of 12 classifier ensembles constructed by the four combination rules in de-

creasing order over the 12 data sets. The purpose of this study is to investigate the impact of classifier order on ensemble

performance and find the extent of the impact with the different combination rules. The experimental results are presented

in Fig. 1.

From these curves, we can see that the accuracy decrease with increasing number of classifiers in the ensembles and

with the change of the combination rules, respectively. Roughly the smaller the number of classifiers in the ensembles,

the better the ensemble performance, and these curves converge to the combination of two classifiers – the best classifier

and the second best one. The performance of the ensembles built with Dempster’s rule and Smets’ rule is better than the

Proportion rule and Yager’s rule. There is no statistical performance difference between Dempster’s rule and Smets’ rule, but

the Proportion rule outperforms Yager’s rule.

Specifically, for Dempster’s rule, the curves on the ten data sets (anneal, balance, car, autos, iris, letter, segment, soybean,

wine, zoo) show that the order of the classifiers has an impact on the ensemble performance, but not dramatic. They show

that the maximum number of combination of classifiers results in the lower ensemble accuracy and the minimum number

of classifier combination leads to the highest accuracy, and the accuracy margins between the two ends of the ensembles

are very small along with a monotonic trend. When the combinations of classifiers reach 6C from 13C to 2C, the accuracy
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Fig. 1. Combinations of 13 classifiers in decreasing order over the 12 data sets (12 graphs share the same legend)

of the ensembles is towards flat. The similar phenomena occur to Smets’ rule, but the combined accuracy is towards flat

throughout the combinations of classifiers, and Smets’ rule is better than Dempster’s rule over the five data sets of audiology,

car, glass, wine, and zoo.

With reference to the Proportion rule, the curves of seven data sets (anneal, iris, letter, segment, soybean, wine, zoo)

demonstrate that this rule performs very similar to Dempster’s rule and the two rules approximately fit each other when

the accuracy of the ensembles exceed 85%. In the cases of audiology, glass and autos, although the ensemble performance

contrasts with that of Dempster’s rule, both of them approximately end up at the same point − the combination of two

classifiers. In some cases, it appears that the Proportional rule does not favor the combination of more classifiers, such as

more than six, in which the ensemble accuracy drops quickly.

Regarding Yager’s rule, the performance of the ensembles is in stark contrast with that of the other three rules. Except the

cases of balance, autos, iris and segment, the combination of 13 classifiers results in the lowest accuracy and the combination

of the best and second best classifiers achieves the highest accuracy, and the curves of the ensemble accuracy show a

monotonic trend. The average difference between the values at the two ends is about 34.11% − a large margin. This result

suggests that Yager’s rule might not be able to accumulate pieces of evidence derived frommultiple classifiers, which is not

suitable for combining multiple classifiers.

Therefore, the order of classifiers has a different impact on the ensemble performance across the 12 data sets. In general,

its impact is positive on the performance of the ensemble classifiers built by Dempster’s and Smets’ rules, and negative on

the ensemble performance obtained by the Proportion and Yager’s rules.

5.3. Diversity of combinations of classifiers using the evidential rules in decreasing order

In accordance with the accuracy of the 12 classifier ensembles in decreasing order, this section studies diversity among

the member classifiers of each ensemble and then assesses the relationship between the accuracy of the ensembles and

diversity being inherent in the member classifiers.
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Fig. 2. Diversity of the 12 corresponding groups of classifiers in deceasing order (making up 12 classifier ensembles as seen Fig. 1) over the 12 data sets (12 graphs

share the same legend).

Fig. 2 presents the curves of the diversity among the member classifiers making up the 12 classifier ensembles 2C, . . .,
13C, which are measured by kw, qs, dis and κ over the 12 data sets. According to the behaviors of the curves and the nature

of the four diversity measures, these curves can be characterized into two groups: one is measured by qs and κ , and the

other is measured by kw and dis. These curves show that the fitness between kw and dis is better than that between qs

and κ , and the curve margins between qs and κ are larger than those between kw and dis. As introduced previously, the

smaller values of qs and κ means that the agreement among the member classifiers is smaller, in turn representing a larger

diversity, while the larger values of kw and dis represents the larger diversity among the member classifiers. As depicted in

Fig. 2, the curves of the four measures are generally corresponding to the accuracy of the ensembles, when the two groups

of the curves become closer to each other, the accuracy of the classifier ensembles is low. Conversely, when the accuracy

of the ensembles is high, the two groups of the curves are separating from one to another, which are evident in the cases

of iris, letter, segment, soybean, wine and zoo. However when the accuracy of the ensembles is lower than 63%, the curves of

qs in the cases of audiology, balance and glass is above those of κ . Exceptionally the highest accuracy of the combination of

two classifiers 2C corresponds to the smallest value of qs in the data sets of anneal, car, iris and segment, respectively. These

phenomena indicate that measure qs is less sensitive than κ in picking up the diversity among the constituent classifiers.

Bringing together the results presented in Figs. 1, 2, and Table 3 presents the averaged accuracy on the classifier ensembles

constructed by the four combination rules and the average diversity measured by kw, qs, dis and κ among the member

classifiers on each of the data sets. The table is roughly divided into two groups, the first six data sets and the second six data

sets. The accuracy in the second group is better than that in the first group. Correspondingly the diversity measured by qs

and κ in the second group is roughly larger than that in the first group, as opposite to this, the diversity obtained by kw and

dis in the second group is less than that in the first group. As mentioned previously the larger qs and κ values indicates the

smaller diversity and the larger kw and dis values means the larger diversity. Therefore there is the same correspondence

between the accuracy and the diversity as illustrated in Figs. 1 and 2, but the averages in the bottom row of the table does

not indicate that the accuracy is strongly associated with the diversity.
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Table 3

Average ensemble accuracy of 12 classifier ensembles and average diversity among the 12 groups of member clas-

sifiers over the 12 data sets in decreasing order.

Dataset Dempster Smets Proportion Yager kw qs dis κ

Anneal 79.30 78.55 74.81 70.30 0.0177 0.3921 0.0423 0.8878

Audiology 48.84 51.71 41.82 40.10 0.0706 0.8155 0.1678 0.7115

Balance 60.44 61.57 55.70 28.67 0.0502 0.9428 0.1143 0.7177

Car 86.05 91.81 78.74 62.85 0.0339 0.7917 0.0811 0.8080

Glass 62.93 62.80 62.86 49.66 0.0476 0.9271 0.1132 0.8225

Autos 77.67 77.60 69.93 64.33 0.0516 0.6859 0.1223 0.8271

Iris 94.61 94.61 94.00 76.94 0.0138 0.8342 0.0324 0.9514

Letter 89.88 89.21 89.62 82.55 0.0482 0.8925 0.1106 0.8527

Segment 96.42 96.27 95.40 89.90 0.0247 0.7826 0.0591 0.9264

Soybean 95.98 95.69 94.50 89.76 0.0283 0.8870 0.0797 0.9010

Wine 98.20 99.00 96.85 85.63 0.0131 0.9326 0.0236 0.9643

Zoo 88.36 89.94 87.57 81.61 0.0195 0.8823 0.0407 0.9399

Av 81.56 82.40 78.48 68.52 0.0349 0.8139 0.0822 0.8592

Table 4

Correlation between diversity and combined accuracy of classifiers using Dempster’s rule in decreasing order.

Dataset kw qs dis κ

Anneal −0.3893 −0.5307 −0.2593 0.2705

Audiology −0.3332 0.2215 −0.3321 0.3303

Balance −0.9731 0.9858 −0.9720 0.9768

Car −0.9530 0.0664 −0.9330 0.9593

Glass 0.0253 −0.2486 0.0793 −0.0797
Autos −0.3120 0.4156 −0.3657 0.3447

Iris 0.2170 −0.6261 0.2825 −0.2934
Letter −0.8324 0.7868 −0.8221 0.8349

Segment 0.0975 0.5778 0.0312 −0.0309
Soybean −0.4667 0.2020 −0.4647 0.4360

Wine −0.6079 0.7458 −0.5881 0.5899

Zoo -0.2592 0.4188 -0.0848 0.0839

Av -0.3989 0.2512 -0.3691 0.3685

Abs(Av) 0.4556 0.4855 0.4346 0.4359

Table 5

Correlation between diversity and combined accuracy of classifiers using Proportion rule in decreasing order.

Dataset kw qs dis κ

Anneal −0.9440 −0.4611 −0.9373 0.9383

Audiology −0.7191 0.5341 −0.6425 0.6260

Balance −0.9407 0.8872 −0.9449 0.9403

Car −0.9388 0.1642 −0.9362 0.9213

Glass −0.6461 0.6588 −0.6569 0.6361

Autos −0.9051 0.9429 −0.8981 0.8943

Iris −0.4702 −0.1756 −0.4196 0.4089

Letter −0.8278 0.7818 −0.8170 0.8305

Segment −0.7033 −0.1690 −0.6818 0.6830

Soybean −0.8357 0.7115 −0.8297 0.8302

Wine −0.5125 0.5068 −0.4691 0.4714

Zoo −0.7678 0.7064 −0.6823 0.6798

Av −0.7676 0.4240 −0.7429 0.7383

Abs(Av) 0.7676 0.5583 0.7429 0.7383

To assess the quantitative correlation between the accuracy and the diversity, a correlation analysis has been performed

by using Spearman’s rankmethod and the results are presented in Tables 4–7 respectively. The cell values in the tables under

eachmeasure are correlation coefficients, which are shown in bold provided that they are statistically significant (p ≤ 0.05).
Compared with the curves shown in Figs. 1 and 2, if the accuracy curves follow a similar trend with the diversity curves

measured by qs and κ , the correlation coefficients under qs and κ are positive and the coefficients under kw and dis are

negative, vice versa otherwise. In Tables 4 and 7, the correlation between the accuracy of the ensembles constructed by

Dempster’s and Smets’ rules and the diversity obtained by the four diversitymeasures among their member classifiers is not

very strong, where the correlation coefficients on 4–6 of the 12 data sets are statistically significant. This quantitative result

supports the above affirmation made from Table 3. By contrast, the correlation coefficients in Tables 5 and 6 demonstrates

a strong correlation between the accuracy of the ensembles and the diversity among the ensemble members with the

exception of measure qs. These results reveal the fact that the diversity rated by the four measures has a varying correlation
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Table 6

Correlation between diversity and combined accuracy of classifiers using Yager’s rule in decreasing order.

Dataset kw qs dis κ

Anneal −0.9663 −0.4450 −0.9669 0.9664

Audiology −0.7894 0.6132 −0.7080 0.6903

Balance 0.0468 −0.1624 0.0501 −0.0885
Car −0.9280 −0.1239 −0.8326 0.7769

Glass −0.9358 0.8463 −0.8899 0.8871

Autos −0.9721 0.9693 −0.9625 0.9648

Iris −0.6717 −0.0985 −0.5726 0.5655

Letter −0.9283 0.8806 −0.9176 0.9285

Segment −0.9598 −0.3601 −0.9201 0.9218

Soybean −0.9601 0.8655 −0.9560 0.9575

Wine −0.9427 0.7960 −0.9436 0.9434

Zoo −0.9626 0.7604 −0.9779 0.9776

Av −0.8308 0.3785 −0.7998 0.7909

Abs(Av) 0.8386 0.5768 0.8081 0.8057

Table 7

Correlation between diversity and combined accuracy of classifiers using Smets’ rule in decreasing order.

Dataset kw qs dis κ

Anneal −0.7785 −0.6064 −0.7339 0.7393

Audiology 0.6578 −0.5308 0.5599 −0.5548
Balance −0.9716 0.9601 −0.9732 0.9759

Car −0.7494 0.1169 −0.7600 0.7269

Glass 0.1359 −0.3306 0.1793 −0.1808

Autos −0.4799 0.6363 −0.5072 0.4972

Iris −0.2051 −0.4485 −0.1187 0.1067

Letter −0.8606 0.8159 −0.8498 0.8627

Segment 0.3355 0.4240 0.3325 −0.3283

Soybean −0.6389 0.4533 −0.6307 0.6174

Wine −0.5388 0.4075 −0.5510 0.5498

Zoo −0.5174 0.2645 −0.4212 0.4300

Av −0.3843 0.1802 −0.3728 0.3702

Abs(Av) 0.5725 0.4996 0.5514 0.5475

with the ensemble performance obtained by the four combination rules, i.e. the higher ensemble accuracy corresponds to

the lower diversity, and the larger diversity corresponds to the lower ensemble accuracy.

To investigate the relationship between the diversity and the difference between the ensemble accuracy and the mean

accuracy of its member classifiers in terms of the improved accuracy over the ensemble member classifiers, a further

correlation analysis has been carried out and the resulting coefficients are presented in Tables 8–11 respectively. In Tables

8 and 11, the diversity obtained by kw, dis and κ are negatively and strongly correlated with the improved accuracy, where

the correlation coefficients on 9–11 of the 12 data sets are statistically significant. The relationship quantified in this result

appear to be opposite to the positive correlation illustrated in Tables 4 and7. In Table 9, the correlation between the improved

accuracy and the diversity detected by the four measures change from negative to positive over the data sets, where such

change seems to correlate with the ensemble accuracy that is lower or higher than 85%. In Table 10, the improved accuracy

is strongly correlated with the diversity obtained by kw, dis and κ , where the correlation coefficients on 10–11 data sets are

statistically significant. The diversity measured by qs is weakly correlated to the improved accuracy achieved by the four

combination rules as shown in the three tables. This phenomenon is similar to the case as shown in Tables 4–7 respectively.

As seen from Tables 8–11, there are strong negative correlation between the diversity and the improved accuracy. As

previously stated the negative correlation means that either with the diversity increasing the improved accuracy decreases

or the diversity decreases as the ensemble performance increasing. From the latter experiment we also develop an under-

standing that the ensemble accuracy obtained by Yager’s rule is lower than the average accuracy of ensemble classifiers,

thereby resulting in the positive correlation between the diversity and the improved accuracy. Nevertheless the findings

drawn from the two correlation assessments are basically consistent.

5.4. Combinations of classifiers using the evidential rules without ordering

In this experiment, we evaluate the performance of 12 ensemble classifiers constructed by the four combination rules in

mixed order. The experimental process and setting are the same as those in Section 5.2. The experimental results over the

12 data sets are graphed in Fig. 3.

As seen in Fig. 3 the performance curves of the ensemble classifiers made by Dempster’s rule, Smets’ rule and the

Proportion rule fit each other and they are gradually separating from the curves of the ensembles built by Yager’s rule as

more classifiers are combined. The former three curves follow a similar pattern with the exception of audiology, balance and

car data sets, i.e. the accuracy increases with more classifiers being combined particularly in the cases of anneal, audiology,
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Table 8

Correlation betweendiversity and improved accuracy of the combined classifiers usingDempster’s rule in decreasing

order.

Dataset kw qs dis κ

Anneal 0.9547 0.4237 0.9598 −0.9581

Audiology 0.1784 −0.1935 0.1169 −0.1081

Balance 0.7881 −0.6983 0.7879 −0.7697

Car −0.2476 0.1654 −0.3196 0.4409

Glass 0.6321 −0.7698 0.6738 −0.6801

Autos 0.9896 −0.9532 0.9708 −0.9763

Iris 0.9137 −0.6328 0.9044 −0.9068

Letter 0.8933 −0.8774 0.8949 −0.8850

Segment 0.9946 0.3089 0.9884 −0.9883

Soybean 0.9934 −0.9253 0.9913 −0.9946

Wine 0.6422 −0.4299 0.6625 −0.6608

Zoo 0.3940 −0.1094 0.5491 −0.5497

Av 0.6772 −0.3910 0.6817 −0.6697

Abs(Av) 0.7185 0.5406 0.7349 0.7432

Table 9

Correlation between diversity and improved accuracy of the combined classifiers using Proportion rule in decreasing

order.

Dataset kw qs dis κ

Anneal −0.7903 −0.3275 −0.8100 0.8103

Audiology −0.6263 0.4463 −0.5589 0.5427

Balance −0.7082 0.6273 −0.7176 0.7120

Car −0.8348 0.2423 −0.8608 0.8477

Glass −0.0132 0.0508 −0.0211 −0.0110

Autos −0.8010 0.8759 −0.7960 0.7885

Iris 0.6973 −0.6069 0.6766 −0.6824

Letter 0.8491 −0.8377 0.8523 −0.8399

Segment 0.8138 0.2093 0.8325 −0.8314

Soybean 0.8956 −0.8363 0.8973 −0.8948

Wine 0.4420 −0.3791 0.4840 −0.4819

Zoo 0.1136 0.0927 0.2502 −0.2534

Av 0.0031 −0.0369 0.0190 −0.0245

Abs(Av) 0.6321 0.4610 0.6464 0.6413

Table 10

Correlation between diversity and improved accuracy of the combined classifiers using Yager’s rule in decreasing

order.

Dataset kw qs dis κ

Anneal −0.9559 −0.4198 −0.9644 0.9634

Audiology −0.7319 0.5624 −0.6572 0.6389

Balance 0.4149 −0.5140 0.4176 −0.4523

Car −0.8850 −0.1656 −0.7771 0.7097

Glass −0.9048 0.8052 −0.8494 0.8442

Autos −0.9647 0.9677 −0.9550 0.9575

Iris −0.6504 −0.1239 −0.5493 0.5421

Letter −0.8256 0.7712 −0.8112 0.8289

Segment −0.8886 −0.4049 −0.8276 0.8303

Soybean −0.8877 0.8044 −0.8823 0.8860

Wine −0.9382 0.7876 −0.9391 0.9389

Zoo −0.9527 0.7648 −0.9660 0.9655

Av −0.7642 0.3196 −0.7301 0.7211

Abs(Av) 0.8334 0.5910 0.7997 0.7965

balance, car, glass and autos, where the accuracy of the ensemble classifiers is less than 85%, otherwise the accuracy curves

go towards flat. However the accuracy curves of the ensemble classifiers by Yager’s rule decreases with fluctuations when

more classifiers are combined except the data set of audiology. In fact some fluctuations also appear on the curves of the

Proportion rule such as in the cases of balance, car, glass and autos.

Comparedwith the accuracy curves in Fig. 1, the accuracy curveswithDempster’s rule, Semets’s rule, and the Proportional

rule have an opposite trend to those in decreasing order, the accuracy of the ensemble classifiers increases in mixed order

as more classifiers are combined, whereas the accuracy of the combined classifiers decreases in decreasing order. However

when the ensemble accuracy exceeds 85%, the accuracy curves go towards flat in both decreasing and mixed orders − the

two groups of the curves appear to be close each other, such as in the cases of iris, letter, segment, soybean, wine and zoo.

In fact the ensemble accuracy curves in the two orders are different on case by case, but the average accuracy over the 12

data sets in decreasing order is 1.10% better than that in mixed order for Dempster’s rule, 1.78% for Smets’ rule and 0.12% for
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Table 11

Correlation between diversity and improved accuracy of the combined classifiers using Smets’ rule in decreasing

order.

Dataset kw qs dis κ

Anneal 0.8586 0.2798 0.8492 −0.8463

Audiology 0.8244 −0.6561 0.7249 −0.7128

Balance 0.9720 −0.9437 0.9697 −0.9634

Car 0.9906 0.0109 0.9299 −0.9186

Glass 0.6625 −0.7780 0.6958 −0.7023

Autos 0.9629 −0.9142 0.9502 −0.9527

Iris 0.8019 −0.4794 0.7849 −0.7861

Letter 0.7862 −0.7792 0.7915 −0.7762

Segment 0.9933 0.2778 0.9941 −0.9936

Soybean 0.9914 −0.9109 0.9905 −0.9916

Wine 0.9719 −0.9403 0.9690 −0.9695

Zoo 0.2699 −0.3258 0.3898 −0.3806

Av 0.8405 −0.5133 0.8366 −0.8328

Abs(Av) 0.8405 0.6080 0.8366 0.8328

Fig. 3. Combinations of 13 classifiers over the 12 data sets without ordering (12 graphs share the same legend).

Proportion rule. For Yager’s rule, the accuracy curves of ensemble classifiers in both the orders are approximately consistent

as shown in Figs. 1 and 2, as more classifiers are combined, the accuracy of the ensemble classifiers goes down even though

there are fluctuations in audiology and autos during the course of combination. The average accuracy over the 12 data sets

in decreasing order is 2.79% better than that in mixed order. This result indicates that the order of classifiers combined by

Yager’s rule has the largest impact on the ensemble accuracy.
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Fig. 4. Diversity of the corresponding combinations of 13 classifiers in mixed order over the 12 data sets (12 graphs share the same legend).

Table 12

Average ensemble accuracy and average diversity over the 12 data sets in mixed order.

Dataset Dempster Smets Proportion Yager kw qs dis κ

Anneal 76.50 77.69 75.93 61.66 0.0247 0.5286 0.0574 0.8514

Audiology 47.31 47.53 43.24 43.37 0.0781 0.8013 0.1819 0.6905

Balance 58.93 59.42 53.97 43.01 0.0771 0.9022 0.1814 0.5821

Car 86.44 86.88 76.78 55.12 0.0538 0.7418 0.1294 0.6679

Glass 62.13 61.86 61.71 51.78 0.0692 0.8322 0.1635 0.7400

Autos 74.91 74.33 73.36 62.33 0.0755 0.5089 0.1821 0.7330

Iris 94.28 94.28 94.11 76.61 0.0189 0.8103 0.0439 0.9344

Letter 87.52 86.64 88.08 80.45 0.0854 0.8239 0.2053 0.7265

Segment 95.57 95.60 95.06 82.99 0.0418 0.8145 0.0980 0.8775

Soybean 95.02 94.85 93.71 88.52 0.0425 0.8519 0.0972 0.8789

Wine 98.79 98.71 97.47 66.89 0.0253 0.8084 0.0584 0.9119

Zoo 88.13 89.62 86.94 76.04 0.0298 0.8362 0.0702 0.8910

Av 80.46 80.62 78.36 65.73 0.0518 0.7717 0.1224 0.7904

5.5. Diversity of combinations of classifiers using the evidential rules without ordering

Fig. 4 presents the diversity among the different groups of classifiers that make up the classifier ensembles in mixed

order over the 12 data sets, where the diversity curves demonstrate some similarities to those in decreasing order and can

hereby be grouped in the same way: one is measured by qs and κ , and the other is measured by kw and dis. We can see that

the first group of curves decrease with more classifiers being added, while the second group of curves increases as more



602 Y. Bi / International Journal of Approximate Reasoning 53 (2012) 584–607

Table 13

Correlation between diversity and combined accuracy of classifiers using Dempster’s rule in mixed order.

Dataset kw qs dis κ

Anneal 0.4684 −0.4861 0.4442 −0.4444

Audiology 0.9818 −0.9682 0.9573 −0.9311

Balance −0.1789 0.0420 −0.3588 0.3527

Car 0.8003 −0.7737 0.6616 −0.5170

Glass 0.6870 −0.3240 0.5365 −0.5362

Autos 0.7708 −0.8755 0.5998 −0.4814

Iris −0.3914 0.1292 −0.3617 0.3600

Letter 0.4459 −0.5528 0.1762 −0.1735

Segment 0.6408 −0.7968 0.5554 −0.5566

Soybean −0.6776 0.4193 −0.6621 0.6491

Wine −0.7616 0.3411 −0.7278 0.7311

Zoo 0.3690 −0.7391 0.4162 −0.4070

Av 0.2626 −0.3818 0.1862 −0.1626

Abs (Av) 0.5977 0.5374 0.5381 0.5116

Table 14

Correlation between diversity and combined accuracy of classifiers using Proportion rule in mixed order.

Dataset kw qs dis κ

Anneal −0.1848 −0.2054 −0.2009 0.1957

Audiology 0.9829 −0.9817 0.9763 −0.9573

Balance −0.6116 0.5445 −0.6683 0.6709

Car −0.1719 −0.0987 −0.2315 0.2923

Glass 0.1254 −0.1142 0.0955 −0.0423

Autos 0.6627 −0.6714 0.5176 −0.3946

Iris −0.1636 −0.2032 −0.1170 0.1160

Letter 0.1433 −0.2125 −0.0673 0.0990

Segment 0.2584 −0.0963 0.2551 −0.2601

Soybean −0.4151 0.3030 −0.3996 0.3923

Wine −0.6190 0.6097 −0.6207 0.6219

Zoo −0.1843 0.0633 −0.1644 0.1731

Av −0.0148 −0.0886 −0.0521 0.0756

Abs (Av) 0.3769 0.3420 0.3595 0.3513

Table 15

Correlation between diversity and combined accuracy of classifiers using Yager’s rule in mixed order.

Dataset kw qs dis κ

Anneal −0.9185 0.4967 −0.9060 0.9001

Audiology 0.7611 −0.7393 0.8333 −0.8703

Balance −0.6946 0.6926 −0.6098 0.6170

Car −0.7419 0.1147 −0.6224 0.7832

Glass −0.5793 0.2472 −0.4455 0.4663

Autos −0.5999 −0.3686 −0.6087 0.6310

Iris −0.9726 0.8068 −0.9728 0.9720

Letter −0.7122 0.6382 −0.6783 0.6848

Segment −0.9860 0.2629 −0.9856 0.9847

Soybean −0.9353 0.7403 −0.9250 0.9205

Wine −0.9638 0.5996 −0.9517 0.9527

Zoo −0.9172 0.5284 −0.8701 0.8691

Av −0.6884 0.3350 −0.6452 0.6592

Abs (Av) 0.8152 0.5196 0.7841 0.8043

classifiers are combined but both the groups have some fluctuations. In particular, there are sharp changes between 9C and

10C in the cases of glass, autos, iris, letter, segment, soybean, wine and zoo. We also notice that these changes appear to be

correlated with the accuracy of the ensembles over all the data sets in sense that the accuracy of the ensemble classifiers

made by Dempster’s and Smets’ rules, and the Proportion rule exceeds 85%. Meanwhile the first group of the curves show

a similar phenomenon as in decreasing order that the curves of the diversity measured by qs are above those obtained

by κ in the cases of audiology, balance, car, glass, letter and heart, provided that the accuracy of the ensemble classifiers

is less than 65%. Compared with the curves presented in Fig. 2, the diversity curves have more fluctuations than those in

decreasing order and the impact of the order on the diversity is not as apparent as in decreasing order. In other words, the

correspondence between the diversity and the accuracy in decreasing order appears to bemore apparent than that inmixed

order.
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Table 16

Correlation between diversity and combined accuracy of classifiers using Smets’ rule in mixed order.

Dataset kw qs dis κ

Anneal 0.6609 −0.7153 0.6268 −0.6298

Audiology 0.9876 −0.9811 0.9652 −0.9412

Balance −0.0777 −0.0666 −0.2737 0.2582

Car 0.8028 −0.7053 0.6315 −0.5211

Glass 0.7229 −0.3897 0.5690 −0.5526

Autos 0.7592 −0.8595 0.5998 −0.4785

Iris −0.3914 0.1292 −0.3618 0.3600

Letter 0.3382 −0.4526 0.0766 −0.0716

Segment 0.6275 −0.8212 0.5375 −0.5375

Soybean −0.5995 0.3914 −0.5926 0.5834

Wine −0.7593 0.3795 −0.7172 0.7202

Zoo 0.3618 −0.5530 0.4125 −0.3984

Av 0.2861 −0.3870 0.2061 −0.1841

Abs (Av) 0.590735 0.537035 0.530325 0.5044

Table 17

Correlation between diversity and improved accuracy of the combined classifiers using Dempster’s rule in mixed

order.

Dataset kw qs dis κ

Anneal 0.8880 −0.5945 0.8726 −0.8680

Audiology 0.9647 −0.9371 0.9415 −0.9235

Balance 0.6448 −0.7417 0.4786 −0.4864

Car 0.9805 −0.5951 0.8952 −0.9123

Glass 0.6071 −0.2983 0.4980 −0.5331

Autos 0.8243 −0.7748 0.8695 0.8268

Iris 0.9504 −0.8902 0.9662 −0.9655

Letter 0.9571 −0.9106 0.9674 −0.9611

Segment 0.9951 −0.2869 0.9976 −0.9974

Soybean 0.9722 −0.8225 0.9740 −0.9743

Wine 0.9656 −0.8162 0.9765 −0.9757

Zoo 0.9881 −0.7554 0.9866 −0.9855

Av 0.8948 −0.7019 0.8686 −0.8675

Abs (Av) 0.8948 0.7019 0.8686 0.8675

Table 18

Correlation between diversity and improved accuracy of the combined classifiers using Proportion rule in mixed

order.

Dataset kw qs dis κ

Anneal 0.6487 −0.6401 0.6291 −0.6281

Audiology 0.9658 −0.9548 0.9819 −0.9850

Balance −0.1930 0.12232 −0.27412 0.2756

Car −0.1722 0.01253 −0.2073 0.2023

Glass 0.4393 −0.3069 0.3783 −0.35812

Autos 0.60242 −0.4374 0.6558 −0.6006

Iris 0.8249 −0.9211 0.8583 −0.8579

Letter 0.7567 −0.7256 0.7068 −0.6734

Segment 0.9400 −0.1434 0.9602 −0.9612

Soybean 0.8448 −0.6960 0.8502 −0.8506

Wine 0.678 −0.3677 0.6734 −0.6727

Zoo 0.5857 −0.4695 0.5965 −0.5893

Av 0.5767 −0.4606 0.5674 −0.5582

Abs (Av) 0.6376 0.4831 0.6476 0.6379

Table 12 presents the average accuracy on the classifier ensembles and the average diversity among the corresponding

groups of member classifiers on each of the data sets. As in Table 3, the data sets can also be divided into two groups and

the results confirm that there is an correspondence between the accuracy and the diversity. Compared with the averaged

accuracy and diversity in Table 3, an increase in diversity corresponds to a decrease in accuracy. For example, the average

diversity, 0.0518, 0.7717, 0.1224 and 0.7904 in bottom row obtained by the four measures within Table 12, are greater than

0.0349, 0.8139, 0.0822 and 0.8592 in Table 3, respectively, but the average accuracy, 80.46%, 78.36% and 65.73% in Table 12,

are correspondingly smaller than 81.56%, 78.48% and 68.52% in Table 3.

Tables 13–16 present the correlation coefficients quantifying the relationship between the diversity under the four mea-

sures and the accuracy of the ensemble classifiers made by the four combination rules. For Dempster’s rule, although the

negative correlation between the ensemble accuracy and the diversity among their member classifiers is stronger than the
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Table 19

Correlation between diversity and improved accuracy of the combined classifiers using Yager’s rule in mixed order.

Dataset kw qs dis κ

Anneal −0.9168 0.4958 −0.9030 0.8971

Audiology 0.1683 −0.1274 0.3053 −0.4004

Balance −0.5932 0.5965 −0.4992 0.5068

Car −0.7830 0.2339 −0.6274 0.7343

Glass −0.5915 0.2465 −0.4468 0.4587

Autos −0.7582 −0.1496 −0.6555 0.6264

Iris −0.9733 0.8044 −0.9730 0.9723

Letter −0.1996 0.2104 −0.0063 0.0187

Segment −0.9856 0.2986 −0.9785 0.9776

Soybean −0.5627 0.4242 −0.54283 0.5375

Wine −0.9607 0.5917 −0.9482 0.9492

Zoo −0.8764 0.4643 −0.8179 0.8165

Av −0.6694 0.3408 −0.5911 0.5912

Abs (Av) 0.6974 0.3869 0.6420 0.6579

Table 20

Correlation between diversity and improved accuracy of the combined classifiers using Smets’ rule in mixed order.

Dataset kw qs dis κ

Anneal 0.9456 −0.6931 0.9249 −0.9222

Audiology 0.9832 −0.9669 0.9633 −0.9492

Balance 0.6528 −0.7514 0.4834 −0.4984

Car 0.9640 −0.5379 0.8343 −0.8721

Glass 0.6454 −0.3491 0.5306 −0.5545

Autos 0.7944 −0.7330 0.8661 −0.8223

Iris 0.9505 −0.8903 0.9663 −0.9656

Letter 0.9309 −0.8742 0.9725 −0.9648

Segment 0.9961 −0.3001 0.9967 −0.9962

Soybean 0.9691 −0.8062 0.9681 −0.9671

Wine 0.9634 −0.7924 0.9766 −0.9760

Zoo 0.8848 −0.7760 0.9051 −0.8980

Av 0.8900 −0.7059 0.8657 −0.8655

Abs (Av) 0.8900 0.7059 0.8657 0.8655

positive correlation, the entire correlation appears not to be strong since there are 3–7 data sets confirming that their cor-

relation coefficients are statistically significant. The correlation with Smets’ rule is slightly stronger than that of Dempster’s

rule since the correlation on 4–8 data sets are statistically significant. With respect to the Proportion rule, the correlation is

even weaker as the correlation coefficients on only three data sets show p ≤ 0.05 such that the hypothesis of no correlation

is nearly true. For Yager’ rule, the correlation between the accuracy of the ensembles and the diversity among their member

classifiers is strong with exception of measure qs where 6 of the 12 data sets show that their coefficients are statistically

significant, but for all the other measures, the correlation coefficients on 11–12 data sets are statistically significant. As

witnessed in Fig. 3 and Table 12, the ensemble accuracy obtained by Yager’s rule is the lowest, it is actually even lower than

the average accuracy of the member classifiers. Thus the strong correlation means that the deteriorated ensemble accuracy

could be caused by the influence of the larger diversity.

Tables 17–20 present the results of the correlation between the diversity and the improved accuracy of the groups of

classifiers. For Dempster’s and Smets’ rules, the correlation is negatively strong since the correlation coefficients over 9–12

of the 12 data sets are statistically significant. For Proportion rule, the correlation under qs is weaker but the correlation

between the improved accuracy and the diversity is negatively strong because 9 of the 12 cases demonstrates that the

correlation coefficients are statistically significant. For Yager’s rule, with the differentmeasures, the correlation between the

diversity and the accuracy is positive and stronger than that of the other two combination rules. Comparedwith Tables 8–11,

the correlation between the diversity and accuracy are stronger than those in decrease order. It is also important to note

that an improvement in the average accuracy in mixed order are 5.52% for Dempster’s rule, 5.60% for Smets’ rule, 3.49% for

the Proportion rule and −8.37% for Yager’s rule, which are correspondingly greater than 1.89%, 2.67%, −1.18% and −10.4%

in decrease order although the average accuracy of all the member classifiers in decrease order is better than that in mixed

order. The comparative analysis reveals the fact that the larger improvement in the average accuracy of all the member

classifiers could imply the poorer ensemble accuracy, reflecting the negatively strong correlation between the diversity and

the improved accuracy. This fact in turn implies that an increase in diversity corresponds to a decrease in accuracy, or vice

versa, which is consistent with the above finding drawn from Tables 8–11.

6. Conclusion

Aiming to ascertain the impact of diversity on ensemble accuracy, we have investigated two possible orders to build

classifier ensembles, assessed the diversity among the member classifiers, and quantified the correlation between the
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Table 21

Decreasing order: summary of correlation between diversity and ensemble accuracy alongwith correlation between

diversity and improved accuracy (↑: positive correlation; ⇑: strongly positive correlation; ↓: negative correlation;

⇓: strongly negative correlation; �: neutral correlation).

Ensemble accuracy Improved accuracy

kw qs dis κ kw qs dis κ

Dempster’s rule ↑ ↑ ↑ ↑ ⇓ ↓ ⇓ ⇓
Smets’ rule ↑ ↑ ↑ ↑ ⇓ ↓ ⇓ ⇓
Proportion rule ⇑ ↑ ⇑ ⇑ � � � �
Yager’s rule ⇑ ↑ ⇑ ⇑ ⇑ ↑ ⇑ ⇑

Table 22

Mixed order: summary of correlation between diversity and ensemble accuracy along with correlation between

diversity and improved accuracy (↑: positive correlation; ⇑: strongly positive correlation; ↓: negative correlation;

⇓: strongly negative correlation; �: neutral correlation).

Ensemble accuracy Improved accuracy

kw qs dis κ kw qs dis κ

Dempster’s rule ↓ ↓ ↓ ↓ ⇓ ⇓ ⇓ ⇓
Smets’ rule ↓ ↓ ↓ ↓ ⇓ ⇓ ⇓ ⇓
Proportion rule ↑ ↓ ↑ ↑ ↓ ↓ ↓ ↓
Yager’s rule ⇑ ↑ ⇑ ⇑ ⇑ ↑ ⇑ ⇑

diversity and ensemble accuracy. The empirical results show that the increase in diversity makes the ensemble accuracy

decrease or vice versa. In a sense, our finding is consistent to the findings reported in [8,12], i.e. an increase in diversity does

not consistently correspond to an improvement in the ensemble accuracy. However in amore general sense, our observation

appears to support the conjecture that the larger the conflict between two evidence sources, the larger the counterintuitive

effects produced, which is commonly believed in the research of the belief functions theory.

The experiments with the two orders of classifier combination have an important role to play in the study of the diversity

and the ensemble accuracy. Such orders allow us to vary the combination rules to examine the effects of the decreasing and

mixed orders on the classifier ensembles constructed, while the diversity among the member classifiers remains constant.

In this way, we have analyzed the ensemble performance made by the four combination rules in the two orders along with

their effects, the results show that the order of classifiers is an important factor affecting the ensemble performance and

decreasing order would be recommended as a better way to construct classifier ensembles.

Specifically Table 21 presents a summary of the correlation in decreasing order, where the left column is the correlation

between the diversity and the ensemble accuracy, and the right column summarizes the correlation between the diversity

and the improvedaccuracy. The former shows the correlation change fromweak to strongwith the changeof the combination

methods fromDempster’s and Smets’ rules to the Proportion and Yager’s rules as occurred in all the diversitymeasures with

the exception of qs. The enhancement of the correlationwith the change of the combination rules indicates that the ensemble

accuracy obtained by the Proportion and Yager’s rules is more dependent with the diversity than Dempster’s and Smets’

rules, however the accuracy of the ensembles made by the Proportion and Yager’s rules is worse than that obtained by

Dempster’s and Smets’ rules. This suggests that the best ensemble accuracy appears not to depend on the diversity. On the

other hand, the latter shows the correlation is varied from negative to positive with the change of the combination methods

from Dempster’s and Smets’ rules to the Proportion and Yager’s rules except qs as well. The negative correlation means that

the improved accuracy increases as the diversity decreases, instead, an increase in the diversity leads to an increase in the

improved accuracy. This observation is similar to that made in [35].

Table 22 summarizes the correlation in mixed order. The left column shows the correlation change from negative to

positive with the change of the combination methods from Dempster’s and Smets’ rules to the Proportion and Yager’s rules

for all the diversity measures except qs. This change highlights the major difference with the result in Table 21, which is

further confirmed by the paired t-test results obtained from Tables 8–11 and 17–20. As discussed previously the negative

correlation indicates that the behavior of the ensemble accuracy is opposite to that of the diversity among the member

classifiers, which is not in favor of the claim that increasing diversity could lead to reduction of generalization error of

classifier ensembles. Therefore the experimental results provide an insight intowhat role the diversity plays in improving the

ensemble performance of classifiers, and they reinforce our belief that increasing diversity is not a good factor to generalize

the performance of evidential ensemble classifiers. With respect to qs, both of complete agreement and disagreement are

quantified on correct/incorrect assignments of classes made by classifiers, and qs is the radio of the difference with the

sum of these quantities. But this ratio values may not have the ability to appropriately capturing classifier diversity. As a

consequence, the qs diversity could not well correlate with the ensemble accuracy. This result seems to be consistent to that

reported in [8].

The effect of normalization and unnormalization with the evidential rules has been empirically examined. The different

ways of handling the conflicting factor E results in the different performance of the evidential ensembles. With and without

the influence of the orders of classifiers, the ensembles constructed by Dempster’s and Smets’ rules outperform these

made by Yager’s rule and the Proportion rule, where Smets’ rule performs better. Looking at the nature of the first three

rules, Dempster’s rule eliminates E by redistributing it as a normalization factor and Yager’s rule merges E with the mass
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committed to the whole frame of classes, however, Smets’ rule retains E with the emptyset, keeping the intersected focal

classes in the original order resulted from the combination of evidence. Conventionally, researchers employed the whole

frameto representuncertaintyand theemptyset to represent conflict, inwhich theycharacterizedifferent aspectsof evidence

sources. Our empirical results recommend that keeping the separation between them is better than their amalgamation in

building the ensemble classifiers. On the other hand, the normalization by redistributing E means the exclusion of the

emptyset in the iteration of evidence accumulation. In some sense, the normalization may diverge the intersected elements

towards reaching a consensus of focal elements originally supported by the evidence sources, consequently leading to more

accumulated disagreement in the process of evidence combination and the performance deterioration of the ensemble

classifiers constructed by Dempster’s rule.

Although this study has not addressed the issue of how the dependence of member classifiers affects the ensemble

performance, particularly generated by the cautious rule [26], a similar issue is addressed by other researchers in [27]. In

opposition toour standingaspect, thoseauthors suggest theclassifiersgeneratedbydifferent learningalgorithmsonthesame

data sets "cannot be considered as independent sources of information". They proposed to automatically adapt the level of

dependencebetween theclassifiersbyoptimizing thecombination rule insteadofquantifying the level ofdependenceamong

the member classifiers. Their empirical results show the effectiveness of the proposed scheme for learning an optimized

rule that often provides better results than any of the fixed rules investigated, including Dempster’s rule and Denoeux’s

cautious rule. This issue along with comprehensive comparisons of the cautious rule with other combination rules remain

to be addressed in our future study.

In the blend of theDS theory and ensemble learning, amalgamating diversitywith conflictwill requiremore sophisticated

methods for measuring either diversity or conflict being inherent in classifiers. Although the experimental results provide

an insight into what role diversity plays in improving the performance of evidential ensembles, such statistic measures used

in the form of binary outputs cannot offer an effective way to ascertain the what role a counter intuitive effect caused by

conflicting evidence plays in constructing successful classifier ensembles by an evidential approach. In general, we need to

devise a framework for uniformly formulating diversity and conflict, developmeasures for capturing diversity and evaluating

its usefulness, and design a better mechanism that will be used to build successful evidential classifier ensembles without

scarifying accuracy and efficiency. These research issues are to be addressed in a future paper.
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