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Abstract

In Stanley [R.P. Stanley, Irreducible symmetric group characters of rectangular shape, Sém. Lothar.
Combin. 50 (B50d) (2003) 11 pp.] the author introduces expressions for the normalized characters of the
symmetric group and states some positivity conjectures for these expressions. Here, we give an affirmative
partial answer to Stanley’s positivity conjectures about the expressions using results on Kerov polynomials.
In particular, we use new positivity results in Goulden and Rattan [I.P. Goulden, A. Rattan, An explicit form
for Kerov’s character polynomials, Trans. Amer. Math. Soc., in press, math.CO/0505317, November 2005].
We shall see that the generating series C(t) introduced in [I.P. Goulden, A. Rattan, An explicit form for
Kerov’s character polynomials, Trans. Amer. Math. Soc., in press, math.CO/0505317, November 2005] is
critical to our discussion.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

A partition is a weakly ordered list of positive integers λ = λ1λ2 . . . λk , where λ1 � λ2 �
· · · � λk . The integers λ1, . . . , λk are called the parts of the partition λ, and we denote the number
of parts by l(λ) = k. If λ1 + · · · + λk = d , then λ is a partition of d , and we write λ � d . We
denote by P the set of all partitions, including the single partition of 0 (which has no parts). For
partitions ω, λ � n let χω(λ) be the character of the irreducible representation of the symmetric
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Fig. 1. The shape p × q.

group Sn indexed by ω, and evaluated on the conjugacy class Cλ of Sn, which consists of all
permutations whose disjoint cycle lengths are specified by the parts of λ.

Various scalings of irreducible symmetric group characters have been considered in the recent
literature. The central character is given by

χ̃ω(λ) = |Cλ| χω(λ)

χω(1n)
,

where χω(1n) is the degree of the irreducible representation indexed by ω. For results about
the central character, see, for example, [4,5,10]. The scaling to be discussed in this paper, the
normalized character, is given for any partitions w � n and μ � k, where k � n, by

χ̂ω

(
μ1n−k

) = n(n − 1) · · · (n − k + 1)
χω(μ1n−k)

χω(1n)
.

For the conjugacy class Ck 1n−k only, the normalized character and the central character are re-
lated by the following:

χ̂ω

(
k 1n−k

) = n(n − 1) · · · (n − k + 1)
χω(k 1n−k)

χω(1n)
= kχ̃ω

(
k 1n−k

)
.

The subject of this paper is a particular polynomial expression for the normalized character,
introduced in Stanley [15]. Consider the partition with pi parts of size qi , for i from 1 to m, with
q1 the largest part. Thus, p1,p2, . . . , pm are positive integers and q1 > q2 > · · · > qm (see Fig. 1).
We denote this partition by p × q. Define the series Fk in indeterminates p1, . . . , pm,q1, . . . , qm

by

Fk(p1,p2, . . . , pm;q1, q2, . . . , qm) = χ̂p×q
(
k1n−k

)
. (1)

We often denote (p1, . . . , pm) by p and (q1, . . . , qm) by q, giving us the notation Fk(p;q)

for Fk(p1,p2, . . . , pm;q1, q2, . . . , qm). The following theorem appears in Stanley [15, Propo-
sition 1].
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Theorem 1.1 (Stanley). Fk(p;q) is a polynomial in the p’s and q’s such that Fk(1,1, . . . ,1;
−1,−1, . . . ,−1) = (k + m − 1)k .

In light of this theorem, we call the polynomials in (1) Stanley’s character polynomials. These
polynomials are the main objects in this paper. For example, for the case m = 2, the first two
Stanley polynomials are

F1(a,p;b, q) = −ab − pq,

F2(a,p;b, q) = −a2b + ab2 − 2apq − p2q + pq2,

where we have set p1 = a, p2 = p, q1 = b and q2 = q .

1.1. Main results

In [15], Stanley generalizes Fk(p;q) to

Fμ(p;q) = χ̂p×q
(
μ1n−k

)
,

where μ is a partition of k. Stanley states that Fμ(p;q) is, by the Murnaghan–Nakayama
rule, a polynomial with integer coefficients. In [15, Conjecture 1], Stanley gives a positivity
conjecture for a variant of the series Fμ(p;q). For convenience, we use the notation −q =
(−q1,−q2, . . . ,−qm), and Fμ(p;−q) is the series Fμ(p;q) with qi replaced by −qi . Call any
series T (p;q) in the indeterminates p’s and q’s p,q-positive if the coefficients of all terms are
positive.

Conjecture 1.2 (Stanley). For any partition μ � k, the series (−1)kFμ(p;−q) is p,q-positive.

Stanley only proves this in the case m = 1, the so-called rectangular case as in this case the
shape p × q is the rectangle with p1 parts all equal to q1. We drop the subscript 1 in this case
and say p × q is the partition with p parts all equal to q . In the rectangular case, Stanley proves
positivity by giving a stronger result; he gives a combinatorial interpretation for the coefficients,
given in [15, Theorem 1] and stated below.

Theorem 1.3 (Stanley). Suppose that p × q � n and μ � k for k � n. Let λμ be any fixed permu-
tation in the conjugacy class indexed by μ in Sk . Then,

χ̂p×q

(
μ1n−k

) = (−1)k
∑
u,ν

uν=λμ

p�(u)(−q)�(ν).

For general m, Conjecture 1.2 remains open. In fact, there is no proof even in the case where μ

has one part, that is, it is not yet known whether (−1)kFk(p;−q) is p,q-positive. This generating
series will be the focus of this paper and we address its p,q-positivity.

Stanley does state that the terms of highest degree, the terms of degree k+1, of (−1)kFk(p;q)

have a particularly nice form, and are given in (13) below. He does not, however, prove that
these terms are p,q-positive but does state that Elizalde has given a proof of this in private
communication to him (see (14) below). The proof by Elizalde does not appear to be anywhere
in the literature.
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In this paper, we give a new proof of Theorem 1.3. We do this using shift symmetric functions.
This new proof, we hope, is simpler and makes the result more transparent. Furthermore, it
highlights the already known connection between shift symmetric functions and the normalized
character. As for the general case of Fk(p;q), we give a proof of p,q-positivity of the terms
of highest degree, the terms of degree k + 1, in (−1)kFk(p;−q) (as mentioned above, this was
also proved by Elizalde, but his proof does not appear in the literature). We also give a proof
that the terms of degree k − 1 and k − 3 in (−1)kFk(p;−q), the terms of second and third
highest degree, are also p,q-positive, which are new results. We do this by using recent results
concerning Kerov’s polynomials. For Kerov’s polynomials, there is a notion of R-positivity and
a new notion of C-positivity introduced in Goulden and Rattan [7], which we shall use to show
our positivity results for (−1)kFk(p;−q). Finally, we end the paper by showing that C-positivity
of Kerov’s polynomials implies p,q-positivity of (−1)kFk(p;−q), also a new result.

The necessary results on Kerov’s polynomials are reviewed in the next section.

1.2. Kerov polynomials

We adapt the following description from Biane [1,2]: consider the Young diagram of ω, in
the French convention (see [11, footnote p. 2]), and translate it, if necessary, so that the bottom
left of the diagram is placed at the origin of an (x, y) plane. Finally, rotate the diagram counter-
clockwise by 45◦. Note that ω is uniquely determined by the curve τω(x) (see Fig. 2). The value
of τω(x) is equal to |x| for large negative or positive values of x and it is clear that τ ′

ω(x) = ±1,
where differentiable. The points xi and yi are the x-coordinates of the local minima and maxima,
respectively, of the curve τω(x). We suitably scale the size of the boxes in our Young diagram so
that the points xi and yi are integers. Setting σω(x) = (τω(x) − |x|)/2, consider the function

Hω(z) = 1

z
exp

∫
R

1

z − x
σ ′

ω(x) dx.

Fig. 2. The partition (4 3 3 3 1) of 14, drawn in the French convention, and rotated by 45◦ .
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Carrying out the above integration one obtains

Hω(z) =
∏m−1

i=1 (z − yi)∏m
i=1(z − xi)

, (2)

where m is the number of nonempty rows in the Young diagram of ω. Now let Rω(z) =∑
i�0 Ri(ω)zi be defined by

Rω(z) = zH 〈−1〉
ω (z), (3)

where 〈−1〉 denotes compositional inverse. We will be applying Lagrange inversion (see Goulden
and Jackson [6, Section 1.2] or Stanley [14, Theorem 5.4.2]) to (2) and (3), in which case we
change Hω(z) to a formal power series. We then obtain

Rω(z) = z

(Hω(1/z))〈−1〉 . (4)

Briefly, the origins of the series Hω(z), and in fact Kerov’s polynomials, come from attempting to
answer asymptotic questions about the characters of the symmetric group using free probability.
In that context Hω(z) is called the moment generating series (traditionally denoted Gω(z)) and
Rω(z) is the free cumulant generating series (traditionally denoted Kω(z)). We refer the reader
to Biane [2,3] for the background on asymptotics of characters and free probability.

Finally, the polynomials we are concerned with involve the Ri(ω)’s and are given in the fol-
lowing theorem. They first appeared in Biane [2, Theorem 1.1].

Theorem 1.4 (Biane). For k � 1, there exist universal polynomials Σk , with integer coefficients,
such that

χ̂ω

(
k 1n−k

) = Σk

(
R2(ω),R3(ω), . . . ,Rk+1(ω)

)
, (5)

for all ω � n with n � k.

Biane attributes Theorem 1.4 to Kerov, who described this result in a talk at an IHP conference
in 2000, but a proof first appears in a later paper of Biane [3]. The polynomials Σk are known as
Kerov’s character polynomials. They are referred to as “universal polynomials” in Theorem 1.4
to emphasize that they are independent of ω and n, subject only to n � k. Thus we write them
with Ri(ω) replaced by an indeterminate Ri , i � 2. In indeterminates Ri , the first six of Kerov’s
character polynomials, as listed in [2], are given below:

Σ1 = R2,

Σ2 = R3,

Σ3 = R4 + R2,

Σ4 = R5 + 5R3,

Σ5 = R6 + 15R4 + 5R2
2 + 8R2,

Σ6 = R7 + 35R5 + 35R3R2 + 84R3. (6)
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We note that once one knows Kerov’s polynomial Σk in order to find χ̂ω(k 1n−k) all one needs
is to construct the series Hω(z) as in (2) and apply Lagrange inversion to (4) to find the series
Rω(z), giving the Ri(ω). Substituting these values into the kth polynomial will then give the
normalized character χ̂ω(k 1n−k).

Note that all coefficients appearing in this list are positive. It is conjectured that this holds
in general: that for any k � 1, all nonzero coefficients in Σk are positive (see Theorems 1.5,
1.6 and 1.7 for positivity results obtained so far for Kerov’s polynomials). Kerov’s polynomials
remain somewhat of a mystery, in spite of recent efforts by Biane [3], Śniady [13] and Goulden
and Rattan [7]. In particular, in [7] the authors introduce the polynomial C(t) = ∑

m�0 Cmtm

given by

C(t) = 1

1 − ∑
i�2(i − 1)Rit i

. (7)

From the definition of C(t) we see the Cm are polynomials in the Ri ’s, with C0 = 1, C1 = 0, and

Cm =
∑

j2,j3,...�0
2j2+3j3+···=m

(j2 + j3 + · · ·)!
∏
i�2

((i − 1)Ri)
ji

ji ! , m � 2. (8)

Writing Kerov’s polynomials in terms of the C’s we have (from Goulden and Rattan [7, p. 7])

Σ3 − R4 = C2,

Σ4 − R5 = 5
2C3,

Σ5 − R6 = 5C4 + 8C2,

Σ6 − R7 = 35
4 C5 + 42C3,

Σ7 − R8 = 14C6 + 469
3 C4 + 203

3 C2
2 + 180C2,

Σ8 − R9 = 21C7 + 1869
4 C5 + 819

2 C3C2 + 1522C3. (9)

We will, henceforth, call the expansions in (6) and (9) the R-expansions and C-expansions, re-
spectively, of Kerov’s polynomials. We will also call the property that all coefficients of the R’s
are positive R-positivity and C-positivity is analogously defined for Σk − Rk+1. It follows from
(8) that C-positivity of Kerov’s polynomials implies R-positivity.

Define the weight of a monomial R
j1
i1

R
j2
i2

· · ·Rjm

im
to be

∑m
t=1 it jt (and analogously for mono-

mials in C’s). Further let Σk,2n be the terms of weight k + 1 − 2n in Σk . From the combinatorial
origins of Kerov’s polynomials, it follows that in the kth Kerov polynomial Σk the terms of
weight k (mod 2) each have zero coefficient (see Biane [3, Section 4]). The following theorems
appear in Biane [3, proof of Theorem 1.1], Goulden and Rattan [7, Theorems 1.3 and 3.3] and
Śniady [13, Section 1.3.3].

Theorem 1.5 (Biane).

Σk,0 = Rk+1.

That is, there is only one term of weight k + 1 in Σk and it is Rk+1.
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Theorem 1.6 (Goulden-R, Śniady).

Σk,2 = 1

4

(
k + 1

3

)
Ck−1.

Consequently, Σk,2 is C-positive.

Theorem 1.7 (Goulden-R). Σk,4 is C-positive.

Finally, the following theorem is a corollary of [7, Theorem 2.1].

Theorem 1.8. For k � 1,

Σk,2n =
∑

i1,i2,...,i2n−1�0
i1+i2+···+i2n−1=k+1−2n

γi1,i2,...,i2n−1Ci1 · Ci2 · · ·Ci2n−1

where the Ct are given in (7) and the γ ’s are rational. In particular, Σk,2n is C-positive (and,
consequently, R-positive) if all γi1,i2,...,i2n−1 are positive.

2. Stanley’s polynomials for rectangular shapes

In this section we study a specific two variable case of Stanley’s results as they have a partic-
ularly beautiful form.

We begin with the normalized character χ̂ω when ω has the rectangular shape of p parts, all
equal to q . In Section 1.1, we denoted this shape with p × q . Further, in Section 1.1 we gave the
central theorem in this case as Theorem 1.3. This result can be written in terms of the connection
coefficients of the symmetric group; Theorem 1.3 then becomes

χ̂p×q

(
μ1n−k

) = (−1)k
∑

u,ν�k

cμ
u,νp

�(u)(−q)�(ν).

Here the c
μ
u,ν are defined as the structure constants of the central elements Ku of the group

algebra of Sn; that is,

KuKν =
∑
μ

cμ
u,νKμ.

Stanley’s proof of this involves a combination of results; Stanley uses results about certain
tableaux, the Murnaghan–Nakayama rule, and the following symmetric function identity∑

ω�k

Hωsω(x)sω(y)sω(z) =
∑
ω�k

pω(x)pω(y)pω(z),

which appears in Hanlon et al. [8] (here, sω(x) and pω(x) are the Schur symmetric function and
power sum symmetric function, respectively). Here, we present an original proof with the aim
of making the result more transparent and, in addition, of showing more connections between
what are known as shift symmetric functions and the normalized character χ̂p×q (we shall see
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that there is already a known relationship between these objects). Section 2.1 gives the necessary
background on shift symmetric functions for this proof.

2.1. A brief account of shift symmetric functions

In Okounkov and Olshanski [12], the authors define shift Schur polynomials as

s∗
λ(x1, x2, . . . , xn) = det((xi + n − i)λj +n−j )1�i,j�n

det((xi)n−j )1�i,j�n

.

The shift Schur functions denoted by s∗
λ ∈ Λ∗ are defined as the inverse limit of the sequence

(s∗
λ(x1, x2, . . . , xn))n�1. Further, one can define the p-sharp shift symmetric functions p

�
μ; they

are

p�
μ =

∑
ρ�k

χρ(μ)s∗
ρ

(see Okounkov and Olshanski [12, Section 1] for more details).
The following result connects shift symmetric functions and the scaled characters χ̂ , and can

be found in Okounkov and Olshanski [12, (15.21)].

Theorem 2.1 (Okounkov, Olshanski). Suppose that μ � k and λ � n. Then

p�
μ(λ) = χ̂λ

(
μ1n−k

)
,

where p�(λ) is the substitution xi = λi for 1 � i � �(λ) and xi = 0 for i > �(λ).

The following theorem gives a combinatorial interpretation to shift Schur functions; it is also
found in Okounkov and Olshanski [12, Theorem 11.1]. For any shape μ, a reverse tableau of
shape μ is a function T : boxes of μ 	→ P, where P is the set of positive integers, such that T

is weakly decreasing along the rows of μ and strongly decreasing along the columns of μ. We
denote by RTab(μ) the set of reverse tableau of shape μ.

Theorem 2.2 (Okounkov, Olshanski). For λ ∈P ,

s∗
λ =

∑
T ∈RTab(μ)

∏
u∈μ

(
xT (u) − c(u)

)
,

where T (u) is the value assigned to the box u by the tableau T and, again, c(u) is the content of
the box u.

2.2. Proof of Theorem 1.3

We are now ready to give a proof of Theorem 1.3.

Proof of Theorem 1.3. As a first step to this proof, for a partition λ � k we evaluate
s∗
λ(x1, x2, . . . , xp) with xi = q for 1 � i � p; that is, we compute the evaluation s∗

λ(p × q).
Using Theorem 2.2 we obtain
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s∗
λ(p × q) =

∑
T ∈RTab(λ)

∏
u∈λ

(
xT (u) − c(u)

)∣∣∣
(x1,...,xp)=(q,...,q)

=
∑

T ∈RTab(λ)

∏
u∈λ

(
q − c(u)

)
= (−1)k

∏
u∈λ

(−q + c(u)
) ∑

T ∈RTab(λ)

1
∣∣∣
(x1,...,xp)=(q,...,q)

. (10)

The number of RTab(λ) is clearly the number of semi-standard Young tableaux (see Stanley [14,
p. 309]) of shape λ filled with only numbers 1,2, . . . , p, which is sλ(1p) from the combinatorial
definition of Schur functions. Thus, from (10) above and the well-known specialization of the
Schur functions

sλ
(
1p) =

∏
u∈λ(p + c(u))

Hλ

,

where sλ(1p) is obtained by setting xi = 1 for all 1 � i � p and xi = 0 for all i > p in the Schur
function sλ(x).

s∗
λ(p × q) = (−1)k

∏
u∈λ

(−q + c(u)
)
sλ

(
1p)

= (−1)k

Hλ

∏
u∈λ

(−q + c(u)
)(

p + c(u)
)
.

Therefore, from Theorem 2.1 and (10) we have

χ̂p×q

(
μ1n−k

) =
∑
λ�k

χλ(μ)s∗
λ(p × q)

= (−1)k
∑
λ�k

χλ(μ)

Hλ

∏
u∈λ

(
p + c(u)

)(−q + c(u)
)

= (−1)k
∑

α,β,λ�k

χλ(μ)

Hλ

|Cα|
f λ

χλ(α)p�(α) |Cβ |
f λ

χλ(β)(−q)�(β)

= (−1)k
∑

α,β,�k

p�(α)(−q)�(β) |Cα||Cβ |
k!

∑
λ�k

1

f λ
χλ(α)χλ(β)χλ(μ)

= (−1)k
∑

α,β�k

p�(α)(−q)�(β)c
μ
α,β,

where the third equality follows from the well-known identity

∏(
x + c(u)

) =
∑ |Cβ |

f λ
χλ(β)x�(β) (11)
u∈λ β�n
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and the last equality follows from the well-known identity

[Kμ]KαKβ = |Cα||Cβ |
k!

∑
λ�k

1

f λ
χλ(α)χλ(β)χλ(μ)

(see Jackson [9, Lemma 2.4]). This completes the proof. �
3. Generalizations to nonrectangular shapes

We now deal with the case of a general shape p × q but, as mentioned in Section 1.1, we
are concerned with the series Fμ(p;q) when μ has a single part; that is, we are only concerned
with the series Fk(p;q). The expressions (−1)kFk(p;−q) for k = 1,2,3,4 and m = 2 are given
in (12). These data also appear in Stanley [15, p. 8],

−F1(a,p;−b,−q) = ab + pq,

F2(a,p;−b,−q) = a2b + ab2 + 2apq + p2q + pq2,

−F3(a,p;−b,−q) = a3b + 3a2b2 + 3a2pq + ab3 + 3abpq + 3ap2q

+ 3apq2 + p3q + 3p2q2 + pq3 + ab + pq,

F4(a,p;−b,−q) = a4b + 6a3b2 + 4a3pq + 6a2b3 + 12a2bpq + 6a2p2q

+ 6a2pq2 + ab4 + 4ab2pq + 4abp2q + 4abpq2 + 4ap3q

+ 14ap2q2 + 4apq3 + p4q + 6p3q2 + 6p2q3 + pq4

+ 5a2b + 5ab2 + 10apq + 5p2q + 5pq2. (12)

Stanley mentions that the terms of highest degree in Fk(p;q), i.e. the terms of degree k + 1,
have a particularly nice expression. Keeping with Stanley’s notation, let Gk(p;q) be the terms
of highest degree in Fk(p;q). We have the following expression for the generating series of
Gk(p;q), which we call Gp;q(z). This theorem appears, with proof, in [15, Proposition 2].

Theorem 3.1 (Stanley). The generating series for Gk(p;q) is

Gp;q(z) = 1 +
∑
i�1

Gi−1(p;q)zi = z( z
∏m

i=1(1−(qi+∑m
j=i+1 pj )z)∏m

i=1(1−(qi+∑m
j=i pj )z)

)〈−1〉 . (13)

Of course, p,q-positivity of (−1)kFk(p;−q) would imply that (−1)kGk(p;−q) is also
p,q-positive. Stanley does not prove p,q-positivity for the latter series in [15] but states that
S. Elizalde has proven this in a private communication to him. In fact, Elizalde shows (according
to Stanley)

(−1)kGk(p;q)

= 1

k

∑ (
k

i1

)((
i1

j1

))

i1+···+im+j1+···+jm=k+1
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×
m∏

s=2

( min(is ,js )∑
r=0

(
k

r

)((
r

js − r

))(
k − r − ii − · · · − is−1 − j1 − · · · − js−1

is − r

))

× p
i1
1 · · ·pim

m q
i1
1 · · ·qim

m , (14)

where (
(
n
k

)
) = (

n+k−1
k

)
. However, as far as this author can see, no proof exists in the literature.

In the next sections we give partial answers to the positivity questions concerning (−1)k ×
F(p;−q). As alluded to in Section 1, we use Kerov’s polynomials to answer these questions.

4. Applying Kerov polynomials to Stanley’s polynomials

Note that both Kerov’s polynomials, along with (3), and (1) give expressions for the scaled
character χ̂ω . Since they hold for any shapes p × q, we can conclude that they give the same
expression for χ̂ω. Thus, we will use (3) and (5) to obtain results about Stanley’s polynomi-
als. More specifically, using (3) we obtain the Ri in Kerov’s polynomials for the general shape
p × q; we then use the Ri along with Theorems 1.5, 1.6 and 1.7 to give some positivity results for
Stanley’s polynomials. The main theorem needed to give our positivity results is given in Theo-
rem 4.3 of Section 4.2; also in Section 4.2 we show, using Theorems 4.3 and 1.5, that the terms
of highest degree of Stanley’s polynomials are positive. In Section 4.3 we use Theorem 4.3 and
Theorems 1.6 and 1.7 to prove the positivity of the terms of degree k − 1 and k − 3 in Fk(p;q).
Finally, we end the paper by showing in Theorem 4.8 that C-positivity for Kerov’s polynomials
implies p,q-positivity for Stanley’s polynomials.

4.1. The series H for the shape p × q

We now compute what the series H in (2) must be for the shape p × q. For the shape p × q,
it is not difficult to see that its interlacing sequence of maxima and minima is

x1 = q1, y1 = q1 − p1, x2 = q2 − p1, y2 = q2 − p1 − p2,

x3 = q3 − p1 − p2, y3 = q3 − p1 − p2 − p3, . . . , xm−1 = qm −
m−1∑
i=1

pi,

ym = qm −
m∑

i=1

pi, xm = −
m∑

i=1

pi.

From (2), we have

Hp×q(1/z) = z(1 − (q1 − p1)z)(1 − (q2 − (p1 + p2))z) · · · (1 − (qm − ∑m
i=1 pi)z)

(1 − q1z)(1 − (q2 − p1)z) · · · (1 − (qm − ∑m−1
i=1 pi)z)(1 + ∑m

i=1 pi)

= z
∏m

i=1(1 − (qi − ∑i
j=1 pj )z)

(1 + ∑m
pjz)

∏m
(1 − (qi − ∑i−1

pj )z)
, (15)
j=1 i=1 j=1
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and we obtain from (4)

Rp×q(z) = z( z
∏m

i=1(1−(qi−∑i
j=1 pj )z)

(1+∑m
j=1 pj z)

∏m
i=1(1−(qi−∑i−1

j=1 pj )z)

)〈−1〉
. (16)

Alternatively, it follows from Lagrange inversion (see Goulden and Jackson [6, Section 2] or
Stanley [14, Theorem 5.4.2]) that if

φp×q(z) = z

Hp×q(1/z)

= (1 + ∑m
j=1 pjz)

∏m
i=1(1 − (qi − ∑i−1

j=1 pj )z)∏m
i=1(1 − (qi − ∑i

j=1 pj )z)
, (17)

then

z

Rp×q(z)
= zφp×q

(
z

Rp×q(z)

)
. (18)

Applying Lagrange inversion, we obtain for k � 2

Rk(p × q) = [
zk−1]R(z)

z

= 1

k − 1

[
yk−2] − 1

y2
φk−1

p×q(y)

= − 1

k − 1

[
yk

]
φk−1

p×q(y). (19)

Of course, substituting Ri(p × q) for Ri in Kerov’s polynomials will give us the scaled character
χ̂p×q(k 1n−k). In fact, doing so produces polynomials in agreement with Stanley’s data. We,
therefore, can now use Kerov’s polynomials to better understand Stanley’s character polynomials.
It is clear from (15) and (17) that Ri(p × q) is a homogeneous polynomial of degree i in the p’s
and q’s. Therefore, since Kerov’s polynomial Σk is graded with terms of weight k + 1 (mod 2)

(see Biane [3, proof of Theorem 1.1]) in the Ri ’s, we see that Stanley’s character polynomials
are also graded with terms of degree k + 1 (mod 2). We state this now as a proposition, for easy
reference later.

Proposition 4.1. Terms of degree i in Fk(p;q) are obtained from the terms of weight i in Kerov’s
polynomials Σk with the Ri ’s evaluated at the shape p × q.

To further reinforce the idea that we are dealing with polynomials, and to make convenient
variable substitutions, we depart from the notation used thus far. We shall replace Ri(p × q)

with Ri(p;q) and Rp×q(z) with Rp;q(z) to emphasize that these objects are polynomials in p’s
and q’s. We do this analogously with C(z), Hp×q(z) and φp×q(z); that is, the series φp;q(z), will
denote the series in (17) and Hp;q(z) will denote the series in (15). We shall deal with the terms
of different weights separately, starting with the terms of highest degree, namely the terms of
degree k + 1.



38 A. Rattan / Journal of Algebra 308 (2007) 26–43
4.2. Terms of degree k + 1

The expression for the terms of highest degree in Stanley’s polynomials are given implicitly
by Gp;q(z) in (13). From Theorem 1.5 and Proposition 4.1, we can obtain a similar formula for
the highest degree terms; that is, the terms of highest degree in Fk(p;q), which have degree k+1,
is given by Rk+1(p;q) and we see that the generating series for the terms of highest degree is

Rp;q(z) = z( z
∏m

i=1(1−(qi−∑i
j=1 pj )z)

(1+∑m
j=1 pj z)

∏m
i=1(1−(qi−∑i−1

j=1 pj )z)

)〈−1〉
. (20)

Evidently, the two generating series Rp;q(z) and Gp;q(z) should be equal; after all they both
generate the highest degree terms of Fk(p;q), although it is not obvious from (13) and (20) that
this is the case. It turns out that Rp;q(z) and Gp;q(z) are almost the same; we state this more
precisely in the next proposition.

Proposition 4.2. The generating series Rp;q(z) and Gp;q(z) are identical except for the linear
terms; more precisely

Rp;q(z) = Gp;q(z) −
m∑

i=1

piz.

Proof. From Lagrange inversion, it suffices to show that Rp;q(z) + ∑m
i=1 piz satisfies the same

equation as Gp;q(z). In this proof, we denote Rp;q(z) and Gp;q(z) by R and G, respectively, for
convenience. From (20) we have

z

R
=

(
z
∏m

i=1(1 − (qi − ∑i
j=1 pj )z)

(1 + ∑m
j=1 pjz)

∏m
i=1(1 − (qi − ∑i−1

j=1 pj )z)

)〈−1〉
.

By the definition of compositional inverse we have, from the last expression,

z = z
∏m

i=1(R − (qi − ∑i
j=1 pj )z)

(R + ∑m
j=1 pjz)

∏m
i=1(R − (qi − ∑i−1

j=1 pj )z)

= z
∏m

i=1((R + ∑m
j=1 pjz) − (qi + ∑m

j=i+1 pj )z)

(R + ∑m
j=1 pjz)

∏m
i=1((R + ∑m

j=1 pjz) − (qi + ∑m
j=i pj )z)

=
z

(R+∑m
j=1 pj z)

∏m
i=1

(
1 − (qi + ∑m

j=i+1 pj )
z

(R+∑m
j=1 pj z)

)
∏m

i=1

(
1 − (qi + ∑m

j=i pj )
z

(R+∑m
j=1 pj z)

) .

Again, from the definition of compositional inverse, we conclude that

z

(R + ∑m
j=1 pjz)

=
(

z
∏m

i=1(1 − (qi + ∑m
j=i+1 pj )z)∏m

i=1(1 − (qi + ∑m
j=i pj )z)

)〈−1〉
.

Comparing this expression with (13), the result follows. �
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Indeed, using Lagrange inversion we see that the linear terms of Rp;q(z) and Gp;q(z) are 0
and

∑m
i=0 piz, respectively. Furthermore, note that although Rp;q(z) and Gp;q(z) differ in the

linear term, this has no effect on either Kerov’s or Stanley’s polynomials since R1(p;q) does
not appear in Kerov’s polynomials, as one can see in (6) (in general, this fact follows from the
combinatorial argument given in Biane [3, proof of Theorem 1.1]).

Through Lagrange inversion, we see that the Ri are written in terms of the series φp;q given
in (19). We use the notation φp;−q,Rk(p;−q) and Gk(p;−q) to denote that we are substituting
−qi for qi for all i in these series. We have the following compact expression for the series
φp;−q(−z).

Theorem 4.3. For p = p1,p2, . . . , pm and q = q1, q2, . . . , qm, we have

φp;−q(−z) =
m∏

i=1

(
1 + piqiz

2

(1 − ri−1z)(1 − (qi + ri)z)

)
,

where ri = ∑i
j=1 pj .

Proof. We have, from (17),

φp;−q(−z) = (1 − rmz)
∏m

i=1(1 − (qi + ri−1)z)∏m
i=1(1 − (qi + ri)z)

.

Now set An(z) = 1 − rnz,F0 = 1 and

Fn(z) = An(z)

∏n
i=1(1 − (qi + ri−1)z)∏n
i=1(1 − (qi + ri)z)

. (21)

Note that φp;−q(−z) = Fm(z). Then,

Fn(z) = Fn−1(z)

An−1(z)

1 − (qn + rn−1)z

1 − (qn + rn)z
An(z)

= Fn−1(z)

An−1(z)

An−1(z)
(
1 − qnz

An−1(z)

)
An−1(z)

(
1 − (qn+pn)z

An−1(z)

)An−1(z)

(
1 − pnz

An−1(z)

)

= Fn−1(z)

1 − (qn+pn)z
An−1(z)

+ pnqnz2

A2
n−1(z)

1 − (qn+pn)z
An−1(z)

= Fn−1(z)

(
1 + pnqnz

2

A2
n−1(z)

(
1 − (qn+pn)z

An−1(z)

))

= Fn−1(z)

(
1 + pnqnz

2

An−1(z)(1 − (qn + rn)z)

)
= Fn−1(z)

(
1 + pnqnz

2 )
. (22)
(1 − rn−1z)(1 − (qn + rn)z)
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Therefore, from (22) we have

φp;−q(−z) = Fm(z)

= Fm(z)

F0(z)

= Fm(z)

Fm−1(z)
· Fm−1(z)

Fm−2(z)
· · · F1(z)

F0(z)

=
m∏

i=1

(
1 + piqiz

2

(1 − ri−1z)(1 − (qi + ri)z)

)
. �

Corollary 4.4. φp;−q(−z) is p,q-positive.

Proof. Each multiplicand in Theorem 4.3 is p,q-positive, making the product p,q-positive. �
Corollary 4.5. For all k � 1, the series in p’s and q’s (−1)kRk+1(p;−q) and (−1)kGk(p;−q)

are p,q-positive. That is, the terms of highest degree in (−1)kFk(p;−q) all have positive coef-
ficients.

Proof. The series (−1)kGk(p;−q) consists of by definition the terms of highest degree in
(−1)kFk(p;−q), and by Proposition 4.2, (−1)kGk(p;−q) = (−1)kRk+1(p;−q) are equal for
all k � 1. Thus, it suffices to show that (−1)kRk+1(p;−q) is p,q-positive for all k � 1.

By (19) we have

(−1)kRk+1(p;−q) = (−1)k
(

−1

k

[
yk+1]φk

p;−q(y)

)
= 1

k

[
(−y)k+1]φk

p;−q(y)

= 1

k

[
yk+1]φk

p;−q(−y),

and the result follows. �
4.3. Terms of degree k − 1, k − 3 and a general connection between Kerov’s polynomials and
Stanley’s polynomials

In this section we deal with terms of degree k − 1 and k − 3 in Stanley’s polynomials. We
note that in Stanley [15] there are no results concerning terms not of highest degree; Stanley
comments only on the series Gp;−q(z), the terms of highest degree in k + 1. Moreover, we note
the complication that (−1)kΣk has some negative terms when one evaluates the Ri in terms of
the shape p;q and substitutes −qi for all the qi . More precisely, consider, for example, Σ5 given
in (6). We see from the comments at the beginning of Section 4 that

(−1)5F5(p;−q) = (−1)5Σ5(p;q)|q→−q

= (−1)5(R6(p;−q) + 15R4(p;−q) + 5R2(p;−q)2 + 8R2(p;−q)
)
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= (−1)5R6(p;−q) + 15(−1)3R4(p;−q) − 5
(
(−1)R2(p;−q)

)2

+ 8(−1)R2(p;−q).

Note that all terms are p,q-positive except for the term −5((−1)R2(p;−q))2. Thus, p,q-positi-
vity would not immediately follow from R-positivity of Kerov’s polynomials. For the terms of
degree k − 1 and k − 3, however, we can use Theorems 1.6 and 1.7. We begin with the following
theorem.

Theorem 4.6. For k � 3, the terms of degree k − 1 in Fk(p;q) are given by

−k(k + 1)

24

[
yk−3]φ′′

p;−q(y)φk−1
p;−q(y).

Proof. From Proposition 4.1 and Theorem 1.6, the terms of degree k − 1 in Fk(p;q) are given
by

1

4

(
k + 1

3

)
Ck−1(p;q).

Setting w = z/Rp;q(z) then from (18) we have

z = wRp;q(z), w = zφp;q(w),

where φp;q(z) is given in (17). Further, from the definition of Cp;q(z) we have

Cp;q(z) = 1

−z2 d
dz

1
w

.

Thus,

z
d

dz
w = w

1 − zφ′
p;q(w)

,

from which we obtain

Cp;q(z) = 1

−z2 d
dz

1
w

= 1
z2

w2
d
dz

w

= w

z

(
1 − zφ′

p;q(w)
)

= φp;q(w) − wφ′
p;q(w).

Therefore, for all k � 2, we have by Lagrange inversion that
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[
zk−1]Cp;q(z)

= [
zk−1]φp;q(w) − [

zk−1] wφ′
p;q(w)

= 1

k − 1

[
yk−2]φ′

p;q(y)φk−1
p;q (y) − 1

k − 1

[
yk−2](φ′

p;q(y) + yφ′′
p;q(y)

)
φk−1

p;q (y)

= − 1

k − 1

[
yk−3]φ′′

p;q(y)φk−1
p;q (y),

and the result follows. �
From Theorem 4.6 we obtain the following positivity result.

Corollary 4.7. For k � 3, the terms of degree k − 1 in (−1)kFk(p;−q) are p,q-positive.

Proof. The terms of degree k − 1 in Fk(p;q) are given in Theorem 4.6. Therefore, the terms of
degree k − 1 in (−1)kFk(p;−q) are

(−1)k
1

4

(
k + 1

3

)
Ck−1(p;−q) = −1

4

(
k + 1

3

)[
zk−1]Cp;−q(−z)

= k(k + 1)

24

[
yk−1](−y)2 d2

d(−y)2

(
φp;−q(−y)

)
φk−1

p;−q(−y)

= k(k + 1)

24

[
yk−1]y2

(
d2

dy2
(−1)2

)(
φp;−q(−y)

)
φk−1

p;−q(−y)

= k(k + 1)

24

[
yk−1]y2 d2

dy2

(
φp;−q(−y)

)
φk−1

p;−q(−y).

From Theorem 4.4 both φp;−q(−y) and, of course then, d2

dy2 φp;−q(−y) are p,q-positive, proving
the result. �

The following theorem gives a general connection between Kerov’s polynomials and Stanley’s
polynomials.

Theorem 4.8. If Kerov’s polynomials Σk are C-positive then Stanley’s polynomials (−1)k ×
Fk(p;−q) are p,q-positive.

Proof. From Proposition 4.1 the terms of degree i in Stanley’s polynomials are obtained from
the terms of weight i in Kerov’s polynomials. From Theorem 1.8 the terms of degree k + 1 − 2n

in Stanley’s polynomials are obtained from

∑
i1,...,i2n−1�0

i +···+i =k+1−2n

γi1,...,i2n−1Ci1(p;q) · · ·Ci2n−1(p;q).
1 2n−1
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Thus, the terms of degree k + 1 − 2n in (−1)kFk(p;−q) are given by∑
i1,...,i2n−1�0

i1+···+i2n−1=k+1−2n

γi1,...,i2n−1

(
(−1)i1−1Ci1(p;−q)

) · · · ((−1)i2n−1−1Ci2n−1(p;−q)
)
.

From the proof of Corollary 4.7, each (−1)j−1Cj(p;−q) is p,q-positive, and the result fol-
lows. �
Corollary 4.9. For k � 5, the terms of degree k − 3 in (−1)kF (p;−q) are p,q-positive.

Proof. Follows directly from Theorems 1.7 and 4.8. �
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