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We study the nonlinear inhomogeneous wave equation in one
space dimension: vtt − T (v, x)xx = 0. By constructing some “de-
coupled” Riccati type equations for smooth solutions, we provide a
singularity formation result without restrictions on the total varia-
tion of the data, which generalizes earlier singularity results of Lax
and the first author. We apply these results to compressible Euler
flows with a general pressure law and elasticity in an inhomoge-
neous medium.
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1. Introduction

In this paper, we consider the initial value problems for the second-order quasilinear inhomoge-
neous wave equation in one space dimension,

vtt − T (v, x)xx = 0, (1)

where (x, t) ∈ R × R+ , v(x, t) ∈ R, and T (v, x) is a smooth function satisfying
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T v > 0, T v v < 0.

These assumptions imply that the equation is hyperbolic and genuinely nonlinear, so that solutions
exhibit wave-like behavior. Signals propagate in a forward and backward direction with local nonlinear
wavespeeds

c = √
T v and −c = −√

T v ,

respectively. Eq. (1) includes a wide variety of interesting physical systems, such as one-dimensional
nonlinear elasticity in an inhomogeneous medium [3,4]. In the context of elasticity, x is a material
coordinate, v is the strain and T is the elastic stress.

It is well known that solutions of nonlinear hyperbolic equations generally form shock waves in fi-
nite time. Shocks form as a result of gradient blowup, which is a consequence of genuine nonlinearity.
In this paper, we study smooth solutions, and we are particularly interested in the lifetime of such
smooth solutions. We study the dynamical system which governs the growth of gradients, and use
this to give estimates on the lifetimes of smooth solutions. This was carried out for the homogeneous
nonlinear wave equation, obtained by taking T = T (v), by Lax in [5], and extensions to larger systems
(with restrictions on the data) were obtained by John [3] and Liu [7].

It is convenient to write (1) as a system, by setting

u(x, t) =
∫

vt dx, p(v, x) = −T ,

which yields the first-order system

vt − ux = 0, (2)

ut + p(v, x)x = 0, (3)

with

pv < 0, pv v > 0. (4)

We make the further assumption that p = p(v, x) is a C3 function, and that boundedness of deriva-
tives of p and the sign conditions (4) are uniform in x. In particular, px and pxx are uniformly bounded
in x.

For smooth solutions, Eqs. (2), (3) model compressible inviscid flow for general pressure laws in
material coordinates (the Euler equations in a Lagrangian frame). Here p is the pressure, v is the
specific volume, and u is the fluid velocity. A general pressure is described by p = p(v, S), but the
entropy S = S(x) is stationary as long as the flow is smooth, by the Second Law of Thermodynamics.
Moreover, smooth solutions of the 5 × 5 system of one-dimensional transverse flow in magnetohydro-
dynamics (MHD), which models a fluid coupled to a transverse (magnetic) vector field, and Eulerian
flow in a variable area duct can also be modeled by (2), (3).

For homogeneous isentropic flow, we have p = p(v), and (2), (3) is known as the p-system. This
is a simplified 2 × 2 system which admits a coordinate system of Riemann invariants, and for which
Lax proved that any nontrivial data will form a shock wave in finite time [5]. F. John and T.-P. Liu
extended Lax’s results to general systems of conservation laws of the form

ut + f (u)x = 0, (5)

with u = (u1, . . . , un) ∈ Rn , for n � 1 and (x, t) ∈ R × R+ . John proved that gradients will blow up for
small compactly supported data, and this was later generalized by Liu, provided the total variation
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of the data is small enough [3,7]. There are also some singularity results for multi-dimensional con-
servation laws, subject to a restrictive “null condition” [8,9]. In a recent paper [1], the first author
generalizes the singularity formation results in [5] to the 3 × 3 compressible Euler equations with
polytropic ideal gas.

In this paper, we give singularity formation results for (2), (3), or equivalently (1). In [3,7], small so-
lutions are expanded asymptotically along integral curves, and wave interactions are treated quadrat-
ically. Here we take a different point of view, considering three wave families, namely forward and
backward waves, as in the p-system, coupled with stationary waves, which carry entropy variations
and inhomogeneity. We are then able to treat all waves without regard to their wave strength.

Our first task is to define the rarefactive and compressive character (R/C character) of the nonlin-
ear (non-stationary) waves in smooth solutions. In a 2 × 2 system, which is diagonal when expressed
in Riemann invariants, it is clear when a wave is rarefying or compressing. However, in larger systems,
this distinction is not clear as waves of different families generally interact continuously and cannot
be decoupled. The R/C character is a quantitative measure of how much rarefaction or compression
is in the solution at any point.

In stationary solutions (including those with contact discontinuities), which include no compres-
sion or rarefaction, the pressure p and velocity u are constant. We therefore use changes in p (or u)
to define the R/C character of the solution. In doing so, we take the directional derivative along the
opposite characteristic, to minimize the effect of waves of the opposite family, see [1]. We use the su-
perscripts “�” and “′” to denote the directional derivatives along backward and forward characteristics,
respectively, so that

� = ∂t − c∂x and ′ = ∂t + c∂x, (6)

where c = √−pv is the (local) wavespeed in Lagrangian coordinates, cf. [5].

Definition 1. If the solutions of (2), (3) are smooth in an open set U of the (x, t)-plane and A is a
point in U , then we say the solution is forward (backward) rarefactive at A, if and only if p� < 0
(p′ < 0); it is forward (backward) compressive at A, if and only if p� > 0 (p′ > 0).

It is convenient to introduce the change of variables

h(v, x) ≡
v∗∫

v

√−pv dv and μ ≡ x, (7)

where v∗ is a constant or infinity. Then by calculating p� and p′ , we introduce equivalent variables α
and β , defined by

α ≡ − p�

c2
= ux + hx + pμ

c
,

β ≡ − p′

c2
= ux − hx − pμ

c
.

Here u ± h are the Riemann invariants for the corresponding isentropic p-system. Thus α and β are
direct generalizations of the derivatives of the Riemann invariants. For smooth solutions, we derive
Riccati type ODEs for α and β , which provide a framework for studying smooth solutions and gradient
blowup.
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Theorem 1. In (2), (3), smooth solutions satisfy

α′ = − c

2

(
pμ

c

)
h
(3α + β) + ch

2

(
αβ − α2), (8)

β� = c

2

(
pμ

c

)
h
(α + 3β) + ch

2

(
αβ − β2), (9)

with ch > 0.

Eqs. (8) and (9) can be decoupled by use of an integrating factor. Define

y ≡ √
cα − I = √

c(u + h)x + pμ√
c

− I, and (10)

q ≡ √
cβ + I = √

c(u − h)x − pμ√
c

+ I, (11)

where

I = I(h,μ) ≡
h∫

h0

1

2

√
c

(
pμ

c

)
h

dh, (12)

and h0 is a constant.

Theorem 2. For smooth solutions of (2), (3), we have

y′ = a0 + a1 y − a2 y2, (13)

q� = a0 − a1q − a2q2, (14)

where

a0 ≡ −cIμ + 1

2

√
c

(
pμ

c

)
h

pμ − c

(
pμ

c

)
h

I − ch

2
√

c
I2, (15)

a1 ≡ −(2
√

cI)h, (16)

a2 ≡ ch

2
√

c
> 0. (17)

We note that these are not closed ODEs, since both the directional derivatives and the coefficients
are dependent on the underlying solution of (2), (3). Nevertheless, as in [5], we are able to compare
them to closed ODEs and derive bounds on the lifespan of smooth solutions. For convenience, we only
consider smooth, i.e. C∞ , initial data, although our results also apply to C2 initial data.

For arbitrarily given positive constants Ai and Bi , we denote by K the compact set whose interior
Ko is given by

|h| < B1, A2 < c < B2, A3 < ch < B3,

|cμ| < B4, |cμμ| < B5, |chμ| < B6, |pμ| < B7, |pμμ| < B8. (18)
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Theorem 3. There exists some constant N > 0 depending only on K, such that, if the smooth initial data of
(2), (3), with (4), satisfies

(
u(x,0), v(x,0)

) ∈ Ko, for all x,

and if there exists some x0 such that

y(x0,0) < −N or q(x0,0) < −N,

then there exists T∗ = T∗(K, N) such that either

max
{|ux|, |vx|

} → ∞ as t → T∗,

or there is some point (xb, tb) with tb � T∗ such that

(
u(xb, tb), v(xb, tb)

) ∈ ∂K.

This theorem states that gradient blowup occurs at some finite time T∗ provided that the solution
stays in some compact set. This is necessary to avoid degeneracies such as the vacuum in the equa-
tions of gas dynamics. The assumption that the solution does not form a vacuum is implicit in [5],
but this is reasonable as a vacuum cannot form in finite time, see [13,14]. In particular, in models of
elasticity, there are a priori bounds on the state variables which restrict the solution to a compact set.

Blowup of the gradient does not mean that the solution fails to exist: rather, this usually heralds
the formation of a shock, and the associated decay of solutions. Generally, solutions are continued as
weak solutions which contain shocks. However, in order to study shock propagation our system needs
to be in conservation form, and we do not consider those issues here.

Theorem 3 implies that gradients of solutions blow up if the initial compressions are strong
enough. When the variation of entropy is mild, N is close to zero, so the shock-free solutions are
“almost rarefactive”, which is consistent with Lax’s singularity formation results in [5]. In [10] and a
forthcoming paper [2], examples of solutions containing compressive waves are constructed, but the
gradients of those solutions remain finite.

In a series of recent papers [10–12], the possibility of time-periodic solutions in the compressible
Euler equations has been demonstrated. A critical feature of this study is how the R/C structure of
waves can change across a contact discontinuity. In this paper we check the consistency of our results,
which presuppose a smooth entropy field, with those results. By studying the R/C structure and the
way in which it can change further, we expect eventually to see time-periodic solutions as in [10,
11] with piecewise smooth entropy, consisting of both contact discontinuities and smooth entropy
variations.

Our results apply to a number of systems having structure similar to the inhomogeneous nonlinear
wave equation. In a forthcoming paper, we apply these ideas to transverse flow in one-dimensional
magnetohydrodynamics (MHD) and inviscid compressible flow in a varying area duct.

The paper is arranged as follows. In Section 2, we give the background of the equations and estab-
lish some useful identities. In Section 3, we define rarefactive and compressive waves. In Sections 4
and 5, we prove Theorems 1–3, respectively. Finally, in Section 6, we demonstrate the consistency of
R/C structures.

2. Coordinates and background

We focus on Eqs. (2), (3) from now on. We assume that p(v, x) is a smooth function of v and x,
satisfying

pv < 0 and pv v > 0,
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for all x and v = v(x, t) ∈ (0,∞). These conditions imply hyperbolicity and genuine nonlinearity, re-
spectively. The vacuum state corresponds to v = ∞; however, since we assume the data remains in a
compact set, we will not address questions at vacuum. The local absolute wavespeed is

c(v, x) ≡ √−pv > 0. (19)

We make the change of variables

h(v, x) ≡
v∗∫

v

c dv =
v∗∫

v

√−pv dv,

see (7), where v∗ > 0 is a convenient constant (or ∞ if the integral converges uniformly). Since
p(v, x) is smooth, the function h(v, x) is also smooth with respect to v and x. Moreover, since

hv(v, x) = −c < 0, (20)

the inverse function v = v(h,μ) is smooth with respect to h and μ, where we have set

μ ≡ x. (21)

For any function f (v, x), we will write

f (h,μ) = f
(
h(v, x),μ

) = f (v, x),

without ambiguity, and we use the subscript notation

fx = ∂

∂x
f
(

v(x, t), x
)
, fx = ∂

∂x
f (v, x), f v = ∂

∂v
f (v, x),

fh = ∂

∂h
f (h,μ), fμ = ∂

∂μ
f (h,μ),

for the various partial derivatives of f .
We can relate the different partial derivatives as follows: by (20),

vh = −1

c
, so that vt = vhht = −1

c
ht . (22)

Furthermore, since

−c2 = pv = phhv = −cph, we have ph = c, (23)

and so

px = phhx + pμ = chx + pμ.

Thus, for smooth solutions, (2), (3) can be written as

ht + cux = 0, (24)

ut + chx + pμ = 0. (25)



2586 G. Chen, R. Young / J. Differential Equations 252 (2012) 2580–2595
Next, differentiating v = v(h(v, x),μ) with respect to x, and recalling (21) and (22), we get

0 = vhhx + vμ, so that vμ = −vhhx = hx

c
.

Similarly, for any function f (v, x), we get

fμ = f
(

v(h,μ), x
)
μ

= f v vμ + fx

= f v

c
hx + fx, (26)

and

fh = f v vh = − f v

c
. (27)

It follows that, for smooth solutions, p and c are smooth with respect to h and μ. Moreover, using
(26) and (27), any quantities such as the R/C character, ODEs, and singularity formation results in
this paper can all be expressed in the variables (v, x) instead of (h,μ).

3. Compressive and rarefactive waves

In this section, we define the rarefactive (R) and compressive (C ) characters of (2), (3), which
quantitatively indicate the amount of rarefaction or compression in the solutions at any point.

We first consider isentropic flow, for which p = p(v) and our system reduces to the p-system,

ht + cux = 0, (28)

ut + chx = 0. (29)

The Riemann invariants s = u + h and r = u − h satisfy the diagonal system

st + csx = 0, rt − crx = 0,

and so are constant along forward and backward characteristics,

dx

dt
= +c,

dx

dt
= −c,

respectively. In an isentropic domain, because the system is diagonal, it is clear when waves are
compressive or rarefactive: indeed, the amount of compression or rarefaction can be measured by
derivatives of the appropriate Riemann invariant. There are several equivalent conditions, and for us
it is convenient to consider the change in pressure: if p decreases as we traverse the wave from
front to back, the wave is rarefactive (R), while if p increases, it is compressive (C ) [1,5,13]. This
is consistent with the entropy condition for shocks, which states that the pressure is always larger
behind a shock.

When p = p(v, x) explicitly depends on x, we first consider stationary solutions, in which there
are no compressive or rarefactive waves, so the R/C characters should vanish. In stationary solutions,
the pressure p is constant,

pt = pv vt = 0 and px = −ut = 0,
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so its directional directives are zero. Physically, in gas dynamics, this means that pressure is not
impacted by the variation of entropy, cf. [1]. Thus, by considering the directional derivatives of p along
the opposite characteristics, we obtain Definition 1: the solution is forward (backward) rarefactive at A,
if and only if p� < 0 (p′ < 0); it is forward (backward) compressive at A, if and only if p� > 0 (p′ > 0).

We could also use u to define the R/C character, as this is also constant in stationary solutions.
We define

α ≡ − p�

c2
and β ≡ − p′

c2
.

Lemma 1. For smooth solutions of (2), (3), we have

p′ = −cu′ and p� = cu�,

while also

α = ux + hx + pμ

c
and β = ux − hx − pμ

c
. (30)

Proof. By (2), (3) and (19),

cu′ = cut + c2ux = −cpx − pv vt = −p′,

and similarly p� = cu� . By (23) and (24),

−c2β = p′ = pt + cpx

= phht + c(phhx + pμ)

= −c2
(

ux − hx − pμ

c

)
,

and similarly for α, so (30) follows. �
Corollary 1. The R/C character of a smooth solution is given by:

Forward R iff α > 0,

Forward C iff α < 0,

Backward R iff β > 0,

Backward C iff β < 0.

Moreover, provided the solution values remain in K,

|α| or |β| → ∞ iff |ux| or |vx| → ∞. (31)

Proof. Clearly, by (30),

p� ≷ 0 ⇔ α ≶ 0, and p′ ≷ 0 ⇔ β ≶ 0.
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By Lemma 1,

α + β = 2ux, α − β = 2

(
hx + pμ

c

)
,

and (31) follows since pμ and c remain finite. �
In an isentropic domain, i.e. p = p(v), it is clear that

sx = α and rx = β,

so we can regard α and β as direct generalizations of the derivatives of the Riemann invariants.

4. Differential equations for gradients

In this section, we consider the characteristic decompositions of smooth solutions. By considering
the directional derivatives of α and β , we derive the ODEs for α and β as stated in Theorem 1.

Proof of Theorem 1. We show (8), since (9) follows in exactly the same way. We have

α′ =
(

ux + hx + pμ

c

)
t
+ c

(
ux + hx + pμ

c

)
x

= (uxt + chxx) + (hxt + cuxx) +
(

pμ

c

)
t
+ c

(
pμ

c

)
x

= (ut + chx)x + (ht + cux)x − cxhx − cxux +
(

pμ

c

)
t
+ c

(
pμ

c

)
x
. (32)

By (24), (25),

(ut + chx)x = (−pμ)x = −pμhhx − pμμ,

and

(ht + cux)x = 0.

Thus the right-hand side of (32) is

−pμhhx − pμμ − (chhx + cμ)(hx + ux) +
(

pμ

c

)
h
(ht + chx) + c

(
pμ

c

)
μ

, (33)

since fx = fhhx + fμ for any function f .
By (30) and (24), we have

hx = α − ux − pμ

c
and ht = −cux,

and by (23),

c

(
pμ

c

)
= cμ − ch

pμ

c
. (34)
h
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Thus (33) can be simplified to

−pμh

(
α − ux − pμ

c

)
− pμμ −

(
chα − chux − ch

pμ

c
+ cμ

)(
α − pμ

c

)

+
(

pμ

c

)
h
(cα − 2cux − pμ) + c

(
pμ

c

)
μ

= −c

(
pμ

c

)
h

ux +
[

chux − c

(
pμ

c

)
h

]
α − chα

2.

Finally, making the substitution

ux = α + β

2

yields (8).
By (4), (19) and (20),

0 > (
√−pv)v = cv = chhv = ch(−c), (35)

so ch > 0, and the theorem is proved. �
Corollary 2. For smooth solutions of (2), (3), we have

α′ = − c

4

(
px

pv

)
v
(3α + β) − cv

2c

(
αβ − α2),

and

β� = c

4

(
px

pv

)
v
(α + 3β) − cv

2c

(
αβ − β2).2

Proof. By (19), (20), (26), (27) and (34), we have

c

(
pμ

c

)
h
= cμ − ch

pμ

c

= cx + cv

c2
px

= c

2

(
px

pv

)
v
, (36)

and by (35),

ch

2
= − cv

2c
,

and the corollary follows from Theorem 1. �
2 These equations are the analogues of those analyzed by F. John in [3].
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We now make another change of variables and transform (8) and (9) into decoupled differential
equations by use of an integrating factor.

Proof of Theorem 2. First, the condition a2 > 0 follows immediately from (35).
By (30) and (24),

h′ = ht + chx = −cux + chx = −c

(
β + pμ

c

)
,

so that

β = −h′

c
− pμ

c
.

Hence, (8) can be written

α′ = − c

2

(
pμ

c

)
h

(
3α − h′

c
− pμ

c

)
+ ch

2
α

(
−h′

c
− pμ

c

)
− ch

2
α2.

We move the terms including h′ to the left-hand side, so

α′ − 1

2

(
pμ

c

)
h
h′ + ch

2c
αh′ = 1

2

(
pμ

c

)
h

pμ +
(

−3

2
c

(
pμ

c

)
h
− ch

2c
pμ

)
α − ch

2
α2. (37)

Now, by (23),

−3

2
c

(
pμ

c

)
h
− ch

2c
pμ = −c

(
pμ

c

)
h
− pμh

2
= −c

(
pμ

c

)
h
− cμ

2
,

and, since μ′ = c, we have

√
cα′ + ch

2
√

c
αh′ +

√
c

2
cμα = (

√
cα)′.

Thus, multiplying (37) by
√

c and simplifying, we get

(
√

cα)′ − 1

2

√
c

(
pμ

c

)
h
h′ = 1

2

√
c

(
pμ

c

)
h

pμ − c
√

c

(
pμ

c

)
h
α − ch

√
c

2
α2. (38)

By (10),

α = y + I√
c

,

where I is defined in (12) and satisfies

I ′ = Ihh′ + cIμ.

Using these in (38), we get

y′ = a0 + a1 y − a2 y2, (39)

where a0, a1 and a2 are defined in (15)–(17).
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The derivation of the differential equation along backward characteristics,

q� = a0 − a1q − a2q2, (40)

where q is defined in (11), is similar, and the proof is complete. �
Corollary 3. A singularity (gradient blowup) forms if and only if

|y| or |q| → ∞ iff |ux| or |vx| → ∞,

provided the solution takes values in the compact set K.

Proof. By (10) and (11),

y + q = √
c(α + β),

y − q = √
c(α − β) − 2I.

By (34), (12) and compactness, I remains finite, and the result follows. �
Because the coefficients a0, a1, and a2 in Theorem 2 don’t include derivative terms vx , ux , vt

or ut , they are lower order when compared to y and q. Using (26) and (27), these coefficients can be
expressed in terms of v and x rather than h and μ, as in Corollary 2.

In the p-system, p = p(v) and pμ = 0, so that a0 = a1 = 0. In this case, (13) and (14) become

y′ = −a2 y2, q� = −a2q2, (41)

which are exactly the ODEs derived in [5,6] for the isentropic homogeneous case.

5. Formation of singularity

We now consider the formation of singularities, which take the form of the blowup of gradients
ux and/or vx , and correspond to shock formation in conservative systems.

We will study Eqs. (13), (14) as a dynamical system, even though this is not a pure system of
ODEs. First, consider the ODE

ξ̇ = ψ±(ξ),

where ψ± is defined by

ψ±(ξ) ≡ a0 ± a1ξ − a2ξ
2, (42)

with a2 > 0, and the ai are treated as constants. The equilibria, if they exist, are the roots of the
quadratic equation

a0 ± a1ξ − a2ξ
2 = 0,

and we have ξ̇ > 0 between the roots, and ξ̇ < 0 otherwise. A typical phase line is shown in Fig. 1.
Whenever there are real roots, say ξ1 � ξ2, the region {ξ > ξ1} is an invariant region for the ODE. In

particular, if a0 > 0, then the roots are of opposite signs and the region {ξ > 0} is invariant. Moreover,
the region {ξ < ξ1} is also invariant, and solutions that originate in this interval have only a finite time
of existence: it is this that drives the growth and blowup of gradients in the full system (39), (40).



2592 G. Chen, R. Young / J. Differential Equations 252 (2012) 2580–2595
Fig. 1. Phase line for ξ̇ = ψν±(ξ).

For the p-system, we have pμ = 0, so a0 = a1 = 0 and I = 0. In this case, y = √
csx and q =√

crx are (multiples of) the gradients of the Riemann invariants. By the above discussion, the regions
{y > 0}, {q > 0} are invariant domains for the system (41), as are the regions {y < 0}, {q < 0}. Thus
if y or q is negative somewhere, the negative quadratic functions in (41) drive blowup of y or q
in finite time, as shown by Lax in [5]. From our point of view this is a trivial case, for which we
have uniform estimates. In general, the forward and backward waves interact nonlinearly with the
varying stationary background, and we do not expect uniformity. In fact, interactions can cause waves
to change their R/C character, as demonstrated in [10] and the upcoming paper [2]. We expect that
a complete analysis of the dynamics of (13), (14) will yield a rich variety of new and unexpected
phenomena.

We now prove the breakdown results of Theorem 3 by studying (39), (40) as a dynamical system.
Our aim is to describe sufficient conditions which imply that the gradient blows up in finite time.

Proof of Theorem 3. Fix a constant 0 < ν 
 1, and define

ψν±(ξ) ≡ a0 ± a1ξ − (1 − ν)a2ξ
2, (43)

so that our ODEs (39), (40) can be written

y′ = ψν+(y) − νa2 y2 and q� = ψν−(q) − νa2q2. (44)

Now let N = N(ν) < 0 be a uniform lower bound for the (real) roots of ψν± , or N = 0 if there are
no real roots. Then since a2 > 0, we have

ψν±(ξ) � 0 for every ξ � N.

Now suppose there is some x0 such that the data satisfies

y0 = y(x0,0) < N.

Then for the forward characteristic emanating from (x0,0), we have

y′ � −νa2 y2,

so that the solution satisfies

1

y(t)
� 1

y(0)
+ ν

t∫
0

a2 dt, (45)

where the integral is taken along the forward characteristic. Since y(0) < 0 and a2 is uniformly posi-
tive, there is some finite T∗ such that the right-hand side of (45) vanishes, and so we obtain

y(t) → −∞ as t → T∗.

A similar calculation holds for q.
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Finally, we calculate the lower bound N . The roots of ψν± solve the quadratic equations

ψν±(ξ) = a0 ± a1ξ − (1 − ν)a2ξ
2 = 0

and so are

ξ = ±a1 ± √
�

2(1 − ν)a2
, where � = a2

1 + 4(1 − ν)a0a2.

The minimum of these is clearly

− |a1| +
√

�

2(1 − ν)a2
,

and the lower bound N is obtained by maximizing the ratios |a1|/a2 and a0/a2, so we look for upper
bounds for a0 and |a1|, and a lower bound for a2.

From the expressions (15)–(17) and (12), we obtain the bounds provided c and ch are bounded
away from zero, while the quantities

h, c, ch, pμ, pμh, pμμ, pμhh and pμμh

remain finite, and recalling (23), the bound follows.
Using (26) and (27), the bounds can also be expressed by the bounds on the derivatives of p

(and c) with respect to v and x. �
When a0 > 0, the equilibria are on opposite sides of the origin, so the stable invariant region

includes the values ξ1 < ξ � 0. If the data can be set up in such a way that y0 and q0 lie in the
interval (ξ1,∞) for all x0, then the corresponding solution would have finite gradients for all time,
and these would be nontrivial shock-free solutions. This topic is part of the authors’ ongoing research.

6. Generalized R/C structure

The R/C structure at a single contact discontinuity or entropy jump for the compressible Euler
equation is fully analyzed in [10]. This is an analysis of how the R/C character changes when a wave
crosses a jump discontinuity, where the system is a p-system on either side of the jump. Using this
R/C structure on an entropy jump, a class of time-periodic solutions in compressible Euler equations
with polytropic ideal gas has been studied in a series of papers [10–12]. In this section, we show
that the R/C characters we have defined for smooth solutions are consistent with those results. Fur-
thermore, by the study of R/C structures in the generalized Euler equations (2), (3) with smooth
and piecewise smooth entropy fields, we expect eventually to see a large class of time-periodic or
quasi-periodic solutions as in [10,11] with both piecewise smooth and smooth entropy profiles.

We first consider how the R/C character can change at a fixed point in a smooth solution.

Lemma 2. If (
px
pv

)v < 0 (or equivalently (
pμ

c )h < 0), the backward R/C character can only change from R to C
(resp. C to R), if the solution is forward R (resp. C ); the forward R/C character can only change from C to R
(resp. R to C ), if the solution is backward R (resp. C ). If (

px
pv

)v > 0 (or (
pμ

c )h > 0), all the above R/C character
changes will only happen in the opposite direction.

Proof. Suppose the backward R/C character changes at (x0, t0), then β = 0 at (x0, t0). Then by (9),
we have

β� = c

2

(
pμ

c

)
α,
h
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which has the sign of α(
pμ

c )h . Thus, the backward wave changes from C (β < 0) to R (β > 0) at

(x0, t0), if and only if α and (
pμ

c )h have the same sign. Thus if (
pμ

c )h < 0, then α < 0, and the
crossing forward wave is necessarily compressive by Corollary 1. All other cases follow similarly, and
using Corollary 2 for the equivalence of derivative conditions completes the proof. �

In order to compare the R/C structure for smooth solutions to that of a single entropy jump,
we recall the relevant argument from [10]. Discontinuities in weak solutions are governed by the
Rankine–Hugoniot jump conditions, which are

σ [v] = −[u] and σ [u] = [p], (46)

plus a third equation for energy conservation. Here σ is the speed of the discontinuity, and brackets
denote the jump [ f ] = f R − f L in f across the discontinuity. An entropy jump has zero speed, σ = 0,
so that (46) reduce to [u] = 0 = [p], that is

uR = uL and pR = pL .

Across the entropy jump, the R/C structure changes as follows, see [10]:

Lemma 3. For cR
cL

< 1, the backward R/C character can only change from R to C (resp. C to R), if the solution
is forward R (resp. C ); the forward R/C character can only change from C to R (resp. R to C ), if the solution
is backward R (resp. C ). For cR

cL
> 1, all the above R/C character changes will only happen in the opposite

direction.

Comparing these lemmas, we see that the condition cR
cL

< 1 for an entropy jump should be con-

sistent with the condition (
px
pv

)v < 0 for smooth solutions. Recalling that the change in pressure at an

entropy jump is zero, we can assume px = 0, and treat the condition cR
cL

< 1 as cx < 0. Thus it suffices
to show that, if px = 0, then

(
px

pv

)
v

< 0 ⇔ cx < 0. (47)

Since fx = f v vx + fx , if px = 0, we have

vx = − px

pv
,

so that also

cx = cv vx + cx = −cv
px

pv
+ cx = −cv px + cx pv

pv
.

On the other hand,

(
px

pv

)
v

= pxv pv − px pv v

(pv)2
= −2c(cx pv − pxcv)

(pv)2
,

where we recall pv = −c2. Comparing these, it follows that

(
px

p

)
= − 2c

p
cx = 2

c
cx,
v v v
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which proves (47). Thus our continuous R/C character is consistent with that of a single entropy
jump.
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