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1. INTRODUCTION 

In this paper we consider the question of existence and uniqueness of 
positive, radially symmetric solutions (or, briefly, p.r.s. solutions) of the 
equation 

Au +f(zc) = 0 in R,<Ixl<Ro,~~RS,N33 

subject to one of the following sets of boundary conditions: 

(1.1) 

u=o on 1.~1 = R, and 1x1 = R,, (1.2a) 
 ̂

u=o on 1xJ = R, and e=O 
dr 

on 1x-J = R,, (1.2b) 

du 
z= 0 on 1x1 = R, and tt = 0 on 1x1 = Ro. (1.2c) 

Here Y = 1~1 and a/& denotes differentiation in the radial direction. 
We assume that 

f E C’(R), f(r) > 0 for z > 0 and f(0) = 0. (1.3) 
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This condition on f will be assumed throughout the paper, without further 
mention. In addition, one or more of the following conditions will be 
frequently assumed. 

(A-l ) f is nondecreasing in (0, co ); 

(A-2) lim,,, f(t)/t= ~0; 
(A-3) lim,,, f( t)/t = 0. 

The Dirichlet problem for Eq. (1.1) in general bounded domains has 
been intensively studied in recent years. When f is superlinear (i.e., it 
satisfies condition (A-2)) the existence of positive solutions has been 
proved under various sets of assumptions, always including a restriction on 
the growth off at infinity (see e.g., [AR], [BT], [L]). It is known that 
such a growth condition is, in general, necessary for starlike domains [P]. 
In the case of the annulus, such a growth condition is not necessary. 

When the domain is a ball or an annulus, one may consider in particular 
radially symmetric solutions, in which case the problems mentioned above 
reduce to problems in o.d.e. Thus, in terms of the variable 

c= [(jjr-q+-y (1.4) 

Eq. (1.1) obtains the form 

u"(5)+P(t)f(45)1=0, 

where 

P(5) = CW- 2) 51 -k, 

ci= [(N-2) R”-21-1, 

and the boundary conditions become 

k =2N-2 
N-2' 

(1.5) 
i=O, 1, 

u(j’,) = u(51) =o (1.2a)’ 

u’(&)) = u(5,) = 0 (1.2b)’ 

24(&J = 24’(51) = 0. (1.2c)’ 

In this, or other equivalent forms, these problems have been investigated 
by many authors (see [N], [Cl], [Nil, [NN] and the references 
mentioned there). We note that the Emden-Fowler equation, which has 
received particular attention, is of the form ( 1.1)‘. 

A general existence result for o.d.e. problems as above was first obtained 
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by Nehari [IN], assuming that f is a continuous function, positive on 
(0, a)), satisfying the condition, 

3 6 > 0 such that f(t)/! ’ +& is monotone increasing in (0, a). (1.6) 

Nehari’s result was obtained by a variational method which has many 
interesting applications. This method is briefly described in the last section 
of the present paper where it is used in deriving an uniqueness result. 

In order to state in a concise form the existence results obtained in the 
present paper, we shall denote by Ex(a) (resp. Ex(b), Ex(c)) the statement: 
“Problem (l.l), (1.2a) (resp. (1.2bj, (1.2~)) possesses a p.r.s. solution in 
every annulus 0 < R, < 1x1 < R, < co.” We have the following results: 

I. Assuming (A-3): Ex(a) o Ex(b) 3 Ex(c); 

II. Assuming (A-l)-(A-3): Ex(a), Ex(b), Ex(c) are valid. 

Furthermore (for each of the problems mentioned above) if we assume 
(A-3) and a stronger form of (A-l), the existence of a p.r.s. solution in 
a given annulus implies the existence of p.r.s. solutions in every larger 
concentric annulus. 

Conditions (A-2) and (A-3 j are in a sense necessary in II. Thus, if there 
exists a constant M such that f(t) < Mt on (0, co), then (given R,) there 
will be no p.r.s. solution of our problems for R, near to R,. On the other 
hand, if there exists a positive constant c such that f(r) > ct on (0, DJ) then 
(given R, j there will be no p.r.s. solution of our problems for R, sufficiently 
large. However, condition (A-l) is not necessary. In fact, using the 
methods of the present paper, one can establish existence under a condition 
slightly weaker than (A-l). 

The existence results presented in this paper are obtained by a “shooting 
method” (as in [Cl], [CM], [Nil) combined with comparison results and 
estimates for eigenvalue problems in ordinary differential equations. 

It is known that, under conditions (A-lj(A-3), problem (1.1) (1.2a) 
may have more than one p.r.s. solution (see [NN]). In some special cases 
it was shown that this problem also possesses positive solutions which are 
not radially symmetric (see [BN], [C2]). Uniqueness results for problems 
(l.l), (1.2a) and (l.l), (1.2~) were obtained in [Cl] under various 
additional conditions on .f: Improved versions of these results and other 
uniqueness and nonuniqueness results for problem (l.l), (1.2a) were 
obtained in [Nil and [NN]. 

In contrast to the above, uniqueness of p.r.s. solutions of problem (l.l), 
(1.2b) can be established merely under the assumption (see [M] j 

(A-l j’ f(t)/t is strictly increasing in (0, m). 

Our discussion of the uniqueness question may be divided into three 
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parts. First, we provide a proof of the uniqueness result for problem (1.1 )- 
(1.2b), different from the proof in [M], which yields additional infor- 
mation on the solutions. For instance, we show that, with R, fixed, the 
solution decreases as R. increases. Second we show that some of the uni- 
queness and nonuniqueness results that were obtained in [NN] for 
problem (l.l), (1.2a) are also valid for problem (l.l), (1.2~). These obser- 
vations and some heuristic arguments have led us to the conjecture that 
uniqueness (in every annulus) in problem (l.l), (1.2a) implies uniqueness 
(in every annulus) in problem (l.l), (1.2~) and vice-versa. A proof of the 
first half of this conjecture (assuming that .f satisfies (1.6)) is given in the 
final section of the paper. 

2. EXISTENCE THEOREMS: PART I 

In this section we shall establish the existence of solutions for problems 
(l.l), (1.2a) and (l.l), (1.2b). For this purpose we shall examine the family 
of solutions of the initial value problem 

Ll” + pf( u) = 0, for (<cl, 

d4,)=0, u’(5,) = 4, where b >O. 
(2.1) 

Here r, is a positive number that will be kept fixed throughout the present 
section. 

2.1. For every b > 0, problem (2.1) has an unique solution U( .) b j whose 
maximal domain of definition in (0, 5,) will be denoted by (r(b), cl). A 
function u is a solution of (2.1) if and only if it satisfies the integral 
equation 

(2.2 j 

From (2.2 j it is clear that if u is a positive solution in some interval (a, 4 r ) 
with c[ 3 0, then 

45)Gb(t,-5) in (a, 5,). (2.3) 

Therefore if CI >O the above solution can be extended to the left of 2. 
Denote 

S,(bj=inf(&,>~(b): u(S, b)>O in (Co, tl)!. 

By standard results in o.d.e., lim sup, ~_ b0 r(b) d z(b,) for b. > 0 and the 
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functions (&6) + ~(5, b) and (5, b) -+ ~‘(5, 6) are continuously differen- 
tiable in the set 

By the implicit function theorem, the function b --) t,(b) is continuously dif- 
ferentiable in the neighborhood of every point b >O such that to(b) >O. 
(Observe that at such a point u’(t,(b), b) >O.) 

From Eq. (2.1) and the positivity off, it is clear that u(., b) is concave in 
(Mb), 5,). 

2.2. PROPOSITION. rf b > 0 and u( ., 6) is defined and positive in (0, tl) 
then lim,,,,, ~(5, b)=O. 

Prooj Since u is positive and concave in (0, li), lim, _ ,,+ u( 5, 6) exists 
and is nonnegative. If this limit is positive, there exists c>O such that 
c < f(u( 5, 6)) in (0, t’), where 5’ = 5,/2. Hence, by (2.2), 

c “(t-5)p(t)dt4b(5,-5)-u(T,b), I vc E (0, sr’). t 

However, in view of (1.5), this is impossible. 

2.3. PROPOSITION. For every b > 0 there exists an unique point T(b) in 
(i,(b), tl) at which u attains its maximum over this interval. The function 
b --f z(b) is continuously differentiable in (0, CO). 

Prooj: The first statement is obvious. (When t,(b) = 0, use 2.2.) The 
second statement follows from the implicit function theorem. 

The next two results provide certain estimates involving t(b) and 
u,,(b) := u(z(b), b). We shall need the notation 

F(t)= j;f(s)ds 

2.4. PROPOSITION. For every b > 0, 

b2/2p(z(b)) d F(u,(b)) d b2/2p(5,). 

If t,(b) > 0 and a := u’(tO, b) then 

a2/2p(5,) < F(u,(b)) d a2/2p($b)). 

(2.4) 

(2.5) 
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Proof. Let u(t) = ~(4, b) and denote 

r,(t) := e32/2 + P(r) F(u(O), 

12t51 := UW2/(2P(4)) + F(u(5)). 

Then 1;(t) < 0 and r;(t) > 0 in (t,(b), t,). These inequalities imply (2.4) 
and (2.5). 

2.5. PROPOSITION. Zf f satisfies (A-l) then for every b > 0 

Furthermore, 

u,,Ab) > Cl, -r(b)) b/2. 

lim u,,(b) = cc 
h-a 

(2.6) 

(2.7) 

Proof: Let U= zf(., 6),. Since u”(c) = --p(t) f(u(<)) is monotone 
increasing in (r, tr), the function --u’ is concave in this interval. Moreover, 
-u’(t) > 0 in (r, [r), -u’(c,) = b and u’(t) = 0. An elementary property of 
concave functions yields 

Now suppose that there exists a sequence {b,,) with b,, + ;XI such that 
(u,(b,)} is bounded. Then, by (2.4), p(s(b,,)) + 05, so that $b,,) + 0. But 
this is impossible in view of (2.6). 

2.6. For reference we mention the following immediate consequence of 
Theorem 3’ of [GNN, p. 2231. 

r(bj < [I+ to(b) \ 
2 ) 

Vb>O. (2.8 j 

Note that Theorem 3’ of [GNN] applies to the solution u( ., 6) of Eq. (2.1) 
in (t,(b), 5,) because f is positive and p is decreasing. 

Next we shall examine the behaviour of t,(b) and z(b) as b + 0 and as 
b + a. Our aim is to show that the range of <,,(. j and r(.) is the entire 
interval (0, <]). Clearly this will imply the existence of positive solutions to 
problems (l.l)‘, (1.2a)’ and (l.l)‘, (1.2b)‘. 

2.7 LEMMA. Assume (A-3). Then 

(ij limb+, Mb) = 0; 

(ii) If B is a bounded set in (0, co) the set (s,,(b): be B) is bounded 
away from 5:, . 
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ProoJ: Let b be a positive number such that t,(b) > 0 and consider the 
eigenvalue problem 

&‘+Tlp(<)$b=O in (t,(b), 5,) 
d(iro)=d(5,)=0. (2.9) 

Denote by 1, =A,(b) its first eigenvalue and let Q, be a corresponding 
positive eigenfunction. Then, with u = ~(5, b) and g(t) :=f(t)/t we have 

0 = jk’ qsI(U” + pf(u)) dg = jC’ (qqz4 + pf(u) (&) dl 
to co 

= <,’ (g(u) -1,) pz441 d(. 
s 

Hence, A(b) < su~(~~.~~, g (u(t, b))G Swo<z<br, g (t). Therefore, by (A-3), 
l,(b) +O as b -0. Moreover, (L,(b): bEB} is bounded. These two facts 
imply the statements of the lemma. 

2.8. LEMMA. Assume (A-3). Then 

(i) lim,,,r(b)=O 

(ii) If B is a bounded set in (0, GO), then the set (t(b): b E B) is boun- 
ded away from 5,. 

Proqf From (2.3) and (2.4), 

b’PpW)) < Wdb)j G m5J, Vb>O. 

BY (A-3) 

F(t),‘t’<trl ;f(s)~~‘ds+O 
s 

as t +O. 

Consequently 

l/p($b)j d 2F(b<,)/b’ -+ 0 as b +O. 

This implies (i). Statement (ii) follows from 2.7(ii) and 2.6. 

2.9. LEMMA. Assume (A-l), (A-2). Then 

(i) lim z,+m T(b)=<,, 
(ii) lim, _ ic t,(b) = r,. 
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Proof. In view of 2.6, statement (ii) follows from (i). To prove (i), sup- 
pose there exists a sequence (b,*) with b,, + CD such that [i - T(b,) > c( > 0 
for all n. Then by (2.6), 

u,,(b,,) 2 ~b,P> I? = 1, 2,... . (2.10) 

Setting g(s) :=f(s)/s, 

F(l)>Jt g(s)sds3h(t).3t2/8 
r:2 

where h(r) := inftr,2,srJ g(s). Hence, by (2.10) 

F(u,,(b,)) 3 h(itb,/2) 3a”b;/32. 

From this inequality and (2.4) we obtain 

M&J2) d 16/(3a2p(<,)), n = 1, 2,... . 

By (A-2) h(t) + ,X as t -+ co. Therefore (b,,) must be bounded, in 
contradiction to our assumption. 

2.10. LEMMA. Assume (A-3). Let E = (b > 0: <,(b I> O> and suppose 
that E is not empty. (Note that E is an open set.) If J is a connected 
component of E, say (b’, b”), then lim,,,., g,(b) = 0. 

Proofi If 6’ = 0 the result follows from 2.7(i). If b’ > 0 then (since b’ $ E) 
<,(b’) = 0, so that u( ., b’) > 0 in (0, ii). Now, if the conclusion of the 
lemma does not hold, it is easily seen (using 2.7(ii)) that u(., 6’) must 
vanish at some point in (0, ti), thus arriving at a contradiction. 

As a consequence of Lemmas 2.7-2.10 we have 

2.11. THEOREM. Assuming (A-l ), (A-2), (A-3), each of the problem 
(l.l), (1.2a) and (1.1 j, (1.2b) has at least one positive radia& swmetric 
solution for all RI, R0 such that 0 -CR, CR, -C CC!. 

2.12. Remark. An examination of the proof shows that the following 
result also holds. 

Assume (A-3). Consider problems (l.l), (1.2a) and (l.l), (1.2b). If for 
one of these problems it is known that it has a positive, radially symmetric 
solution in every annulus 0 < R, < 1x1 < R, < co, then the same is true w.r.t. 
the other problem. 

For instance, consider the case when the existence result is known for 
(l.l), (1.2b). Then there exists a sequence of positive numbers (b,) such 
that T(b,,) -+ 5, and hence, by 2.6, tO(bn) -+ <i. Let E be as in 2.10 and let J,, 
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be the connected component of E which contains b,. Then, since 5,-J. ) is 
continuous on J,, 2.10 implies that the range of to(.) over J,l contains the 
interval (0, &(b,)). Since &,(b,l) -+ <,, the range of &,(.) over E is (0, t,). 

3. EXISTENCE THEOREMS: PART II 

Here we deal with the existence of positive solutions of problem (Ll), 
(1.2~). We shall establish the following result. 

3.1. THEOREM. Suppose that problem ( 1. 1 ), ( 1.2a) has a positive, radially 
symmetric solution for ever-v R, , R, such that 0 < R, < R, < co. In addition 
assume (A-3). Then problem (1.1 ), (1.2~) has a positive radially symmetric 
solution for every R,, R, as above. 

3.2. For the proof of the theorem we consider the family of solutions of 
the initial value problem 

0” + /If(v) = 0 for to < t, 
(3.1) 

4So) = 0, v’(b) = a, where a>O. 

Here &, is a positive number that will be kept fixed throughout the present 
section. For every a > 0, problem (3.1) has an unique solution v( ., a) whose 
maximal domain of definition in (to, co) will be denoted by (to, r(a)). A 
function v is a solution of (3.1) if and only if it satisfies 

rt 
v(5)=a(t-&d- 1 (5-t)p(t)f(v(t))dt. (3.2) 

Therefore, if v is a positive solution in some interval (to, /?) we have 

u(t) d 44 - &J in (tog PI. (3.3 j 

Hence if p < cci, the above solution can be extended to the right of /I. 
If v( ., a) vanishes somewhere in (to, z(a))-which certainly happens 

when r(a)< co-we denote by ll(a) the first zero of v(., a) to the right of 
&,. We denote by D the set of points a > 0 for which t,(a) is defined. 

Since u( ., a) is concave in every interval in which it is positive, it is clear 
that a ED if and only if there exists a point z,(a) such that tl’(z,(a), a) = 0. 
This point is unique. By standard results in o.d.e., the set D is open and 
cl(.), z,,(s) are in C’(D). 

3.3. LEMMA. Under the assumptions of the theorem, there exists a 
sequence {a,> in D such that rl(a,) ---f to and a,(c!(a,,) - l,) + a3. 
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Proof. Given t1 > to let z4 = ~(5; &,, l,) be a positive solution of the 
problem 

z4” + pf( u) = 0 in (to, 5k), 
450)=45,)=0. (3.4) 

Denote by 1, = A,((,, [r j the first eigenvalue of the problem 

qs”+~pqs=0 in (to, 5A 

4(50)=d(51)=0. 

As in the proof of 2.7 we obtain 

(3.5) 

(3.6) 

where g(r) :=f(t)/t. Since J,(tO, 4,) + co when (I -+ to+ and g is bounded 
in bounded sets (see (A-3)), we deduce that SU~~,~~~~, ~(5; lo, 5,) + co as 
t1 -+ <,,. Choose a sequence ({,+} such that [l.n -+ to+ and a 
corresponding sequence of solutions {un} of (3.4) (with <I = [l,n). Then, in 
view of the previous argument and (3.3) the lemma holds with a, := ui(gYO). 

3.4. LEMMA. Assume that D is not empty. Let (a’, a”) be u connected 
component of D. 

(i) Zf a’ = 0 and (A-3) holds or a’ > 0, then 

lim zO(a) = xj. (3.7) a-n’+0 

(ii) If a” < ~2 then 

lim s,(a) = co. (3.7)’ 
a-a”-0 

Proof. It is easily verified that (3.7 j holds when a’ > 0 and that (3.7)’ 
holds when a” < co. Accordingly, we describe only the proof of (3.7) in the 
case n’ = 0, assuming that (A--3) holds. 

Given a number t > to, consider the eigenvalue problem 

II/"+j.lp$=O in (50, Tj, 

Il/(ro) = 0, ly(5)=0. 

Suppose that L’ is a solution of, 

(3.8) 

v" + pf(v) = 0 in (to, 7) 

4Eoj = 0, u'(7) = 0. 
(39) 
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Let peel = p,(t,,, r) be the first eigenvalue of (3.8). Then, as in 2.7, we obtain 

(3.10) 

Now suppose that there exists a sequence (a,} ED such that a, --, 0 + and 
{z,(u,j> is bounded. By (3.3) and the definition of r,Ja) we have 

sup ‘(Sr, ‘j ’ u(Toiaj - 50), VUED. (3.11) 
~O<S<Tl(U~ 

Hence, 

sup aa,) -+ 0 as iz+m 
(hiF1(unj) 

Therefore, by (3.10) and (A-3), 

lim ~~(5~, ~~(4)) = 0. II - ilj 

But this is impossible when {~,,(a,~)) is bounded. 

3.5. Proof of Theorem 3.1. Let (a,> be as in 3.3 and let J,, be the con- 
nected component of D containing the point a,. Then, by 3.4 the range of 
zO(.) over J,, contains the interval (5,(u,,j, WJ) and by 3.3, tl(a,) -+ to. 
Therefore we conclude that the range of zO(. ) is (to, CC j and this implies 
the statement of the theorem. 

4. EXISTENCE RESULTS: PART III 

Suppose that fsatishes (A--l) and (A-3) but not (A-2) and that 

g(t) :=f( t )/t is bounded. (4.1) 

Then for each of the three problems treated here, there are no positive 
radially symmetric solutions in sufficiently thin annuli. This is easily seen 
using estimates (3.6) and (3.10). 

In this section we consider all three problems, without assuming (A--2), 
and prove the following result: 

4.1. THEOREM. Suppose that f satisfies (A-3) and 

(A-l)’ g(t) = f(t)/t is strict& increasing. 

For each of the problems mentioned above, if there exists a positive radially 
symmetric solution in a certain annulus” O<R,<Ixi<R,<cn, thensucha 
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solution exists in every annulus centered at the origin, which contains 
R, < 1x1 -CR,,. 

The theorem is proved through a series of lemmas. 

4.2. LEMMA. Under the assumptions described in 4.1 the following 
statements hold: 

(i) Problems (l.l)‘, (1.2a)’ and (l.l)‘, (1.2b)’ havepositive solutiom in 
every interval r0 < i_r < cl with r0 E (0, to]. 

(ii) Problem (Ll)‘, (1.2~)’ has a positive solution in every interval 
c,<<<c, with tl<rl. 

ProoJ: We prove the statement concerning problem (l.l)‘, (1.2a)‘. The 
other statements are proved in a similar way. 

Let (u(., 6): b >O} be the family of solutions of (2.lj. By assumption 
there exists b* such that iO(b*)= j’,. Let E= (b>O: l,(bj>O) and let E* 
be the connected component of E which contains b*. E* is an open inter- 
val, say, (6’, b”). By Lemma 2.10 we have 

lim to(b) =O. 
b-b’+ 

Since <0( ’ ) is continuous on E*, it follows that its range over E* contains 
the interval (0, to]. 

4.3. LEM~. Let u1 and u2 be two positive solutions of u” + pg(u) u = 0 in 
(to, <,) such that u2 > u1 in (<,-,, tl). If g satisfies (,4-l)‘, then the following 
situations are impossible: 

(i) u&)=u,(~~)=O, 
(ii) u’,(to) = ~~(5~) = 0, and u;(cO) GO, 

(iii) ~~(5~) = u;(C1) = 0, and u;(tl) 2 0. 

Proof: Integration by parts yields 

-ci J 
51 (u;uz - u;ul)d~=u;u2-u;uI 

50 50 
(4.2) 

In view of our assumptions, 

/“(u;u,-u;q)d<=l; [g(uz)-g(u,)]puluzdt>O. (4.3) 
:a 

However, in each of the cases (i)-(iii), the right-hand side of (4.2) is non- 
positive, thus contradicting (4.3). 
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4.4. LEMMA. Under the assumptions of 4.1, the following statements hold 

(i) Given rI > fl there exists <LE (co, c,) such that the problems 
(l.l)‘, (1.2a)’ or (1.1 )‘, (1.2b)’ have positive solutions in the interval (&,, e,). 

(ii) Given r0 E (0, t,,) th ere exists (5’, E (To, <,) such that problem (l.l)‘, 
(1.2~)’ has a positive solution in the interval (co-,, 5;). 

ProoJ: Again we prove statement (i) for problem (l.l)‘, (1.2a j’. The 
other statements are proved in a similar way. 

For b > 0, let u( -, 6) be the solution of (2.1) with (I as previously defined 
and let U( ., 6) be the solution of (2.1) with 5, replaced by cI. Denote 

a* := ZA’(~~, b*) (differentiation w.r.t. <) 

with b* as in 4.2. By Proposition 2.4, 

a* 3 6”. (4.4) 

Let &Jb) be defined as in 2.1 and S(b) and z?,(b) as in 2.3 w.r.t. U(., bj. By 
Proposition 2.5, lim,. _ m U,,(c) = KI. Choose c > 0 such that 

U,,(c) > a*F,. (4.5) 

We claim that 

To(c) 2 to- (4.6) 

Suppose that this is not the case. We define a function o in (so(c), r,) as 
follows: 

v(() = 
i 
u,(T - To(c))/(~- co-,(c>, in (F,(c), 3 - 
d-W-Q in (t, r,) 

(4.7) 

where U,,, = U,,(c) and Z = 7(c). Since U(. , c) is concave, we have 

U(5, c) 2 v(5) in (to(c), 5). 

By (4.5) and the negation of (4.6) 

(4.8) 

Hence, 

45) > v*(5) in (to, tl), (4.9) 
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where 
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zl*(() := 
i 
a*ts- - 50) in (to, (tl +&J/2) 

a*(51 - 5) in ((4, +5&L <,I. 
By (4.4) and the concavity of u( ., b*), 

(4.10) 

Now, by (4X-(4.10), 

~(5, cj > u(., b*) in (to, tl). 

But, by Lemma 4.3(i) this is impossible. Therefore (4.6) holds and 
statement (i) is proved for the problem (l.l)‘, (1.2a)‘. 

5. UNIQUENESS RESULTS: PART I 

It is known that under appropriate conditions on f, R,, R, problem 
( 1.1) (1.2a) has at most one positive radially symmetric solution (see 
[Cl], [Nil, [NN]). For instance, this is the case if f satisfies condition 
(A-l)’ (see 4.1) and RJR, d (N- l)‘1’N--2) (see [NN, Theorem 1.71). It 
can be shown that a similar result holds for problem (l.l), (1.2~). A proof 
will be given below. 

On the other hand, it is known (see [NN, Theorem 1.101) that for 
functions f of the form f(t)=P+# (l<p<(N+2)/(N-2)<q<co, 
0 < E) problem ( 1.1 ), (1.2a) has at least three positive radially symmetric 
solutions, provided that (for R, fixed) E and R, are sufficiently small. It is 
easy to see that the proof of [NN] yields also the same result for problem 
(l.l), (1.2cj. 

These observations raise the question of a possible relation between 
uniqueness for problem (1.1) (1.2a) and (1.1 j, (1.2~). This relation will be 
discussed in Section 6. 

In contrast to the above, it can be shown that, if f satisfies condition 
(A-l j’, problem (l.l), (1.2b) possesses at most one positive radially sym- 
metric solution, for all R,, R,. This uniqueness result was established in 
[M]. We supply here a different proof which yields additional information 
on the solutions (see Theorem 5.1 and Lemmas 5.‘2-5.4). 

5.1. THEOREM. Suppose that f satisfies the condition 

(A-~1)” f’(t)>g(t) :=.f(t)/t, 0< t< MI, 

and the inequality is strict for a sequence t, + 0 +. Then problem (1. l), (1.2bj 
possesses at most one positive, radially symmetric solution. Further, suppose 
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that u* (resp. u**) is a solution of this type in the annulus R, < 1.x-J < R* 
(resp. R, < 1x1 -c R**). If R* < R*“, then u** < u* ever}lwhere in 
R, < (xl <R*. 

Remark. Note that (A-l)’ implies (A-l)“. 

The proof of the theorem is based on several lemmas. 

5.2. LEMMA. Let {u( -) b): b > 0 ) be the family of solutions of (2.1). 
Denote w := dujdb. Then for every b > 0, 

45, b) > 0 for all t E [z(b)? <,), (5.1) 

with r(b) as in 2.3. 

Proo$ The function 1,~ satisfies the conditions 

w(<~, b) = 0, w’(~~, b) = -1. (5.2) 

Therefore MJ( ., 6) is positive in some left hand neighborhood of tl. If 
w( -, b)>O in the whole interval (t’,(b), t2) there is nothing more to prove. 
Otherwise, let OL = a(b) denote the largest value in (r,(b), [,) for which 
MI(., b) vanishes. We have to show that cc(b) <z(b). 

Note that w( ., b) satisfies, 

w” + pj”(U) 1I’ = 0 in (a, 5,). 

w(a)=w(5:,)=0 and M’>O in (a, tl). 
(5.3 j 

for t( = a(b). Furthermore, if v = - (du/d<)(., b), 

v” + pf’(u) v = p’f(u) < 0 in (T, Cl), 

u>o in (7, tJ, 
(5.4) 

for T = t(b). NOW if T(b) <a(b), (5.3) and (5.4) lead to a contradiction. 

5.3. LEMMA. Assume (A-l)“. Let w( ., 6) be defined as in 5.2 (with b > 0). 
Then there exists a point y(b) in (z(b), tl) such that 

I 

<o in (y(b), tl) 

~‘(5, b) =0 for <=y(b) (5.5) 

>o in C$b), y(b)). 

Proof: Since w satisfies (5.3) it follows that w is concave in [r(b), c,]. 
Therefore it is sufficient to show that w’(r(b), b) > 0. 
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In view of (A-l)“, (5.1) and (5.3), w = w( ., b) satisfies 

Iv” + pg( u) M’ < 0 

W( 5 r ) = 0 and w > 0 

in jr(b), t,), 

in (Qb), t,h 
(5.6) 

and the first inequality is strict at some points of (r(b), cl). On the other 
hand, ZI = u(. , b) satisfies 

zln + pg(z4) z4 = 0 in (r(b), Cl), 

Zl(<,) = 0, u’(o(.b)) = 0, z4 > 0 in CT(~), 5,). 
(5.7) 

Now (5.6) and (5.7) imply that 

o= (un~‘-u’w)(i”,)>(z4w’-zl’w~)(t(b)j= (Z4~ll’j(T(b)) 

and hence ~‘(s(b), h) > 0. 

5.4. LEMMA. Let T(hj and u,,(h) be as in 2.3. Then, 

arld 

t’(b) > 0 

4,i.b) > 0 

in (0, al) 

ii2 (0, m ) 

(5.Xj 

(5.9) 

PYOOJ Since u’(t(b), 6) is identically zero in (0, cc ) we have 

u”(z(b), b) s’(b) + w’(z(b), b) = 0, Vb>O. 

Furthermore, u”(r(b), 6) < 0 and (by Lemma 5.3) w’(r(b), b) > 0 for every 
b > 0. This implies (5.8). Next we have 

- = z u( T(b), b) = w(z(b), 6) 
db 

Vb>O. 

In view of Lemma 5.2, this implies (5.9). 

5.5. Proof of Theorem 5.1. By 2.3 and (5.8) the function b -+ z(b) is 
strictly monotone increasing in (0, ‘CD). Therefore problem (1.1 )‘, (1.2b)’ 
possesses at most one positive solution. This implies the first statement of 
the theorem. 

Now, consider the family of solutions {u( ., b): b>O} and let b*, b** 
be the values of the parameter corresponding to the solutions u*, u** 
mentioned in the theorem. Thus, z(b*) = R*(“-“)/(N- 2) and 
t(b**)=R**‘2~‘v’/(N-2). S’ nice z(. ) is continuous in (0, ~0) it follows 
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that the range of this function contains the interval [~(b**), r(b*)]. By 
(5.8), b** <b* and r(b) < t(b*) for every b E (0, b*). Hence, by Lemma 5.2, 

w(s’, b) > 0 for Vb E [b**, b*], V< E [z(b*), tl). 

Clearly, this implies the second statement of the theorem. 

Next we discuss the uniqueness for thin annuli. 

5.6. THEOREM. Let f satisfy (A-l)‘. Consider the problem 

h+f(u)=O in ~?<lxl<R~ 
I 
;=o on 1x1 =K and u = 0 on 1x1 = R,. 

(5.10) 

ji>+[(N- l)-1f(N-2’+ 11 R, (5.11) 

then problem (5.10) possesses at most one positiae radially symmetric 
solution. 

Before giving the proof of the theorem, we make some preliminary obser- 
vations. In terms of the variable 5 introduced in Section 1, problem (5.10) 
can be rewritten in the form 

v"([)+p(t;)f(u(t))=O in EjO<c<? 

~(5~) = u'(f) = 0, 
(5.12) 

where 5 := [(N--2) 8”-‘1 PI and to= [(N-2) R,N-‘I-‘. If u is a positive 
solution of (5.12), it can be extended to an interval [to, <,I so that the 
extension is a positive solution of the equation in (co, 5 i) and v(r, ) = 0. 
(The extension will also be denoted by 11.) Further, by [GNN, 
Theorem 21, R< (R,+ R,)/2, where RI := [(N-2) {1]-‘l(N-2). By the 
assumptions of the theorem, i? > R,/2 so that RI > 2a - R, > 0. Thus, 

5, < [2~-l!(N-2)_~011(N-2)]*--N=: A. 

A simple computation shows that (5.11) implies 

(5.13 j 

(l- 40) P’(5) + G-45) > 0 for T:&itA, (5.14) 

with A as in (5.13). 
We now prove the following lemma, which is an adaptation of a result of 

Ni and Nussbaum [NN, Theorem 2.41. 
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5.7. LEMMA. Assume (A-l)‘. Corzsider problenz (5.12) and assume tlzat 
(with A as in (5.13)) A > 0 and (5.14) holds. Under tlzese assumptions 
problenz (5.12) possesses at most one positive .solution. 

Remark. In view of our previous observations, Theorem 5.6 is an 
immediate consequence of the lemma. 

ProoJ: Assume that (5.12) has a positive solution. Consider the family 
of solutions of problem (3.1), {LT( ., a): a > O)- and put z := au/au. Let a* be 
such that v(., a*) solves (5.12) (i.e., ?=~,(a*)) and let cl=tl(a*). By 
(A-l)’ and Sturm’s comparison theorem z( 4, a*) vanishes at least once in 
(eO, 4,). Let 1’ be its first zero greater than to. Put y = ({ - &,) v’. Then 

&‘z-);z’)= - [(C-&)p’([)+2p(<)] zf(u). (5.15) 

By (5.13) the right-hand side of (5.15) is negative in (to, 7). Since 
z(<~) = Z(Y) = 0, integration of (5.15) from <,, to y yields 

-(Y - 50) Z’(Y) U’(Y) < 0, 

Further, since Z’(Y) < 0, it follows that ~‘(11) < 0 and hence, 

y > 2 (5.16) 

Let w  E (to, y) be such that Z’(W) = 0. We claim that o < ?. Indeed, using 
(A-l)’ we obtain 

0~s~ (f(tl)-I$‘(LI) pz=lm (z?-L+‘z) dc= -v'(co)z(o) 
:o co 

which implies that u’(w) > 0. Thus w  < ? and hence, in view of (5.16), 

z’(z,(a*), a*) < 0. 

Since u’(z,(a), a) is identically zero, 

(5.17) 

0 = u”(t,(a), a) t;(a) + z’(T&a), a) 

= -p(da))f(dda), a)) Gdaj + z’(daL a), 

which together with (5.17) shows that rb(a*) < 0. 
Now let D be as in 3.2 and denote D(f) := (aE D: To(a) = 73. By the 

previous part of the proof z;(a) <O everywhere in D(i). Consequently, 
every connected component of D contains at most one point of D(f). 
(Otherwise it would follow that there exists GE D(z) with t;(d) >O.) 
Furthermore, if J is a bounded, connected component of D, then 
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JnD(z”)= 0. (Otherwise, in view of Lemma 3.4, it would follow that J 
contains at least two points of D(r).) Therefore D(?j contains at most one 
point, i.e., (5.12) possesses at most one positive solution. 

6. UNIQUENESS RESULTS: PART II 

The observations mentioned at the beginning of Section 5 and some 
heuristic arguments lead us to the following conjecture. Under appropriate 
conditions on f (e.g., (1.6)) uniqueness of positive, radially symmetric 
solutions for problem (i.l), (1.2a) implies uniqueness in the same sense for 
( 1.1 ), (1.2~) and vice-versa. 

At present we are able to establish only the first half of this conjecture. 
Its proof is the subject of this section. 

6.1. Under assumption (1.6) it is known (see [N]) that problem (l.l)‘, 
(1.2a)’ possesses a positive, variational solution, i.e., a solution which also 
solves a certain variational problem which is described below. (Without 
loss of generality we may and shall assume that f is an odd function.) 

Consider the functionai, 

H[u] = J’<’ (4$(u) - F(u)) pd< 
50 

(6.1) 

where O<tO<;i r < cc, and F is defined as in 2.3. Let K denote the set (u> 
of absolutely continuous functions in [to, t, ] such that v(t,,) = V( 5, ) = 0, 
r is not identically zero and 

i’ El y’z di’ = s ” uf(u) pd<. (6.2) 
h co 

The variational problem referred to above is the problem of minimizing H 
over K Nehari has shown that this variational problem has a positive 
solution which must also satisfy 

6.2. Consider the eigenvalue problem 

4” + Ipf’( ?I) 4 = 0 in (to, 5,) 
4(&J = 4(5,) = 0 

(6.3) 

(6.4) 
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where o is a positive solution of (6.3). Denote by I, = &(v; &,, cl) the kth 
eigenvalue of (6.4). Later on we shall prove, 

6.3. LEMMA. Assume (A-l)” (as in 5.1). If u is a variational solution of 
(6.3) then 

&(v; 5*, <,)a 1. (6.5 f 

6.4. Consider problem (3.1) with <,, a fixed positive number. In the 
sequel we shall use the notation of Section 3. 

Suppose that D is not empty and that z;(a) < 0 for every a ED. Then, in 
view of 3.4, D must be a half line (a’, co ). Therefore the strict monotonicity 
of zO( -) implies that problem 

v” + pf( v) = 0 in (to, B) 
v( to = v’(P) = 0 

(6.6) 

has at most one positive solution for every p > <,-,. Thus nonuniqueness is 
possible only if zb(a) > 0 for some a E D. We shall prove 

6.5. LEMMA. Assume (A-l )‘I. Suppose that for some ii E D, s;(d) B 0, 
Consider (6.4) with 5, =5,(G) and v=v(., 5). Then 

fb(u; to, r,l< 1. (6.7) 

Before we turn to the proof of 6.3, 6.5, let us note that as a consequence 
of these two lemmas we obtain the result mentioned at the beginning of the 
section, namely, 

6.6. THEOREM. Suppose that f satisfies (1.6). If problem (l.l)', (1.2a)’ has 
an unique positive solution for each to, 5, E (0, NJ), then problem (l.l)‘, 
( I .2c)’ has the same wziqueness property. 

Proof. By Nehari’s result, the unique positive solution of (6.3) is a 
variational solution. Therefore (6.5) holds for every positive solution u of 
(6.3). On the other hand, if there exists an interval (To, fl) for which (6.6) 
has more than one positive solution, then by 6.4 the assumptions of 
Lemma 6.5 hold and we obtain (6.7) in contradiction to (6.5). 

6.7. Proof oj” Lemma 6.3. Let lj=Ai(v; &,, tl) and let #,, (lj2 be 
corresponding eigenfunctions with 4, > 0. Denote: P(F) :=f’(v( 5)) p(< ). 
Using (6.4) with JI, 41 and &, d2 we obtain 

(6.8) 
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Hence, 

(6.9) 

Therefore if $ is a linear combination of dr, q5z it will satisfy 

(6.10) 

Next we observe that for every sufficiently small t > 0, there exists 6(t) 
(which depends continuously on t and satisfies 6(0)=0) such that the 
function 

satisfies 

e, = J(t) 4, + @2 (6.11) 

To verify this statement set 

F(‘(a, t):=j”(V2- vf(v)p)dt 
eo 

where V=6qS, + t#,+ v. Note that, by (6.3), F(O, 0) =O. Further, 

Again by (6.3): 

s 
” (u’q5; -f(u) dip) dt =O, i= 1,2. 

CO 

Hence, 

(6.13) 

by the assumption onj: Thus our statement follows by the implicit function 
theorem. 
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Next we note that from (6.1), (6.2), (6.12) 

H[II/, + u] = H[u] + ji’ (+&2 + $;u’) di’ 
50 

Cl - s (f(u) I//, + if’(u) l/b;, pdt + O(t’). ro 
Hence, by (6.13) and (6.10), (recall that P(r’)=f’(u(<))p(<j) 

Since, by (6.12), $, + UE K and u is a variational solution, we have 
H[a] < H[$, + r]. Therefore, P being positive, we deduce that A2 > 1 as 
claimed. 

6.8. Proof of Lemma 6.5. Denote z(., a) := (eujauj( ., u). Then I(., a) 
satisfies 

ZN + pf ‘(u) z = 0 in (to7 E,(a)) 

z( 50) = 0, z’( 50) = 1 
(6.14) 

where v = v( ., a). In what follows we set a = (r, u(t) = ~(5, ii), z(5) = ~(5, ii), 
5 I = r’ l(ii) and T = rO(G). We also denote 

PC0 := P(5) g(u(z;‘)), where g( t j = f (t)/t 

Pb3:=p(5)f’(w)- 
(6.15) 

By our assumption onf, P(t) >p(~$) with strict inequality at some points in 
every neighborhood of to and cr. 

Note that 

z’(t.)>O. (6.16) 

Indeed u’(z,(a), u) = 0 for all a E D. Hence, 

u”(%(aj, a) rb(aj + z’(q)(a), a) = 0, VaED. 

Since s;(E) 20 and II” ~0 everywhere in (to, c,(u)), we obtain (6.16). 
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We claim that z must change sign at least once in (co, T). Suppose this is 
not the case. Then z > 0 in (to, 7) so that 

z”+pz<O in (to, ~j 

z( 50) = 0 and z’(z) > 0, 

and the first inequality is strict in some subinterval of (to, z). 
On the other hand, 

u”+pu=O in (cO,z) 

u(& j = U’(T) = 0. 

(6.17), 

(6.171, 

Since both u and z are positive in (to, T), (6.17), and (6.17)? lead to a con- 
tradiction. 

Next we observe that Z’ must vanish at least twice in (to, r]. This follows 
from the previous statement and the fact that ~‘(5~) = 1, z’(t) 3 0. 

Now we claim that z must vanish at least twice in (t,,, 5,). Suppose that 
this is not the case. Then, in view of the previous statements, z<O and 
Z’ > 0 in (z, ll). Therefore 2 = --z satisfies 

while 

y+pz=o, Z>O and 2’ t0 in (T,clj 

u”+pu=O in (z,<~) and u’(s) = u(5,) = 0. 

In view of the relation between p and P this again leads to a contradiction. 
Denote by % the second zero of z to the right of to. Then z is an eigen- 

function of the problem 

corresponding to the eigenvalue i, = 1 and this is the second eigenvalue of 
the problem. Since F< tl, the monotonicity of eigenvalues with respect to 
the domain implies (6.7). This completes the proof of the lemma. 
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