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We study a simple Standard Model (SM) extension, which includes three families of right-handed 
neutrinos with generic non-trivial flavor structure and an economic implementation of the invisible axion 
idea. We find that in some regions of the parameter space this model accounts for all experimentally 
confirmed pieces of evidence for physics beyond the SM: it explains neutrino masses (via the type-I see-
saw mechanism), dark matter, baryon asymmetry (through leptogenesis), solves the strong CP problem 
and has a stable electroweak vacuum. The last property may allow us to identify the Higgs field with the 
inflaton.
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1. Introduction

Although no unambiguous signal of physics beyond the SM 
(BSM) has appeared so far at the LHC, there is no doubt that the 
SM has to be extended. Neutrino oscillations, which lead to the 
existence of small (left-handed) neutrino masses, and the observa-
tional evidence for dark matter (DM) is enough to state that the 
SM is incomplete.

Other unsatisfactory features of the SM are an insufficient 
baryon asymmetry of the universe, the strong CP, gauge hierarchy 
and cosmological constant problems.

Moreover, precision calculations [1,2] indicate that the SM po-
tential develops an instability at a scale of the order of 1010 GeV, 
for central measured values of the SM parameters. This is not par-
ticularly worrisome per se because the probability of tunneling to 
the absolute minimum, where life is impossible, is spectacularly 
small [2]. However, it may lead to some issues during the expo-
nential expansion of the early universe (inflation) [3–5]. Moreover, 
the (absolute) stability up to the Planck scale MPl may lead to 
the possibility of Higgs inflation [6–9], linking particle physics and 
cosmology: this is interesting because it provides us with rela-
tions between particle physics and cosmological observables. The 
presence of such an instability in the SM is not firmly confirmed 
because of non-negligible uncertainties on the top mass and the 
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QCD gauge coupling; but, if confirmed, it would suggest that right-
handed neutrinos (at scales suitable for the see-saw mechanism 
and thermal leptogenesis) and the physics of the QCD axion may 
be relevant for the issue of the electroweak (EW) vacuum instabil-
ity and therefore inflation.

The aim of this paper is to identify a simple and well-motivated model 
where the following signals of BSM physics can all be addressed and 
which adds to the SM only right-handed neutrinos and the extra fields 
needed to implement the axion idea:

1. Small neutrino masses. We adopt perhaps the simplest expla-
nation: the type-I see-saw mechanism based on right-handed 
neutrinos. The addition of right-handed neutrinos also sym-
metrizes the field content of the SM giving to each SM left-
handed particle a right-handed counterpart.

2. Dark matter. As a DM candidate we consider the axion [10], 
a light spin-0 particle whose existence is implied by the spon-
taneous symmetry breaking of a U(1) symmetry, the Peccei–
Quinn (PQ) symmetry [11] that explains why strong interac-
tions do not violate CP. In particular, we consider the invisible 
axion model proposed by Kim, Shifman, Vainshtein and Za-
kharov (KSVZ) [12], which has a simple structure and a small 
number of free parameters.

3. Baryon asymmetry. In order to explain such asymmetry we 
make use of (thermal) leptogenesis [13], which is implemented 
with the same right-handed neutrinos that allow the light 
neutrinos to have masses.
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4. Inflation and vacuum instability. As we stated before, the in-
flaton could be identified with the Higgs boson provided that 
the EW vacuum is stable,1 taking into account energies up to 
the Planck scale. We therefore look for regions of the param-
eter space where the EW vacuum is stable, even for central 
values of the SM observables.

5. Strong CP problem. The solution we consider is the first and 
most famous one: the PQ symmetry, the same symmetry lead-
ing to the axion DM candidate above.

It is important to note that the first two points represent a 
proof of BSM physics, while the others are indications, although 
very plausible ones. The spirit here is similar to the one of [15], 
focusing on problems 1, 2 and 3 and adding to the SM field con-
tent only right-handed neutrinos with masses below the EW scale. 
In this case, indeed, the right-handed neutrinos can significantly 
contribute to dark matter [16] (see also [17] for a review and fur-
ther references) and neutrino oscillations provide a mechanism to 
generate baryon asymmetry through a different version of lepto-
genesis [18]. Moreover, it is possible to extend this framework to 
include the axion idea and to look for simultaneous solutions of 
problems 1, 2, 3, 4 and 5. Here there is no claim that the simple 
model we study is the only one able to address all these issues.

In the list above we did not include the gauge hierarchy and 
the cosmological constant problems because they can both be ad-
dressed with anthropic arguments2 [19]. On the other hand, there 
seems to be no anthropic solution to the strong CP problem; thus 
technical naturalness appears to be the only possible way to ex-
plain the small value of the QCD θ angle.

Let us summarize now the contents of the article. In Section 2
we define the model. In Section 3 we discuss the observational 
constraints on its parameters. The theoretical ingredients for the 
extrapolation up to MPl are provided in Section 4. In Section 5
we investigate whether the model can have a stable EW vacuum 
taking into account energies up to MPl. One of the conditions for 
stability is that the Higgs quartic coupling remains always positive. 
There is, however, another condition to be fulfilled to ensure a sta-
ble vacuum. This section contains the central new results of this 
paper. Finally, in Section 6 we provide our conclusions.

2. The model

We consider the model with Lagrangian:

L = Lgravity +LSM +LN +Laxion, (1)

where repeated indices understand a summation. The gauge group 
of the model is the SM one:

GSM = SU(3)c × SU(2)L × U(1)Y .

Lgravity are the terms in the Lagrangian, which include the pure 
gravitational part and the possible non-minimal coupling between 
gravity and the other fields. In particular, the term proportional 
to |H |2R, where H is the Higgs doublet and R is the Ricci 
scalar, plays an important role in Higgs inflation [6]. LSM is the 

1 By adding non-renormalizable operators with independent coefficients one may 
enter the region of metastability [14], we do not consider this possibility in the 
present paper.

2 The gauge hierarchy problem can of course be solved in a technically natural 
way (e.g. with SUSY, composite Higgs, etc.) in models that explain some of the is-
sues mentioned above [20]; also, SUSY large extra dimensions [21] offers a possible 
way to address the cosmological constant problem; but this is done at the price of 
introducing many more fields than those of the model studied here and sometimes 
the necessity of an ultraviolet completion at much smaller energies.
SM Lagrangian (minimally coupled to gravity). LN is the part of 
the Lagrangian that depends on the right-handed neutrinos Ni
(i = 1, 2, 3):

LN = iNi � ∂Ni +
(

1

2
Ni Mij N j + Yij Li H N j + h.c.

)
, (2)

where Mij and Yij are the elements of the Majorana mass ma-
trix M and the neutrino Yukawa coupling matrix Y , respectively. 
Thanks to the complex Autonne–Takagi factorization, we take M
real and diagonal without loss of generality:

M = diag(M1, M2, M3),

where the Mi (i = 1, 2, 3) are mass parameters, the Majorana 
masses of the three right-handed neutrinos.

Finally, Laxion represents the additional terms in the Lagrangian 
due to the chosen axion model. As stated in the introduction, we 
consider the first invisible axion model (the KSVZ model3). The 
fields of this model that are not contained in the SM are the fol-
lowing.

• An extra Dirac fermion. (In Weyl notation) it is a pair of two-
component fermions q1 and q2 in the following representation 
of GSM

q1 ∼ (3,1)0, q2 ∼ (3̄,1)0. (3)

Namely they form a colored Dirac fermion with no interactions 
with the gauge fields of SU(2)L × U(1)Y .

• An extra complex scalar. This scalar A is charged under U(1)PQ
and neutral under GSM.

The Lagrangian of this axion model is

Laxion = i
2∑

j=1

q j/Dq j + |∂μ A|2 − (y q2 Aq1 + h.c.) − �V (H, A)

and the classical potential of the full model is

V (H, A) = λH (|H|2 − v2)2 + �V (H, A), (4)

where

�V (H, A) ≡ λA(|A|2 − f 2
a )2 + λH A(|H|2 − v2)(|A|2 − f 2

a ).

The parameters v , fa and y can be taken real and positive without 
loss of generality. The PQ symmetry acts on q1, q2 and A as follows

q1 → eiα/2q1, q2 → eiα/2q2, A → e−iα A, (5)

which forbids an explicit mass term Mqq1q2 + h.c. The SM fields 
and the right-handed neutrinos are instead neutral under U(1)PQ. 
Moreover, there is the accidental symmetry

q1 → −q1, q2 → q2, A → −A. (6)

This model has the advantage of being simple and having (in ad-
dition to the SM and type-I see-saw parameters) only three real 
parameters: λH A , λA and y; it is the most general one given the 
field content and symmetries described above. In particular, notice 
that λH A is the only tree-level coupling between the axion and SM 
sectors.

The EW symmetry breaking is triggered by the vacuum expec-
tation value (VEV) v � 174 GeV of the neutral component H0 of 

3 For a recent interesting work where another axion model and scalar generations 
of neutrino masses are considered, see [22].
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the Higgs doublet. After that the neutrinos acquire a Dirac mass 
matrix

mD = vY , (7)

which can be parameterized as

mD = (
mD1, mD2, mD3

)
, (8)

where mDi (i = 1, 2, 3) are column vectors. Integrating out the 
heavy neutrinos Ni , one then obtains the following light neutrino 
Majorana mass matrix

mν = mD1mT
D1

M1
+ mD2mT

D2

M2
+ mD3mT

D3

M3
. (9)

By means of a unitary (Autonne–Takagi) redefinition of the left-
handed SM neutrinos we can diagonalize mν to obtain the mass 
eigenvalues m1, m2 and m3 (the left-handed neutrino Majorana 
masses). Calling Uν the unitary matrix that implements such 
transformation, also known as the Pontecorvo–Maki–Nakagawa–
Sakata (PMNS) matrix, that is U T

ν mνUν = diag(m1, m2, m3), we can 
parameterize Uν = Vν P12, where

Vν =
(

c12c13 s12c13 s13e−iδ

−s12c23 − c12s13s23eiδ c12c23 − s12s13s23eiδ c13s23

s12s23 − c12s13c23eiδ −c12s23 − s12s13c23eiδ c13c23

)
,

with si j ≡ sin(θi j), ci j ≡ cos(θi j); θi j are the neutrino mixing angles 
and P12 is a diagonal matrix that contains two extra phases, in 
addition to the one, δ, contained in Vν :

P12 =
⎛
⎝ eiβ1 0 0

0 eiβ2 0
0 0 1

⎞
⎠ . (10)

Even in the most general case of three right-handed neutrinos, it 
is possible to express Y in terms of low-energy observables, the 
heavy masses M1, M2 and M3 and extra parameters [23]:

Y = U∗
ν D√

m R D√
M

v
, (11)

where

D√
m ≡ diag(

√
m1,

√
m2,

√
m3),

D√
M ≡ diag(

√
M1,

√
M2,

√
M3)

and R is a generic complex orthogonal matrix, which contains the 
extra parameters. This is useful for us because the observational 
constraints are not directly on Y , but they are rather on the low-
energy quantities mi , Uν and on Mi (see Section 3). One can show 
that the simpler and realistic case of two right-handed neutrinos 
[24] below MPl can be recovered by setting m1 = 0 and

R =
⎛
⎝ 0 0 1

cos z − sin z 0
ξ sin z ξ cos z 0

⎞
⎠ ,

where z is a complex parameter and ξ = ±1.
The PQ symmetry is broken both spontaneously and by anoma-

lies. The spontaneous symmetry breaking is induced by fa ≡ 〈A〉, 
leading to the following Dirac mass of {q1, q2}:

Mq = yfa.

Moreover, A contains a (classically) massless particle, the axion, 
which acquires a small mass thanks to the quantum breaking of
the PQ symmetry, and a massive particle with squared mass

M2
A = f 2

a

(
4λA +O

(
v2

f 2
a

))
. (12)

As we will review below, the observational bounds imply that the 
corrections O

(
v2/ f 2

a

)
are very small and will be neglected in the 

following.

3. Observational constraints

We now discuss the observational constraints, which we will 
take into account in the rest of the paper.

As far as the neutrino masses mi (i = 1, 2, 3) are concerned, 
data from atmospheric and solar neutrinos tell us respectively [25]
(see also [26–28] for previous determinations)

�m2
21 = 7.50+0.19

−0.17 × 10−5 eV2,

�m2
3l = 2.457+0.047

−0.047 × 10−3 eV2,

where �m2
i j ≡ m2

i −m2
j and �m2

3l ≡ �m2
31 for normal ordering and 

�m2
3l ≡ �m2

32 for inverted ordering.
As far as the mixing angles and phases of the PMNS matrix 

are concerned, the most recent central values and corresponding 
uncertainties can also be found in [25]: for any ordering of the 
neutrino masses the 3σ ranges are

0.270 ≤ s2
12 ≤ 0.344, 0.385 ≤ s2

23 ≤ 0.644,

0.0188 ≤ s2
13 ≤ 0.0251, (13)

while δ spans the whole range from 0 to 2π at 3σ level (for 
example for normal ordering we have δ/0 = 306+39

−70, while, for in-

verted ordering, δ/0 = 254+63
−62). Currently no significant constraints 

are known for β1 and β2.
We now turn to the requirements to have successful leptogen-

esis [13]: neutrinos should be lighter than 0.15 eV and the lightest 
right-handed neutrino Majorana mass Ml has to fulfill [29]

Ml � 1.7 × 107 GeV. (14)

In order to be conservative we have reported the weakest bound, 
but depending on the assumptions one can have stronger con-
ditions.4 Notice, however, that the mechanisms of [15] and [18]
discussed in the introduction can evade these bounds and use 
right-handed neutrino masses below the EW scale; as we will see, 
it is less challenging to achieve vacuum stability in this case. In 
other models, if the Higgs field acquires a large VEV during infla-
tion, [30] argued that the subsequent Higgs relaxation to the EW 
vacuum can generate the baryon asymmetry.

Regarding the axion sector, in order to account for DM through 
the misalignment mechanism [31] (with an order one initial mis-
alignment angle) and to elude axion detection one obtains respec-
tively an upper (see e.g. [32]) and lower bound (see e.g. [33]) on 
the order of magnitude of the scale of PQ symmetry breaking fa:

108 GeV � fa � 1012 GeV. (15)

The upper bound is obtained by requiring that the axion field takes 
a value of order fa at early times, which is what we expect, but 
is not necessarily the case; also the precise value of the lower 
bound is model dependent. Therefore (15) should not be taken as 

4 For example if the initial abundance of right-handed neutrinos at T � Ml is 
zero then the bound is Ml � 2.4 × 109 GeV [29].
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sharp bounds, but it certainly gives a plausible range of fa . An-
other source of uncertainty is introduced if one instead considers 
light right-handed neutrinos [16,17], which can then contribute 
to dark matter, as mentioned in the introduction; in this case, 
indeed, the upper bound becomes stronger as it is obtained by 
requiring the axion contribution not to exceed the observed dark 
matter abundance. In any case, (15) ensures that fa � v and the 
terms O

(
v2/ f 2

a

)
in (12) can be neglected. Moreover, notice that 

bounds on fa can only constrain the ratio M A/
√

λA as it is clear 
from (12). When M A � v and Mq � v (which we assume) the EW 
constraints are fulfilled.

In addition to contributing to dark matter, the axion also un-
avoidably manifest itself as dark radiation as it is also thermally 
produced [34–36]. This population of hot axions contributes to the 
effective number of relativistic species, but the size of this contri-
bution is currently well within the observational bounds [36].

Finally, of course we also have constraints on the SM parame-
ters. After the discovery of the Higgs boson at the LHC [37,38] the 
last SM parameter, the Higgs mass, has been determined within 
small uncertainties, and there are no free SM parameters any-
more. We take the values and uncertainties of the SM masses and 
couplings given in [2] (see also the references therein). The deter-
minations of [2] are not significantly affected by the presence of 
the extra heavy degrees of freedom.

4. RGE analysis and thresholds

Since we want to study the predictions of this model at ener-
gies much above the EW scale, up to the Planck scale, we need 
the complete set of renormalization group equations (RGEs). We 
adopt the MS renormalization scheme to define the renormalized 
couplings and the corresponding RGEs. Moreover, for a generic 
renormalized coupling g we write the RGEs as

dg

dτ
= βg, (16)

where d/dτ ≡ μ̄2 d/dμ̄2 and μ̄ is the MS renormalization energy 
scale. The β-functions βg can also be expanded in loops as

βg = β
(1)
g

(4π)2
+ β

(2)
g

(4π)4
+ . . . , (17)

where β(n)
g /(4π)2n is the n-loop contribution.

Let us start from energies much above M A , Mq and Mij . In this 
case the 1-loop RGEs are (see [39–42] for previous determinations 
of some terms in these RGEs)

β
(1)

g2
1

= 41g4
1

10
, β

(1)

g2
2

= −19g4
2

6
, β

(1)

g2
3

= −19g4
3

3
,

β
(1)

y2
t

= y2
t

(
9

2
y2

t − 8g2
3 − 9g2

2

4
− 17g2

1

20
+ Tr(Y †Y )

)
,

β
(1)
λH

=
(

12λH + 6y2
t − 9g2

1

10
− 9g2

2

2
+ 2 Tr(Y †Y )

)
λH

− 3y4
t + 9g4

2

16
+ 27g4

1

400
+ 9g2

2 g2
1

40
+ λ2

H A

2
− Tr((Y †Y )2),

β
(1)
λH A

=
(

3y2
t − 9g2

1

20
− 9g2

2

4
+ 6λH

)
λH A

+
(

4λA + Tr(Y †Y ) + 3y2
)

λH A + 2λ2
H A,

β
(1) = λ2

H A + 10λ2
A + 6y2λA − 3y4,
λA
β
(1)
Y = Y

[
3

2
y2

t − 9

40
g2

1 − 9

8
g2

2 + 3

4
Y †Y + 1

2
Tr(Y †Y )

]
,

β
(1)

y2 = y2(4y2 − 8g2
3),

where g3, g2 and g1 = √
5/3gY are the gauge couplings of SU(3)c , 

SU(2)L and U(1)Y respectively and yt is the top Yukawa coupling. 
The explicit form of the complete set of the RGEs above was not 
explicitly presented before, but the RGEs for a generic quantum 
field theory (without gravity) were computed up to 2-loop order 
in [43] (see also [44] for a computer implementation of them).

Next, we consider what happens in going from energies above 
M A to energies below M A : as discussed in [45,41] one has to take 
into account a scalar threshold effect: in the low energy effective 
field theory below M A one has the effective Higgs quartic coupling

λ = λH − λ2
H A

4λA
. (18)

This is the result of integrating out the massive scalar degree of 
freedom at tree-level. The reason why this shift occurs is because 
setting the heavy scalar to zero is not a consistent truncation, 
namely it is not consistent with the equations of motion. In prac-
tice one should do the following: below M A the RGEs are the ones 
given above with βλH A and βλA removed and λH replaced by λ. 
Above M A one should include βλH A and βλA and find λH using the 
full RGEs and the boundary condition in (18) at μ̄ = M A .

As far as the new fermions are concerned, following [46] we 
adopt the approximation in which the new Yukawa couplings 
run only above the corresponding mass thresholds; this is im-
plemented technically by substituting Yij → Yijθ(μ̄ − M j) and 
y → yθ(μ̄ − Mq) on the right-hand side of the RGEs. The situa-
tion is different from the scalar one, as setting the fermion fields 
to zero below their mass threshold is consistent.

Finally notice that, the SM parameters can run in an energy 
range bigger than the one of Y , λA , λH A and y. Therefore, we in-
clude for them the 2-loop RGE contribution; we do not, however, 
show explicitly the 2-loop part because of its complexity.

5. Stability analysis

Since we use the 1-loop RGEs of the non-SM parameters, we 
approximate the Coleman and Weinberg [47] effective potential of 
the model with its RG-improved tree-level potential: we substitute 
the bare couplings in the classical potential with the corresponding 
running ones.

The conditions that ensure the absolute stability of the vacuum 
〈H0〉 = v and 〈A〉 = fa have been studied in [41]: they are

I. λH (μ̄) > 0 and λA(μ̄) > 0;
II. �c ≡ 4λH (μ̄)λA(μ̄) − λ2

H A(μ̄) > 0.

Notice that once λH > 0 and �c > 0 are fulfilled then λA > 0 is 
fulfilled too. The fact that the MS couplings are gauge invariant, as 
proved in [48,2], guarantees that our results will not be affected 
by any gauge dependence.

The first condition λH > 0, at the level of approximation we are 
using, may lead to the possibility of Higgs inflation [7–9]. There-
fore having absolute stability may also allow us to identify the 
inflaton with the Higgs field. However, one should keep in mind 
that perturbative unitarity5 is violated above some high energy 
scale [50,51]. Once the background fields are taken into account, 

5 This unitarity problem can be solved by adding an extra real scalar field [49,41]. 
The extension of the present analysis to include such scalar is beyond the scope of 
this paper.
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Fig. 1. Phase diagram of the model, showing the region with absolute stability up to 
the Planck scale. The region where condition II is fulfilled is inside the region with 
λH (μ̄) > 0. We set the central values of the SM parameters at the EW scale and 
the low-energy neutrino parameters; however, we checked that variations of �m2

i
and θi j (within 5σ around their central values) and variations of δ, β1 and β2 have 
a negligible effect on this plot. Moreover, we set the lightest neutrino mass m1 = 0, 
M2 = 1014 GeV, M3 > MPl and z = 0. Switching the sign of ξ does not change the 
plot. The axion decay constant is set to fa = 1011 GeV and λA(M A) = 0.05.

however, the authors of [52] find that such energy is paramet-
rically higher than all relevant scales during the history of the 
Universe. Nevertheless some extra assumptions on the underlying 
ultraviolet completion are necessary [51,52,8].

The question of the stability of the EW vacuum has been ad-
dressed previously in other economic extensions of the SM. The 
SM extended only by adding a single right-handed neutrino or 
three right-handed neutrinos with degenerate masses was stud-
ied in [46,40]. Extensions with a singlet scalar were considered in 
[53,41,54] and others with one right-handed neutrino and an ex-
tra real scalar were studied in [55]. However, we do not know of 
any previous work that accounted for all problems listed in the in-
troduction.6

In Figs. 1 and 2 we show regions of the parameter space where 
the stability conditions are fulfilled for all values of μ̄ up to MPl
and others where they are not. The values of the parameters used 
in that plot can also explain neutrino masses, dark matter, baryon 
asymmetry and the strong CP problem (through the mechanisms 
discussed in the introduction), fulfilling all bounds of Section 3. 
Moreover, the regions where λH > 0 all the way up to MPl cor-
respond to the possibility of Higgs inflation. In Fig. 2 we see that 
increasing y(Mq) shrinks the region where condition II for stability 
is fulfilled: this is because y contributes positively (negatively) to 
the running of λH A (λA ), which then increases (decreases) and this 
makes it more difficult to satisfy that condition. We also observed 

6 After posting this article on the arXiv our attention was drawn to the interest-
ing Ref. [56]. The authors discuss a model very similar to ours and anticipate that 
all those problems (with the exception of the origin of inflation) can be solved: in 
that work the PQ symmetry is an extension of the SM lepton number. This allows 
to relate the scales fa and Mi [57]. However, an explicit analysis was not presented 
in [56]. As we will see now, such an analysis here leads to regions where the si-
multaneous solutions occur and others where they do not.
Fig. 2. The same as in Fig. 1, but with a different value of y.

Fig. 3. RG evolution of the quartic couplings λH , λA and the combination of quartics 
�c defined in condition II for stability. The vertical solid line indicates the position 
of the scalar threshold, M A . The stripes on the right indicate the region presumably 
dominated by Planck physics. The values of the parameters are the same used in 
Fig. 1.

that changing the value of λA(M A) and fa changes the location of 
that region, so that the size of the parameter space that is compat-
ible with absolute stability is larger. Notice that Figs. 1 and 2 also 
indicate that lighter right-handed neutrino masses favor the sta-
bility conditions. This can be qualitatively understood: smaller Mi

generically correspond to smaller Yij , Eq. (11), and to a reduced 
destabilizing effect in conditions I and II because of the way Y ap-
pears in β(1)

λH
and β(1)

λH A
.

In Figs. 3 and 4 we show the evolution of the quartic coupling 
combinations relevant for the stability analysis as a function of the 
renormalization scale. The parameters are chosen in a way com-
patible with the regions of, respectively, Figs. 1 and 2, where all 
stability conditions are fulfilled. There are no Landau poles be-
low the Planck scale and the couplings remain perturbative when 
the stability conditions are fulfilled. The region with stripes on the 
right corresponds to the regime where Planck physics is expected 
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Fig. 4. The same plot as in Fig. 3, but with the values of the parameters used in 
Fig. 2.

to be dominant; the behavior of the curves there is thus presum-
ably unreliable.

At the same time, it is important to notice that there are also 
regions of the parameter space, where the results on the stability 
analysis obtained in the SM are not significantly changed by the 
addition of Ni , q j and A. In the limit λH A → 0 the axion sector is 
decoupled from the rest, and, if the neutrino Yukawa couplings are 
small enough, one recovers the SM results at a very good level of 
accuracy.

6. Conclusions

In this paper we have found regions of the parameter space of 
a simple but well-motivated model that can account for all exper-
imentally confirmed signals of physics beyond the SM: neutrino 
oscillations (through the addition of three right-handed neutri-
nos), dark matter (due to the axion), baryon asymmetry (generated 
by thermal leptogenesis), inflation (which could be driven by the 
Higgs field since the EW vacuum can be an absolute minimum for 
energies up to the Planck scale) and the strong CP problem that is 
automatically solved by the PQ symmetry leading to the axion.

This model is an extension of the SM, which only adds to the 
SM three right-handed neutrinos as well the scalar field and extra 
colored fermion of the simple invisible axion model proposed by 
KSVZ.

We have found that there are values of the parameters such 
that the important features listed above are all present together 
with perturbativity (always up to the Planck scale).

An important extension for the present work may be the in-
clusion of quantum gravity, which has been completely neglected 
here. Some steps in this direction have been taken in [42]. But the 
role of gravitational quantum effects in the stability issue of the 
SM is still unclear.
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