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We study domain theoretic properties of complexity spaces. Although the so-called
complexity space is not a domain for the usual pointwise order, we show that, however,
each pointed complexity space is an ω-continuous domain for which the complexity
quasi-metric induces the Scott topology, and the supremum metric induces the Lawson
topology. Hence, each pointed complexity space is both a quantifiable domain in the sense
of M. Schellekens and a quantitative domain in the sense of P. Waszkiewicz, via the partial
metric induced by the complexity quasi-metric.
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1. Introduction

Quantitative Domain Theory is concerned with models of computation that, in addition to qualitative information – such
as specifying the meaning of a computation in an order context – allow also for the extraction of quantitative information –
such as determining the complexity of a program. Quantitative Domain Theory also plays a role in models for real-number
computation where quantitative aspects arise directly due to the numeric nature of the processes under consideration.

On the other hand, addressing the long standing open problem to combine Semantics and Complexity has generated
models which target the extraction of quantitative information of programs based on traditional semantics techniques. This
has led to the theory of complexity spaces among other approaches (see [2,11,12,16,14], etc.).

Complexity spaces enabled elegant semantics style proofs (unique fixed point arguments) for the complexity of Divide
and Conquer style algorithms [3,11,13,16].

Since quantitative domains are partially metrizable and complexity spaces are partial metric spaces and enable the ex-
traction of quantitative information, it is natural to ask to what extent the complexity spaces can be incorporated as
a Quantitative Domain. This is the topic of the present paper.

We recall some relevant results from Quantitative Domain Theory before stating our main results.
A central result in Quantitative Domain Theory states that all ω-continuous domains, are “quantifiable”, i.e., they can

be equipped with a partial metric that induces the Scott topology and the partial metric order coincides with the domain
order. This quantification theorem was independently obtained by Schellekens [17] and Waszkiewicz [19], by using differ-
ent techniques. They also deduced a quantification theorem for the ω-algebraic case which was previously obtained by
O’Neill [10] in terms of generalized valuation spaces. The results, in view of the countable base requirement, regard models
for traditional programming languages. More recently, Waszkiewicz proved in [20] that every ω-continuous domain can be
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equipped with a partial metric whose induced topology is weaker than the Scott topology but the supremum metric induces
the Lawson topology.

In this paper we will rely on the notion of a quantifiable domain as discussed in [17] and of a quantitative domain as
discussed in [20] (see also [19, Section 7]).

To this end we consider two classes of complexity spaces: pointed complexity spaces, i.e., complexity spaces with a
minimum element on the complexity functions, and the general complexity space.

Pointed complexity spaces are interesting in their own right, as motivated below. We remark that the weighting function
(and hence the self-distance of the associated partial metric) of the complexity space is not bounded. However, as discussed
in [11], complexity functions of programs computing a given problem frequently can be shown to have a complexity lower
bound.

A case in point is the collection of comparison based sorting algorithms that satisfy the well-known Ω(n log n) lower
bound.

A theoretical justification for the existence of lower bounds has been given in [12] based on Levin’s Theorem (e.g. [6]). It
is remarked in [6] that for an important class of problems that occur in practice an optimal algorithm does exist, and hence
one does obtain a least element for these classes.

So it is reasonable to study the restriction of the complexity space to complexity functions respecting a given least
element, i.e., consider pointed complexity spaces.

It is easy to verify that the complexity quasi-metric is bounded on such restricted spaces and that, as a corollary, these
spaces are weightable. For more information on complexity spaces with a lower bound we refer the reader to [12,11].

In this work, pointed complexity spaces are shown to be ω-continuous domains and hence quantitative domains. In fact,
we will show that they are both quantifiable in the sense of [17] and quantitative in the sense of [20], via the partial metric
induced by the complexity quasi-metric. The general complexity space is shown not to be a continuous domain. However,
we will observe that the space of formal balls associated with the complexity space is both a quantifiable and quantitative
domain.

2. Preliminaries

Our basic reference for Domain Theory is [4].
Let us recall that a partially ordered set, or poset for short, is a set L equipped with a partial order �. It will be denoted

in the sequel by (L,�).
A subset D of a poset (L,�) is directed provided that it is non-empty and every finite subset of D has an upper bound

in D (equivalently, if for each a,b ∈ D there is c ∈ D such that a � c and b � c).
A poset (L,�) is said to be directed complete, and is called a dcpo, if every directed subset of L has a least upper bound.
The least upper bound of a subset D of (L,�) will be denoted by sup D if it exists.
An element x of L is called maximal if condition x � y implies x = y. The set of all maximal elements of L is denoted by

Max((L,�)), or simply by Max(L) if no confusion arises.
Given a poset (L,�), we say that x is way-below y, in symbols x � y, if for each directed subset D of L for which sup D

exists, the relation y � sup D implies the existence of some z ∈ D with x � z.
A poset (L,�) is called continuous if it satisfies the axiom of approximation, i.e. for all x ∈ L, the set ⇓x = {u ∈ L: u � x}

is directed and x = sup(⇓x).
A continuous poset which is also a dcpo is called a domain.
A subset B of a poset (L,�) is a basis for L if for each x ∈ L, the set ⇓xB = {u ∈ B: u � x} is directed and

x = sup(⇓xB).
Recall that a poset has a basis if and only if it is continuous. Therefore, a dcpo has a basis if and only if it is a do-

main.
A dcpo having a countable basis is said to be an ω-continuous domain [4]. In order to simplify the terminology, ω-

continuous domains will be simply called ω-domains in the sequel.
The Scott topology σ(L) of a dcpo (L,�) is constructed as follows (Chapter II in [4]): A subset U of L is open in the

Scott topology provided that: (i) U = ↑U , where ↑U = {y ∈ X: x � y for some x ∈ U }; and (ii) for each directed subset D of
L such that sup D ∈ U , it follows that D ∩ U �= ∅.

The lower (or weak) topology of a dcpo (L,�) is the one that has as a subbase the collection of sets of the form L\↑x,
where x ∈ L, and denote it by ω(L). Let us recall that the supremum topology of σ(L) and ω(L) is the Lawson topology of
(L,�), which is denoted by λ(L).

According to Smyth [18], by CMax(L) we denote the set of the constructively maximal points of L, i.e., x ∈ CMax(L)

provided that every λ(L)-neighborhood of x contains a σ(L)-neighborhood of x.
We conclude this section with some pertinent concepts and results on quasi-metric spaces and partial metric spaces.
Following the modern terminology, by a quasi-metric on a set X we mean a function d : X × X → R+ such that for all

x, y, z ∈ X : (i) x = y ⇔ d(x, y) = d(y, x) = 0; (ii) d(x, z) � d(x, y) + d(y, z).
A quasi-metric space is a pair (X,d) such that X is a set and d is a quasi-metric on X .
Each quasi-metric d on X induces a T0 topology T (d) on X which has as a base the family of open balls {Bd(x, r): x ∈ X,

ε > 0}, where Bd(x, ε) = {y ∈ X: d(x, y) < ε} for all x ∈ X and ε > 0.
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Note that if (X,d) is a quasi-metric space, then the binary relation �d defined on X by x �d y ⇔ d(x, y) = 0, is a partial
order on X , called the specialization order. Hence (X,�d) is a poset.

Given a quasi-metric d on X , then the function d−1 defined by d−1(x, y) = d(y, x), is also a quasi-metric on X , called the
conjugate of d, and the function ds defined by ds(x, y) = d(x, y) ∨ d−1(x, y), is a metric on X .

The notion of a partial metric space, and its equivalent weightable quasi-metric space, was introduced by Matthews in
[9] as a part of the study of denotational semantics of dataflow networks.

Let us recall that a partial metric [9] on a set X is a function p : X × X → R+ such that for all x, y, z ∈ X : (i) x = y ⇔
p(x, x) = p(x, y) = p(y, y); (ii) p(x, x) � p(x, y); (iii) p(x, y) = p(y, x); (iv) p(x, z) � p(x, y) + p(y, z) − p(y, y).

A partial metric space is a pair (X, p) such that X is a set and p is a partial metric on X .
Each partial metric p on X induces a T0-topology T (p) on X which has as a base the family of open p-balls

{B p(x, ε): x ∈ X, ε > 0}, where B p(x, ε) = {y ∈ X: p(x, y) < ε + p(x, x)} for all x ∈ X and ε > 0.
A quasi-metric space (X,d) is called weightable if there exists a function w : X → R+ such that for all x, y ∈ X , d(x, y)+

w(x) = d(y, x) + w(y). The function w is said to be a weighting function for (X,d) and the quasi-metric d is weightable by
the function w .

The precise relationship between partial metric spaces and weightable quasi-metric spaces is provided in the next result.

Theorem A. ([9])

(a) Let (X, p) be a partial metric space. Then, the function dp : X × X → R+ defined by dp(x, y) = p(x, y) − p(x, x) for all
x, y ∈ X is a weightable quasi-metric on X with weighting function w given by w(x) = p(x, x) for all x ∈ X. Furthermore

T (p) = T (dp).
(b) Conversely, if (X,d) is a weightable quasi-metric space with weighting function w, then the function pd : X × X → R+ defined

by pd(x, y) = d(x, y) + w(x) for all x, y ∈ X, is a partial metric on X. Furthermore T (d) = T (pd).

If (X, p) is a partial metric space, then the binary relation �p on X given by x �p y ⇔ p(x, y) = p(x, x), is a partial order
on X , which is called the partial order induced by p. Hence (X,�p) is a poset. Note that in this case one has �p = �dp .

In Definition 5.3 of [9], Matthews introduced the notion of a complete partial metric space. For our purposes here it
suffices to recall that a partial metric space (X, p) is complete if and only if the metric space (X, (dp)s) is complete.

3. Pointed complexity spaces are quantitative domains

Let us recall that the complexity (quasi-metric) space [16] is the pair (C,dC ), where

C =
{

f : ω → (0,∞]:
∞∑

n=0

2−n 1

f (n)
< ∞

}
,

and dC is the quasi-metric on C given by

dC ( f , g) =
∞∑

n=0

2−n
((

1

f (n)
− 1

g(n)

)
∨ 0

)

for all f , g ∈ C .
Schellekens proved in [16] that the complexity space is weightable with weighting function w C given by w C ( f ) =∑∞

n=0 2−n(1/ f (n)), for all f ∈ C . Later on, it was proved in [11] that (dC )s is a complete metric on C .
Note that the partial metric pdC , induced by dC (see Theorem A), is given by

pdC ( f , g) =
∞∑

n=0

2−n
(

1

f (n)
∨ 1

g(n)

)
,

for all f , g ∈ C .
In the following, the partial metric pdC will be simply denoted by pC .
Furthermore, if we define a binary relation � on C by

f � g ⇔ f (n) � g(n) for all n ∈ ω,

then, it is well known, and easy to see, that � is a partial order on C ; in fact � is the pointwise order. Hence (C,�) is a
poset.

Note that � = �dC and that Max(C) = { f∞}, where f∞ is defined by f∞(n) = ∞ for all n ∈ ω.
The proof of the following well-known fact is straightforward, so it is omitted.
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Proposition 1. For each non-empty subset D of C , let F : ω → (0,∞] given by

F (n) = sup
f ∈D

f (n),

for all n ∈ ω. Then F is the least upper bound of D in (C,�).

Corollary 1. (C,�) is a dcpo.

Next we show that, unfortunately, the dcpo (C,�) is not continuous. Actually, this fact is an obvious consequence of the
following more general result.

Proposition 2. For each f ∈ C , ⇓ f = ∅.

Proof. Let f ∈ C . Suppose that there is g ∈ C such that g � f . Define a sequence ( fk)k in C as follows: For each k ∈ N, put

fk(n) =
{

g(n)/2, n > k,

f (n), n � k

whenever n ∈ ω. It is clear that fk � fk+1 for all k ∈ N, so D = { fk: k ∈ N} is a directed set. Moreover, and according to
Proposition 1, the function F given by F (n) = supk fk(n) for all n ∈ ω, is the least upper bound of D in (C,�). However
g(n) > fn−1(n) for all n ∈ N, which contradicts that g � f . We conclude that ⇓ f = ∅. �

Motivated by the computational interest of those subspaces of the complexity space (C,dC ) having a lower bound, and
by the fact that (C,�) is not a domain, we shall focus our attention on the study of the domain-theoretic properties of the
so-called pointed complexity spaces, a class of subspaces of the complexity space that are defined as follows.

Definition 1. A pointed complexity space is a pair (C f0 ,dC f0
) such that f0 ∈ C , C f0 := { f ∈ C : f0 � f }, and dC f0

is the
restriction of the complexity quasi-metric dC to C f0 .

Obviously (C f0 ,dC f0
) is weightable with weighting function the restriction of w C to C f0 . Moreover (dC f0

)s is a complete
metric on C f0 by [11, Theorem 9].

On the other hand (C f0 ,�) is a dcpo by Proposition 1, with Max(C f0) = { f∞} and f0 its least element.
In fact, it is straightforward to see that (C f0 ,�) is a complete lattice. In the next theorem we prove that it is also an

ω-domain and consequently it will be an ω-continuous lattice [4, Definition I-1.6(iii), p. 54].

Theorem 1. (C f0 ,�) is an ω-domain.

Proof. Since (C f0 ,�) is a dcpo, it will be sufficient to prove that it has a countable basis. To this end, we shall show that
the countable subset of C f0 ,

B := { f0} ∪ {
f ∈ C f0 : there is a finite subset ω f of ω such that f (n) ∈ Q for all n ∈ ω f

and f (n) = f0(n) otherwise
}
,

is a basis for (C f0 ,�). Indeed, fix f ∈ C f0 .

Claim 1. ⇓ f B is directed: In fact, ⇓ f B �= ∅ because f0 � f . Moreover, if f1, f2 ∈ ⇓ f B , then f1 ∨ f2 ∈ ⇓ f B because, obviously,
f1 ∨ f2 ∈ B, and if D is a directed subset of (C f0 ,�) such that f � sup D, then there exist g1, g2 ∈ D with fi � gi , i = 1,2, so by
directedness of D there exists h ∈ D such that g1 ∨ g2 � h, and hence f1 ∨ f2 � h.

Claim 2. f = sup(⇓ f B): Obviously sup(⇓ f B) � f . Now let h ∈ C f0 such that g � h for all g ∈ ⇓ f B . Suppose that h(m) < f (m)

for some m ∈ ω. Let h(m) < q < f (m), with q ∈ Q, and consider the function g ∈ B defined by g(m) = q and g(n) = f0(n) for all
n ∈ ω\{m}. It is easily seen that g � f , but g � h, which provides a contradiction. Therefore f = sup(⇓ f B).

We conclude that (C f0 ,�) is an ω-domain. �
Next we prove that (C f0 ,�) is a quantifiable domain in the sense of [17] and a quantitative domain in the sense of [20],

by means of the partial metric pC f0
in both cases, where by pC f0

we denote the restriction to C f0 of the partial metric pC .

Definition 2. ([17]) A quantifiable domain is a domain (L,�) such that there is a partial metric p on L satisfying the
following conditions:
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(Sch1) T (p) = σ(L).
(Sch2) �p = �.

Definition 3. ([20]) A quantitative domain is a domain (L,�) such that there is a partial metric p on L satisfying the
following conditions:

(Was1) T (p) ⊆ σ(L).
(Was2) The function μp : L → R+ given by μp(x) = p(x, x), is a measurement in the sense of Martin [8] (see also [19,20]).
(Was3) kerμp = CMax(L).
(Was4) The metric (dp)s induces the Lawson topology on L.

In the following, quantifiable domains and quantitative domains will be called S-quantitative domains and W-quantitative
domains, respectively.

Since a domain can be simultaneously S-quantitative and W-quantitative via different partial metrics (see Remark 4
below), we propose the following notion.

Definition 4. An SW-quantitative domain is a domain (L,�) such that there is a partial metric p on L for which (L,�) is
both an S-quantitative domain and a W-quantitative domain.

Remark 1. Note that condition (Sch1) implies (Sch2) because σ(L) is an order-consistent topology in the sense of
[4, Definition II-1.30]. (Sch1) also implies (Was2) by [19, Theorem 8]. Moreover (see, for instance, [20, p. 369]) one has
CMax(L) = Max(L) whenever the Scott and Lawson topologies agree on Max(L).

We deduce from Remark 1 that a domain (L,�) is SW-quantitative if and only if there is a partial metric p on L
satisfying conditions (Sch1), (Was3) and (Was4).

Remark 2.

(a) As we indicated in Section 1, Schellekens and Waszkiewicz [17,19] independently proved, among other results, that
every ω-domain is S-quantitative, and Waszkiewicz proved in [20, Theorem 6.5] that every ω-domain with a least
element is W-quantitative.

(b) Notice that, actually, one has that each ω-domain is W-quantitative, as it is observed in the last comment of [20]:
Indeed, if (L,�) is an ω-domain, then its lifting L ∪ {⊥} is also an ω-domain with least element ⊥, so by [20, Theo-
rem 6.5], there is a partial metric p on L ∪ {⊥} for which conditions (Was1)–(Was4) of Definition 3 hold. Then, it is
straightforward to verify that (L,�) is a W-quantitative domain via the restriction of p to L.

From Theorem 1 and Remark 2(a), it follows that (C f0 ,�) is both an S-quantitative domain and a W-quantitative domain.
We shall prove that actually the partial metric induced by the quasi-metric dC f0

endows to (C f0 ,�) with the structure of
an SW-quantitative domain. To this end, we need the next auxiliary two lemmas.

Lemma 1. ([5, Theorem 2.18]) Let (X,d) be a weightable quasi-metric space. If D is a directed subset of (X,�d), then there exists an
ascending sequence in D which has the same upper bounds as D.

Although Lemma 2 below can be deduced from some statements in [9, p. 189] and [7, Remark 1], we give a direct proof
of it in order to help the reader.

Lemma 2. Let ( fk)k be an ascending sequence in (C,�) and let F = supk fk . Then (dC )s(F , fk) → 0 as k → ∞.

Proof. For each k ∈ N we have dC ( fk, F ) = 0. So, it remains to show that dC (F , fk) → 0 as k → ∞. To this end choose an
arbitrary ε > 0. Then, there exists nε such that

∑∞
n=nε+1 2−n(1/ f1(n)) < ε. Since F = supk fk and ( fk)k is ascending, there

is kε such that for each k � kε and each n ∈ {0,1, . . . ,nε},

2−n
(

1

fk(n)
− 1

F (n)

)
< ε.

Hence, for each k � kε we obtain
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dC (F , fk) =
∞∑

n=0

2−n
((

1

fk(n)
− 1

F (n)

)
∨ 0

)

�
nε∑

n=0

2−n
((

1

fk(n)
− 1

F (n)

)
∨ 0

)
+

∞∑
n=nε+1

2−n 1

fk(n)

< 2ε +
∞∑

n=nε+1

2−n 1

f1(n)
< 3ε.

Consequently dC (F , fk) → 0 as k → ∞. This concludes the proof. �
Theorem 2. For each f0 ∈ C , the following hold:

(1) T (dC f0
) = σ(C f0 );

(2) T ((dC f0
)−1) = ω(C f0);

(3) T ((dC f0
)s) = λ(C f0).

Proof. (1) We first show that T (dC f0
) ⊆ σ(C f0 ). Indeed, let f ∈ C f0 and ε > 0. Obviously, BdC f0

( f , ε) = ↑BdC f0
( f , ε). More-

over, if D is a directed set in (C f0 ,�) such that sup D ∈ BdC f0
( f , ε), then, by Lemma 1, there exists an ascending sequence

( fk)k in D such that sup D is the least upper bound of ( fk)k . Therefore, by Lemma 2, the sequence ( fk)k converges to sup D
with respect to the topology T ((dC f0

)s). Hence fk ∈ BdC f0
( f , ε) for some k, by the triangle inequality. We conclude that

T (dC f0
) ⊆ σ(C f0 ).

Now we show that σ(C f0 ) ⊆ T (dC f0
). Indeed, suppose that there exists U ∈ σ(C f0 )\T (dC f0

). Then, there exist f ∈ U

and a sequence ( fk)k in C f0\U such that dC ( f , fk) < 2−k for all k. Put gk = infn�k fn for all k. Then (gk)k is an ascending
sequence in (C f0 ,�). Set g = supk gk . It is not hard to check that f � g , so g ∈ U . Since U ∈ σ(C f0), then gk ∈ U for some k;
so fk ∈ U because gk � fk , which yields a contradiction. We conclude that σ(C f0) ⊆ T (dC f0

).

(2) Since the inclusion ω(C f0) ⊆ T ((dC f0
)−1) follows from [19, Lemma 20], we only show that T ((dC f0

)−1) ⊆ ω(C f0 ).

Indeed, let f ∈ C f0 and ε > 0. Then, there exists nε such that
∑∞

n=nε+1 2−n(1/ f (n)) < ε.
Suppose that f (n) = ∞ for all n ∈ {0,1, . . . ,nε}. Then C f0 = B(dC f0

)−1 ( f , ε) because for each g ∈ C f0 we have

dC f0
(g, f ) =

∞∑
n=0

2−n
((

1

f (n)
− 1

g(n)

)
∨ 0

)

=
∞∑

n=nε+1

2−n
((

1

f (n)
− 1

g(n)

)
∨ 0

)
< ε.

Finally, suppose that there exists n ∈ {0,1, . . . ,nε} for which f (n) < ∞. Then, for each n ∈ {0,1, . . . ,nε} with f (n) < ∞,
we define a function hn ∈ C f0 by hn(n) = f (n) + δn , where δn = ( f (n))2ε and hn(m) = f0(m) whenever m �= n. Put

U =
⋂{

C f0\↑hn: n ∈ {0,1, . . . ,nε} and f (n) < ∞}
.

Then f ∈ U ∈ ω(C f0). Moreover for each g ∈ U and each n ∈ {0,1, . . . ,nε} with f (n) < ∞, we have that g(n) < f (n)+ δn .
Then, it is easily checked that

1

f (n)
− 1

g(n)
< ε.

Hence

dC f0
(g, f ) �

nε∑
n=0

2−n
((

1

f (n)
− 1

g(n)

)
∨ 0

)
+

∞∑
n=nε+1

2−n 1

f (n)

< 2ε + ε = 3ε.

We have shown that U ⊆ B(dC fo
)−1 ( f ,3ε). Consequently T ((dC f0

)−1) ⊆ ω(C f0).

(3) Is an immediate consequence of (1) and (2). �
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Remark 3. Note that (C f0 , (dC fo
)s) is a compact metric space [11], so Proposition 24 of [19] yields the equality obtained in

the statement (3) of Theorem 2. Nevertheless, this equality is deduced here as a natural factorization of statements (1) and
(2) of the aforementioned theorem.

Theorem 3. For each f0 ∈ C , (C f0
,�) is an SW-quantitative domain via the partial metric pC f0

.

Proof. By Theorems 1 and 2, it only remains to show that kerμpC f0
= CMax(C f0). Indeed, it is clear that kerμpC f0

= { f∞},

and that f∞ ∈ CMax(C f0 ) because C f0 is the only neighborhood of f∞ in ω(C f0). Finally, if f ∈ C f0\{ f∞}, then f ∈ C f0\↑ f∞ ,
but f∞ ∈ BdC f0

( f , ε) for all ε > 0, so that f /∈ CMax(C f0). We conclude that kerμpC f0
= CMax(C f0) = { f∞}. The proof is

complete. �
Remark 4. In [20, Example 6.1] it is constructed an ω-domain (L,�) for which does not exist any partial metric satisfying at
the same time conditions (Sch1) and (Was3). In fact, the Scott and Lawson topologies agree on Max(L) and thus Max(L) =
CMax(L). Hence, this ω-domain provides an example of an S-quantitative and W-quantitative domain which is not SW-
quantitative.

We finish the paper with some comments on the poset of formal balls of the complexity space (C,dC ).
In order to help the reader, we first recall some notions and facts on formal balls for partial metric spaces (see [15])

which extend to our context well-known results by Edalat and Heckmann [1] for metric spaces.
Given a partial metric space (X, p), the associated set of formal balls is the poset (BX,�dp ), where BX =

{(x, r): x ∈ X, r ∈ R+} and the order relation �dp is given by

(x, r) �dp (y, s) ⇔ dp(x, y) � r − s.

Among others results, the following theorem was proved in [15].

Theorem 4. Let (X, p) be a partial metric space. Then the metric space (X, (dp)s) is separable and complete if and only if (BX,�dp )

is an ω-domain.

In Proposition 2 we have shown that the poset (C,�) is a dcpo that is not continuous. Consequently the complexity
space is not a domain and hence neither is an S-quantitative domain nor is a W-quantitative domain. However, since the
partial metric space (C, pC ) verifies that (C, (dC )s) is a separable complete metric space (recall that dC = dpC ), it follows
from the preceding theorem that the poset of formal balls (BC,�dC ) is an ω-domain. Therefore it is both an S-quantitative
and W-quantitative domain. So that, although the poset (C,�) is not a domain, we can obtain from it “computational
models” which are quantitative domains. Despite these facts, the following natural question remains open: Is (BC,�dC ) an
SW-quantitative domain?

References

[1] A. Edalat, R. Heckmann, A computational model for metric spaces, Theoret. Comput. Sci. 193 (1998) 53–73.
[2] L.M. García-Raffi, S. Romaguera, E.A. Sánchez-Pérez, Sequence spaces and asymmetric norms in the theory of computational complexity, Math. Comput.

Modelling 36 (2002) 1–11.
[3] L.M. García-Raffi, S. Romaguera, M. Schellekens, Applications of the complexity space to the general probabilistic divide and conquer algorithms,

J. Math. Anal. Appl. 348 (2008) 346–355.
[4] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, D.S. Scott, Continuous Lattices and Domains, Encyclopedia Math. Appl., vol. 93, Univ. Press,

Cambridge, 2003.
[5] R. Heckmann, Approximation of metric spaces by partial metric spaces, Appl. Categ. Structures 7 (1999) 71–83.
[6] N. Jones, Computability and Complexity from a Programming Perspective, Foundations of Computing Series, MIT Press, 1997.
[7] J. Llull-Chavarría, O. Valero, An application of generalized complexity spaces to denotational semantics via the domain of words, Lecture Notes in

Comput. Sci. 5457 (2009) 530–541.
[8] K. Martin, The measurement process in domain theory, Lecture Notes in Comput. Sci. 1853 (2000) 116–126.
[9] S.G. Matthews, Partial metric topology, Ann. New York Acad. Sci. 728 (1994) 183–197.

[10] S.J. O’Neill, A fundamental study into the theory and application of the partial metric spaces, PhD thesis, University of Warwick, Department of
Computer Science, 1998.

[11] S. Romaguera, M. Schellekens, Quasi-metric properties of complexity spaces, Topology Appl. 98 (1999) 311–322.
[12] S. Romaguera, M. Schellekens, Duality and quasi-normability for complexity spaces, Appl. Gen. Topol. 3 (2002) 91–112.
[13] S. Romaguera, M. Schellekens, O. Valero, The complexity space of partial functions: A connection between Complexity Analysis and Denotational

Semantics, Int. J. Comput. Math., doi:10.1080/0020716YYxxxxxxxx, in press.
[14] S. Romaguera, O. Valero, On the structure of the complexity space of partial functions, Int. J. Comput. Math. 85 (2008) 631–640.
[15] S. Romaguera, O. Valero, A quantitative computational model for complete partial metric spaces via formal balls, Math. Structures Comput. Sci. 19

(2009) 541–563.
[16] M. Schellekens, The Smyth completion: A common foundation for denotational semantics and complexity analysis, Electron. Notes Theor. Comput.

Sci. 1 (1995) 535–556.

http://dx.doi.org/10.1080/0020716YYxxxxxxxx


860 S. Romaguera et al. / Topology and its Applications 158 (2011) 853–860
[17] M. Schellekens, A characterization of partial metrizability. Domains are quantifiable, Theoret. Comput. Sci. 305 (2003) 409–432.
[18] M.B. Smyth, The constructive maximal point space and partial metrizability, Ann. Pure Appl. Logic 137 (2006) 360–379.
[19] P. Waszkiewicz, Quantitative continuous domains, Appl. Categ. Structures 11 (2003) 41–67.
[20] P. Waszkiewicz, Partial metrisability of continuous posets, Math. Structures Comput. Sci. 16 (2006) 359–372.


	Complexity spaces as quantitative domains of computation
	1 Introduction
	2 Preliminaries
	3 Pointed complexity spaces are quantitative domains
	References


