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Point Mutations in Exon 1B of APC Reveal Gastric
Adenocarcinoma and Proximal Polyposis of the
Stomach as a Familial Adenomatous Polyposis Variant
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Gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS) is an autosomal-dominant cancer-predisposition syndrome

with a significant risk of gastric, but not colorectal, adenocarcinoma. Wemapped the gene to 5q22 and found loss of the wild-type allele

on 5q in fundic gland polyps from affected individuals. Whole-exome and -genome sequencing failed to find causal mutations but,

through Sanger sequencing, we identified point mutations in APC promoter 1B that co-segregated with disease in all six families. The

mutations reduced binding of the YY1 transcription factor and impaired activity of the APC promoter 1B in luciferase assays. Analysis

of blood and saliva from carriers showed allelic imbalance of APC, suggesting that these mutations lead to decreased allele-specific

expression in vivo. Similar mutations in APC promoter 1B occur in rare families with familial adenomatous polyposis (FAP). Promoter

1A is methylated in GAPPS and sporadic FGPs and in normal stomach, which suggests that 1B transcripts are more important than 1A in

gastricmucosa. Thismight explain why all knownGAPPS-affected families carry promoter 1B pointmutations but only rare FAP-affected

families carry similar mutations, the colonic cells usually being protected by the expression of the 1A isoform. Gastric polyposis and

cancer have been previously described in some FAP-affected individuals with large deletions around promoter 1B. Our finding that

GAPPS is caused by point mutations in the same promoter suggests that families with mutations affecting the promoter 1B are at risk

of gastric adenocarcinoma, regardless of whether or not colorectal polyps are present.
Introduction

One of the key features of gastric adenocarcinoma and

proximal polyposis of the stomach (GAPPS) is a carpeting

of more than 100 fundic gland polyps (FGPs) in the oxy-

ntic mucosa of the gastric body and fundus, with antral
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sparing, and with some FGPs showing dysplasia.1 This is

in contrast to benign, sporadic FGPs that are fewer in num-

ber within an individual, and in which high-grade

dysplasia is extremely rare.2 Although low-grade dysplasia

has been reported in a small percentage of individuals with

sporadic FGPs,3,4 there has been only one case report of
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progression to high-grade dysplasia5 and no report of car-

cinomas. Sporadic FGPs are identified in ~5% of individ-

uals undergoing upper gastrointestinal endoscopy6–8 and

might be more common in individuals who have received

proton pump inhibitor therapy.9–11

The gastric antrum, pylorus, small intestine, and colon

were all reported to be normal in the original GAPPS-

affected families,1 highlighting a clear difference between

this condition and familial adenomatous polyposis

(FAP [MIM: 175100]) syndrome. FAP12–16 and attenuated

FAP17 (AFAP) are autosomal-dominant conditions charac-

terized by the development of multiple adenomatous

polyps in the colorectum as well as extra-colonic manifes-

tations, due to germline coding mutations or large dele-

tions or duplications in APC (MIM: 622731) (adenomatous

polyposis coli). Gastric FGPs have also been observed in

12%–84% of individuals with FAP, with around 50% of

FAP- and AFAP-affected individuals having more than

100 FGPs (D.W.N., unpublished data). FAP-associated

FGPs tend to be more numerous within an individual

than sporadic FGPs, and carpeting of FGPs in the gastric

body and fundus has been observed in FAP and

AFAP.18,19 Dysplasia is low grade in the majority of FAP-

associated FGPs (96%), displaying an exclusively gastric

(foveolar) phenotype in 92% of the case subjects.20 There

are occasional reports of gastric adenocarcinoma arising

from FGPs in individuals with FAP.21–23

Studies by Abraham et al. on the APC/b-catenin

pathway in FGPs suggest that different mutations are pre-

sent in FAP-associated and sporadic FGPs.24–26 Activating

CTNNB1 (MIM: 116806) somatic mutations occur in

91% of sporadic FGPs, but not in any FAP-associated
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FGPs,25 whereas FAP-associated FGPs frequently harbor

somatic coding APC gene mutations. However, sporadic

FGPs with low-grade dysplasia are molecularly more

similar to FAP-associated FGPs in the type and frequency

of APC alterations than to the sporadic FGPs without

dysplasia.26 The distribution of somatic mutations of

APC in colorectal adenomas is non-random and partly

related to the site of the germline mutation but differs

from the non-random pattern in duodenal and fundic

gland polyps.27,28

Here we report three different point mutations in the

promoter 1B of APC that are responsible for GAPPS in

all six families. We also demonstrate that these muta-

tions are located within a Ying Yang 1 (YY1) binding

motif and reduce the expression from the promoter 1B

by interrupting YY1 binding. Additionally, we report

that rare families with extensive FGPs, but with a more

classical FAP presentation in the colon, harbor one of

two point mutations in the same YY1 binding site in pro-

moter 1B.
Subjects and Methods

GAPPS-Affected Families
We identified one Australian (family 1) and five North American

(families 2–6) families that meet the diagnostic criteria for

GAPPS,1 by means of autosomal-dominant transmission of

numerous, predominantly fundic gland, gastric polyps restricted

to the body and fundus with regions of dysplasia or gastric adeno-

carcinoma, and no evidence of colorectal or duodenal polyposis

(Figure 1). Families 1–3 were described previously,1 but at that

time individual II-4 in family 3 was considered to be affected.
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Figure 1. GAPPS Pedigrees
Abbreviations are as follows: POSITIVE/neg, APC promoter 1B mutation status by Sanger sequencing; WES, whole-exome sequencing;
WGS, whole-genome sequencing by HiSeq or Complete Genomics; WGS-X Ten, whole-genome sequencing by X Ten. Only affected in-
dividuals and carriers are shown.
(A) Family 1. Individuals and clinical presentation are as follows: I-4, unconfirmed gastric cancer; II-2, normal endoscopy aged 72
years; II-4, normal endoscopy aged 77 years; II-6, no endoscopy; II-11, normal endoscopy aged 68 years; III-33, normal endoscopy
aged 60 years; IV-24, normal endoscopy aged 42 years. Thirty or fewer fundic gland polyps were observed in these non-carriers:
III-22, 17 FGPs; III-23, 15 FGPs; IV-13, 30 FGPs; III-21, 7 FGPs; III-25, 25 FGPs. In two polyps from individuals III-7 and IV-4 where
parental origin could be evaluated, the wild-type haplotype was lost. Asterisk (*) indicates sample was included in the linkage
analysis.
(B) Family 2. I-4, non-melanoma skin cancer, unconfirmed colon or gastric cancer; III-21, thyroid cancer (and fundic gland polyposis).
(C) Family 3. I-2, leukemia; I-3, brain cancer; I-5, antral gastric cancer, no gastric polyps; I-6, prostate cancer; I-7, lung cancer.
(D) Family 4.
(E) Family 5.
(F) Family 6. II-1, prostate cancer; II-2, ovarian cancer and unconfirmed colon cancer; II-3, unconfirmed colon cancer; III-1, unconfirmed
colon cancer; IV-21, bone cancer, gastro-intestinal cancer.
However, more detailed phenotyping found that she has fewer

than 30 FGPs with no evidence of dysplasia and is therefore now

considered unaffected (Figure S1). Since our previous publication,

I-5 in family 3 has developed gastric cancer. In family 4, which had

no case of gastric adenocarcinoma, at least one fundic gland polyp
832 The American Journal of Human Genetics 98, 830–842, May 5, 2
analyzed by a gastrointestinal pathologist (F.C.) contained areas of

low-grade dysplasia with some focal high-grade dysplasia. All

subjects included in this analysis were of European descent and

provided written informed consent as well as data and blood sam-

ples under ethically approved protocols.
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Linkage Analysis
We performed linkage analysis of family 1 using 39 germline DNA

samples available at the time with the Human Linkage-12 SNP

panel (Illumina; 6,090 SNPs) according to the manufacturer’s pro-

tocol. We carried out linkage analyses using an affected-only Mar-

kov chain-Monte Carlomethod (LNMARKERS)29 modeling GAPPS

as an autosomal-dominant trait with an allele frequency of 0.001

and a penetrance of 80%. Only case subjects with florid gastric

polyposis verified by endoscopy were included as affected.

Next-Generation Sequencing
We carried out whole-exome sequencing (WES) in 19 members of

families 1–5 (Figure 1) using Agilent SureSelect and/or Illumina

TruSeq Exome Enrichment kit, followed by 75 bp or 100 bp

paired-end sequencing on Illumina HiSeq (Table S1). We obtained

whole-genome sequencing (WGS) data on the Illumina HiSeq

platform from four case subjects of families 1 and 2 andwith Com-

plete Genomics for additional members of family 2 (Figure 1). We

also performed WGS with the Illumina X Ten platform for seven

fundic gland polyps from family 1, with the matching germline

DNA. We carried out sequence alignment, with BWA,30 and

variant calling for SNVs via GATK31 and qSNP32 and small inser-

tion and deletions via pindel.33 We validated rare variants of

interest and, for those identified in family 1, established their

frequency in a panel of 369 Australian controls, by iPLEX genotyp-

ing34 on theMassARRAY system (Agena Bioscience) (primers avail-

able on request).

Copy-Number Analysis
Fourteen fundic gland polyps from six members of family 1 were

obtained during gastrectomies and snap frozen. ‘‘Book end’’ sec-

tions stained with hematoxylin and eosin (H&E) were reviewed

by a gastrointestinal pathologist (M.B.) to estimate the percentage

of FGP. Only sections estimated to contain at least 70% FGP were

subjected to DNA extraction via the QIAamp DNA Micro kit

(QIAGEN). FGP DNA was hybridized to the Illumina Human

Omni2.5-8 v1.1 SNP arrays. Copy-number changes were called

with the Genome Alteration Print (GAP) tool35 and copy number,

B allele frequency, and LogR ratio was visualized with Circos.36 In

order to determine which allele was lost, we used 55 SNPs in the

region that we could phase because they were heterozygous in in-

dividuals III-7 and IV-4 but homozygous in other family

members.

Sanger Sequencing of APC Promoter 1B
The APC promoter 1B was amplified by AmpliTaq Gold polymer-

ase (Life Technologies) using Touchdown-PCR with the following

conditions: 94�C for 12min, 94�C for 30 s, 68�C for 30 s in the first

cycle and the anneal temperature deceased 1�C per cycle, 72�C
for 30 s; after 12 cycles conditions changed to 94�C for 30 s,

55�C for 30 s, 72�C for 30 s for another 25 cycles, final extension

of 72�C for 7 min. The PCR product was sequenced using BigDye

Terminator v.3.1 (Life Technologies) according to the standard

protocol. Primers are listed in Table S2.

Gastric Carcinoma Samples
As part of a prospectively collected cohort of sporadic gastric ade-

nocarcinomas, we tested a subgroup of 26 cases of gastric adeno-

carcinoma comprising 13 diffuse gastric cancers, 12 intestinal

gastric cancers, and 1 mixed gastric cancer as classified by Lau-

ren37 for mutations in the APC promoter 1B. For each sample,
The Am
10 mM sections were macrodissected to increase tumor purity

and DNA extracted with the DNA QIAamp DNA Mini kit

(QIAGEN). DNA was extracted from blood samples via the salt

extraction method to obtain matched germline DNA.

Plasmid Generation
A 500 bp fragment (chr5: 112,042,880–112,043,379) containing

part of the APC promoter 1B region (GenBank: D13981.1) was

amplified from genomic DNA of affected individuals from families

1, 2, and 3. To separate c.�195A>C and c.�125delA, which

co-segregate in family 1, we designed two sets of mutagenic

oligonucleotides for each allele of c.�195A>C. After the first

PCR step, two fragments overlapping by 20 bases were fused

together by an overlapping extension PCR. DNA fragments

containing c.�195A>C plus c.�125delA, c.�195A>C alone,

c.�125delA alone, c.�191T>C and c.�192A>G, or wild-type

sequence were subsequently cloned into the pGL3 basic luciferase

reporter construct. PCR primers are listed in Table S2.

Reporter Assays
Cell lines were maintained under standard conditions, routinely

tested for Mycoplasma, and identity profiled with short tandem

repeat markers. AGS and MKN74 were provided by Dr. Andrew

Giraud and HCT116 and RKO by Dr. Vicki Whitehall. Two

gastric carcinoma cell lines, MKN74 and AGS, and two colorectal

cancer cell lines, HCT116 and RKO, were transiently transfected

with equimolar amounts of luciferase reporter constructs using

Renilla luciferase as an internal control reporter. Luciferase activ-

ity was measured 24 hr after transfection using Dual-Glo Lucif-

erase (Promega). Firefly luciferase activity was normalized to

Renilla luciferase, and the activity of each mutant construct

was measured relative to wild-type construct, which had a

defined activity of 1. Expression differences were assessed by

log transforming the data and performing two-way ANOVA, fol-

lowed by Dunnett’s multiple comparisons test; for ease of inter-

pretation, values were back-transformed to the original scale for

the graphs.

Electrophoretic Mobility Shift Assay
Nuclear lysates were extracted from a gastric and colorectal cancer

cell line (AGS and RKO, respectively) as described previously.38

EMSAs were carried out with the Lightshift Chemiluminescent

EMSA Kit (Thermo Scientific). Oligonucleotide sequences used in

the assays are listed in Table S2. Competitor oligonucleotides

were used at 10-, 30-, and 100-fold molar excess. For gel-supershift

assays, 5 mg of rabbit polyclonal YY1 antibody (Santa Cruz cat# sc-

1703; RRID: AB_2218501) was added immediately before probe

addition. The rabbit pre-immune IgG (Santa Cruz cat# sc-2027;

RRID_AB_737197) was used as a negative control.

Chromatin Immunoprecipitation
YY1 ChIP-qPCR (YY1; Santa Cruz cat# sc-1703; RRID:

AB_2218501) assays were conducted as described previously39

with a sheared fragment size of 300 bp to 1 kb. For qPCR, 1 mL

from 30 mL of immunoprecipitated DNA extract was used. Primers

are listed in Table S2.

APC Allelic Imbalance Analysis
We obtained fresh blood samples in PAXgene Blood RNA tubes

(QIAGEN) from two affected and one unaffected mutation carriers

and from two unaffected control subjects (who did not carry the
erican Journal of Human Genetics 98, 830–842, May 5, 2016 833



c.�195A>C mutation) from family 1 whom we had found by

iPLEX to be heterozygous for an APC 30 UTR SNP rs448475. RNA

was extracted via the PAXgene Blood miRNA kit (QIAGEN).

cDNA was transcribed via Superscript III Reverse Transcriptase

(Life Technologies) and Sanger sequenced to look for allelic imbal-

ance at rs448475 (primer sequences in Table S2).

APC allelic imbalance assays were also performed on GAPPS-

affected family 3 and the FAP-affected family. Both DNA and

RNA were isolated from saliva obtained from two members of

family 3 (II-3 and II-4) and an affected carrier from the FAP family

(III-2) using Oragene DNA and RNA kits, respectively (DNA Geno-

tek). cDNA was generated with Superscript III Reverse Transcrip-

tase (Life Technologies). For family 3, genomic DNA and cDNA

were Sanger sequenced at seven SNP sites (rs2229992, rs351771,

rs41115, rs43437, rs866006, rs459552, and rs465899) in exons

10, 12, and 14 of APC. However, only rs2229992 was informative

across both individuals II-2 and II-3. For the FAP-affected family,

we used the expressed promoter variant, c.�190G>A, in an

affected carrier (III-2) to assess allelic imbalance. Allelic imbalance

was assessed by comparing cDNA and genomic DNA sequence

traces (primer sequences in Table S2).

We isolated gDNA and RNA from cryostored normal stomach

and FGP-positive samples from family 1 individuals using the

TissueLyser and AllPrep DNA/RNA Mini Kit (QIAGEN), including

DNase treatment step to remove gDNA contamination of RNA.

cDNA was transcribed with Superscript IV Reverse Transcriptase

(Life Technologies) and Sanger sequenced to look for allelic im-

balance of transcribed c.�195A>C mutation (primer sequences

in Table S2). Controls with no reverse transcriptase added were

negative, indicating no gDNA contamination of RNA/cDNA.

gDNA and RNA was also isolated from a cryostored FGP sample

from individual II-3 in family 3 via the DNeasy Blood and Tissue

Kit (QIAGEN) and miRNeasy Mini Kit (QIAGEN). cDNA was tran-

scribed with Superscript III Reverse Transcriptase (Life Technolo-

gies) and Sanger sequenced to look for allelic imbalance of the

c.�192A>G mutation (primer sequences in Table S2).
Results

We have identified six families affected by GAPPS

(Figure 1).
Linkage Analysis

Linkage analysis in 39 members of family 1 (Figure 1A)

mapped the GAPPS mutation to a 46 Mb region on

chromosome 5 (chr5: 75,947,905–121,407,036) with a

maximum LOD score of 4.51.
Whole-Exome and -Genome Sequencing

Whole-exome sequencing (WES) in 15 affected and 4 unaf-

fected members of families 1–5 (Table S1) failed to identify

any genes in the linked region of chromosome 5 with

novel or rare (minor allele frequency < 0.001) missense,

splice site, or coding indel mutations that co-segregated

with disease in all families. Furthermore, although the

mean coverage ranged from 58- to 68-fold, no novel or

rare coding mutations were shared between affected mem-

bers of family 1. In the smaller families in which closely

related individuals were sequenced, we found multiple
834 The American Journal of Human Genetics 98, 830–842, May 5, 2
shared coding variants throughout the genome. We also

carried out whole-genome sequencing (WGS) to a mean

coverage of 17- to 75-fold in two affected members of

family 1 and five affected members and three unaffected

members, including a spouse, from family 2. This did not

identify any novel non-coding variants in the linkage re-

gion shared between all affected case subjects from both

families. However, we did find 202 putative non-coding

variants shared between both sequenced members of fam-

ily 1. Of these, the majority were calls of low confidence

but 67 were worthy of follow up and amenable to iPLEX

design. We genotyped 63 family members and 369 Austra-

lian control subjects. Sixteen variants were not validated

and 18 did not co-segregate with affected status or were

present in control subjects, but the remaining 33 variants

did co-segregate and further defined the linkage region to

14.3 Mb (chr5: 107,080,146–121,407,036). None of these

variants were in obvious regulatory regions as indicated

by ENCODE, Roadmap, or FANTOM5 (see Web Resources)

or in previously unannotated genes (using the latest

version of GENCODE). We also found 42 non-coding var-

iants shared between the five affectedmembers of family 2,

but none were close to the non-coding variants found in

family 1 (the closest from the two families were 433 bp

apart). Refiltering against dbSNP142 reduced the number

of variants in family 1 and family 2 to 22 and 30, respec-

tively (Table S3).

Given reports of germline and somatic LINE-1 retro-

transposition in gastrointestinal tumors,40,41 including in

the chr5 linkage region,42,43 we also analyzed the WGS

data with a bioinformatic strategy geared specifically to-

ward discovery of novel retrotransposition insertions.43

However, no new polymorphic LINE-1 insertions were

found. We used cnvHitSeq44 to identify copy-number

changes in this region from the WGS Hi-Seq data from

two affected members of family 1. cnvHitSeq integrates

read-depth and paired-end information to genotype

copy-number changes. We identified three heterozygous

deletions and one heterozygous duplication shared be-

tween these two samples in this region (Table S4). Two of

these CNVs do not overlap any reported in the Database

of Genomic Variants,45 but neither of them overlapped

exons.

Loss of Heterozygosity Analysis

Having failed to find a convincing causal mutation byWES

and WGS, we then carried out copy-number analysis in

FGPs from family 1 to determine whether there was any

loss of heterozygosity (LOH) in the linkage region, which

would be consistent with an inheritedmutation in a tumor

suppressor gene and a somatic mutation by allelic loss. We

identified LOH, only on chromosome 5, in 6/14 FGPs (Fig-

ures 2 and S2). In the two polyps from individuals III-7 and

IV-4 with the clearest LOH where parental origin could be

evaluated, the wild-type haplotype was lost. The 12.7 Mb

region overlapping the linkage region contained APC as

well as 45 other coding genes.
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Figure 2. Genomic Copy-Number Changes of Six Gastric Fundic Gland Polyps
Whole-genome copy-number plots from copy-number analysis of each polyp represented by log R ratio and B allele frequency. Deviation
of B allele frequency suggests allelic imbalances and copy-number variation at 5q. Genomic SNP data of the remaining eight polyps
showing no LOH are presented in Figure S2.
Sanger Sequencing

Protein truncating and large deletion mutations of APC

cause familial adenomatous polyposis (FAP). Notwith-

standing their different colonic involvement, GAPPS

and FAP have similar gastric phenotypes of polyposis

and predisposition to carcinoma. We therefore looked

for allelic imbalance (AI) in the expression of APC in

blood from affected members of family 1 as an indicator

of an inherited regulatory mutation (described below).

In seeking an informative polymorphism for AI analysis,

we Sanger sequenced the two discrete APC promoters

(Figure 3). Sequencing identified two mutations (a point

mutation, chr5: 112,043,220 A/C; c.�195A>C, and a

1-bp deletion, chr5: 112,043,290 A/�; c.�125delA) in pro-

moter 1B that completely co-segregated with GAPPS in all

27 affected members of family 1 from which we had

blood samples (Figures 1, S3A, S3B, S3E, and S3F). These

variants are in close proximity to a variant identified in

family 2 by Complete Genomics (chr5: 112,043,224

T/C; c.�191T>C) (Table S3). Additional sequencing of

promoter 1B revealed this mutation (chr5: 112,043,224

T/C; c.�191T>C) in all the affected members of families

2, 4, 5, and 6 (Figures 1, S3A, and S3C) and another

(chr5: 112,043,223 A/G; c.�192A>G) in both affected

members of family 3 (Figures 1, S3A, and S3D). These

three mutations were not reported in any public data-

bases, including 2,598 samples from 1000 Genomes,51

nor are they present in 344 germline samples from our

in-house WGS cancer projects,52–54 nor did we find any

c.�195A>C carriers in 2,326 Australian control samples

genotyped by iPLEX. We genotyped 20/30 of the rare
The Am
non-coding variants identified in family 2 in families

4–6 and found that family 4 carried the same rare variants

from chr5: 108,498,647 to chr5: 115,074,561 (Table S3),

suggesting that they share a common ancestor.

Re-exploration of previously reported FAP-affected fam-

ilies55 revealed that the single mutation reported in

affected probands from eight probably related families

from the same region of France, g.20377206A>T, is by

more recent nomenclature a different base substitution

(c.�192A>T) at the same nucleotide that is mutated in

family 3 (c.�192A>G). Although FGPs are prominent in

these families, all probands and many family members

have had colectomies for florid colonic polyposis. At the

same time, a family with five affected persons with profuse

FGPs and a variable onset of colorectal polyposis, resulting

in colectomy in all mutation carriers between the ages of

4 and 57 (Figure S4), was found to carry a c.�190G>A mu-

tation in promoter 1B.

Somatic Mutations and Methylation

We carried out additional WGS of seven FGPs without LOH

(Figure S2), with their matching germline DNAs, in family

1 (using Illumina’s X Ten platform). This experiment, initi-

ated before we found the germline promoter 1B mutations,

confirmed the results of Sanger sequencing (Figure S5). In

the region of linkage/LOH, we also found four somatic

truncating mutations of APC—c.637C>T (p.Arg213Ter)

(GenBank: NM_001127510, NP_001120982), c.1690C>T

(p.Arg564Ter), c.6096_6102delTGACTCT (p.Ile2032Metfs*

10), and c.4393_4394delAG (p.Ser1465Trpfs*3)—at esti-

mated mutant allele frequencies of 31%, 9%, 8%, and 12%,
erican Journal of Human Genetics 98, 830–842, May 5, 2016 835



Figure 3. Schematic of the APC 1A and 1B Promoters Showing the Location of Deletions Described in FAP and Point Mutations
in GAPPS
Black bars denote large deletions in FAP-affected families reported by Pavicic et al.,46 Rohlin et al.,47 Snowet al.,48 Kadiyska et al.,49 andLin
et al.50 ‘‘RefSeq Genes’’ track shows APC 1A transcripts (GenBank: NM_000038 and NM_001127510) and APC 1B transcript (GenBank:
NM_001127511). Bottom part depicts the sizes of two promoters, the distance in between, and point mutations in the families.
respectively, in FGPs. Three of the somatic mutations were

confirmed by iPLEX (Figure S6), but we could not design

iPLEX primers for p.Ser1465Trpfs*3. No rare or novel germ-

line codingmutations in the linkage/LOH region were iden-

tified by this additional X Ten WGS, nor did we find any

mutations in CTNNB1 that are characteristic of sporadic

FGPs.25 After microdissection to achieve >90% neoplasia

in the sections used for DNA isolation, we sequenced the

APC promoter 1B in 26 sporadic gastric cancer (GC) cases

(including 13 diffuse, 12 intestinal, and 1 mixed-type GC)

with their matching germline DNAs but found no germline

or somatic mutations.

Sequencing the canonical exon 3 CTNNB1 hotspot

mutations in two FGPs from individual II-4 of family 3

(a non-carrier of the familial promoter mutation) and

seven sporadic FGPs from five individuals revealed hotspot

mutations in both polyps from II-4 and in three of the spo-

radic polyps (Figure S7). This is in contrast to absence of

CTNNB1 hotspot mutations in 11 FGPs from 5 carriers of

promoter mutations in family 1 (data not shown).

Methylation of APC promoter 1A was demonstrated in

both normal stomach and FGPs of carriers and non-carriers

within GAPPS-affected families and in sporadic FGPs and

matched normal stomach (Table S5).

Functional Analysis of 1B Promoter Mutations

Transcriptional factor binding site (TFBS) search tools56,57

predicted Yin Yang 1 (YY1) binding to the chr5:

112,043,220–112,043,224 region of promoter 1B, which

JASPAR58 analysis predicted would be disrupted by the

three GAPPS and two FAP mutations (Figure 4A). Via chro-

matin immunoprecipitation (ChIP), we showed that YY1

binds this site in two gastric cancer cell lines (AGS and

MKN74 cells) and two colorectal cancer lines (HCT116

and RKO) (Figures 4B and S8). Using electrophoretic

mobility shift assays (EMSAs), we showed that the mutant

alleles of GAPPS mutations (c.�191T>C, c.�192A>G, and

c.�195A>C) and the FAP mutations (c.�190G>A and

c.�192A>T) disrupted protein binding to the region in

both AGS and RKO cells (Figures 4C and 4D). Furthermore,

EMSAs using anti-YY1 antiserum or a YY1 consensus oligo-
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nucleotide competitor suggested that the protein disrupted

by themutant alleles is likely to be YY1 (Figures 4E and S9).

Luciferase reporter assays demonstrated that constructs

containing c.�195A>C plus c.�125delA, c.�195A>C

alone, c.�191T>C, and c.�192A>G showed significantly

decreased activity compared to the wild-type construct in

MKN74, AGS, and RKO cells (Figures 5 and S10). In addi-

tion, the construct containing both c.�195A>C and

c.�125delA showed reduced expression in HCT116 colo-

rectal cancer cell line. The c.�125delA variant alone only

showed significantly decreased activity in RKO and

HCT116 cells (Figure S10).

Allelic Imbalance

Having found the 1B promoter mutations, we looked for

allele imbalance (AI) of the 1B APC isoform. Promoter 1B

transcripts are typically 100- to 1,000-fold more highly ex-

pressed than promoter 1A transcripts in blood,47 and we

inferred that this might extend to transcripts derived

from saliva samples because DNA from saliva is mainly

derived from lymphocytes.59 We therefore used blood

from family 1 and saliva from GAPPS-affected family 3

and from the FAP-affected family carrying the

c.�190G>A mutation for AI analysis of carriers and non-

carriers. There are no informative polymorphisms specific

to APC 1B transcripts, so we genotyped a common SNP,

rs448475, in 70 family members to determine which allele

was in cis with mutation in each individual. We used

rs448475 as the marker for allelic imbalance in family 1

because it was heterozygous in multiple affected and unaf-

fectedmembers and is in the 30 UTR of both transcripts.We

obtained fresh blood from two affected carriers, one unaf-

fected mutation carrier, and two unaffected controls (who

did not carry the affected haplotype) from family 1, all of

whom were heterozygous for rs448475. cDNA sequencing

showed AI in the three mutation carriers, with reduced

expression of the G allele that was carried on the affected

haplotype (Figure 6A). We sequenced seven SNPs in exons

10, 12, and 14 of APC in family 3 to look for AI; rs2229992

was the only informative SNP across both individuals II-3

and II-4. We found AI in individual II-3, who harbors the
016



Figure 4. GAPPS and FAPMutations Alter
YY1 Binding to the APC Promoter 1B
(A) Position weight matrix (PWM) of YY1
binding. c.�195A>C (g.112043220C),
c.�192A>G (g.112043223G) and
c.�192A>T (g.112043223T), c.�191T>C
(g.112043224C), and c.�190G>A
(g.112043225A) in the APC promoter 1B
are predicted to disrupt YY1 binding at
positions 1, 4, 5, and 6, respectively.
(B) ChIP-qPCR on the APC promoter 1B
region in AGS and MKN74 cells. ChIP as-
says were performed with a YY1 antibody
or IgG control antibody on the region of
1B containing the predicted YY1 binding
site. A negative control region was used to
represent nonspecific binding. One of two
biological replicates is shown. Error bars
denote SD.
(C and D) EMSA of promoter 1B using with
a biotinylated DNA duplex representing
the predicted YY1 binding region with
and without (WT) GAPPS mutations
c.�195A>C, c.�192A>G, and c.�191T>C
(C) and FAP mutations c.�190G>A and
c.�192A>T (D).
(E) EMSA-supershift using the WT DNA
duplex and a polyclonal antibody against
YY1 with AGS nuclear extracts. Rabbit IgG
was used as a negative control. The black
arrowhead denotes the YY1 supershifted
complex.
promoter c.�192A>G variant, but not in II-4, who is a

non-carrier of this mutation (Figure 6B). AI was also

observed in saliva from an affected carrier, III-2, of the

FAP family, using the promoter c.�190G>A mutation
The Am
(Figure S11). We also looked for AI in normal stomach

and FGPs from five affected carriers from family 1 and in

the FGP of an affected carrier of family 3, using the

c.�195A>C and c.�192G>A mutations, respectively,
Figure 5. Mutations in APC Promoter 1B
Show Decreased Transcriptional Activity
in Gastric Carcinoma Cell Lines AGS and
MKN74 and Colorectal Cancer Cell Lines
HCT116 and RKO
Error bars denote 95% confidence intervals
from three independent experiments
performed in triplicate. p values were
determined by two-way ANOVA followed
by Dunnett’s multiple comparisons test
(**p < 0.01, ***p < 0.001, ****p < 0.0001
compared to wild-type pGL3-APC 1B
construct) on log transformed data; for
ease of interpretation, back-transformed
data have been graphed.
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Figure 6. Sanger Sequencing Showing
Allelic Imbalance in Mutation Carriers
from Families 1 and 3
(A) Allelic imbalance in blood from
affected subject (IV-29) and unaffected
carrier (II-11) from family 1 using SNP
rs448475 as a marker.
(B) Allelic imbalance in saliva from affected
carrier (II-3) from family 3 using rs2229992
as a marker.
which are transcribed. We could detect expression only of

the wild-type allele and not the mutant transcript in these

samples (Figure S11).
Discussion

We identified three point mutations in the promoter 1B of

APC that perfectly segregate with GAPPS in all six families,

including one (family 1) with 27 affected individuals

(Figure 1). These mutations were missed in the WES and

Hi-seq WGS we performed in these families, either because

the enrichment kits did not capture the promoter 1B or

because of poor coverage (4-11X), but were identified by

Complete Genomics, X Ten, and Sanger sequencing. All

three mutations were located in a YY1 binding motif, dis-

rupting the affinity of YY1 for the APC promoter 1B and

were found to show reduced transcriptional activity in re-

porter assays in gastric and colorectal cancer cell lines. In

carriers from family 1, we observed allelic imbalance of

APC in blood, stomach, and FGPs, suggesting that the pres-

ence of these mutations leads to decreased allele-specific

expression in vivo. Allelic imbalance was also observed in

an affected member of family 3 and in an affected carrier

of the c.�190G>A mutation from a FAP-affected family.

YY1 is a ubiquitously expressed transcription factor that

has been shown to have multiple roles in oncogenesis

and can act as both an activator and repressor of transcrip-

tion.60 Here we show that it acts as a transcription factor

regulating expression of APC IB promoter transcripts.

We also observed a second hit in the majority of GAPPS

FGPs, either by loss of the wild-type allele or somatic pro-

tein truncatingmutations. However, despite using sections

composed of 75%–100% polyp cells for DNA isolation,

these events appeared to occur in only a small proportion

of cells. This suggests that they are late events in the gene-

sis of FGPs. We propose that APC haploinsufficiency is
838 The American Journal of Human Genetics 98, 830–842, May 5, 2016
responsible for the fundic gland pol-

yposis in GAPPS, and the second

APC hit might be the driver of

dysplasia.

Although the APC promoter 1B and

distal enhancer elements have not

been extensively studied, Hosoya

et al. estimated transcription from

the promoter 1B was 15-fold higher
than from the promoter 1A61 in gastric mucosa. Consistent

with this, the APC promoter 1A (but never promoter 1B)

was reported to be methylated in 100% of gastric cancer

cell lines, 97.5% of non-cancerous gastric mucosa, and

82.5% of primary gastric cancers.62 We also observed pro-

moter 1A methylation in GAPPS and sporadic FGPs and

in normal stomach. These studies suggest that 1B tran-

scripts are more important than 1A in gastric mucosa,

which might explain why all known GAPPS-affected fam-

ilies carry promoter 1Bmutations but only rare cases of FAP

(1/111; 0.9% W.D.F., unpublished data) carry similar vari-

ants, the colonic cells usually being protected by the

expression of the 1A isoform.63 Large (11–132 kb) dele-

tions that include all or some of the promoter 1B, as well

as additional sequences, have been observed in FAP46–50

(Figure 3), but we know of only two point mutations in

this region that result in FAP. These large deletions result

in allelic imbalance in the expression of both the 1A and

1B isoforms,47 perhaps because they delete enhancers of

the promoter 1A as well as the promoter 1B. This might

explain why point mutations in the promoter 1B rarely

seem to cause FAP. Although fundic gland polyposis has

not been consistently described in all the FAP families

with large deletions around the promoter 1B, it seems

more prevalent than in FAP families with mutations

within the APC gene.47,48,64

The APC 1B isoform is in-frame with the 1A isoform but

encodes a slightly different protein, which differs at the

N terminus by the inclusion of exon 1B and also lacks

two alternate in-frame exons (exons 2 and 7; Figure 3).

The most common mutations in FAP are nonsense muta-

tions and small deletions in APC, which result in the

expression of a truncated protein65 that might have a

dominant-negative, or gain-of-function, effect at least in

the colon.27,66,67 Truncating mutations occurring outside

of exons 2 and 7 would be expected to have the same effect

on the 1B isoform, and indeed fundic gland polyposis



occurs in about 50% of individuals with AFAP or FAP. We

have found that there is no difference in the presence of

FGPs between individuals who have mutations within

exons 2 and 7, consistent with an AFAP phenotype, versus

those withmutations outside this region, consistent with a

classic FAP phenotype (D.W.N., unpublished data). Point

mutations in promoters have been observed in other can-

cer predisposition syndromes,68,69 but only once before

in the APC 1B promoter.55 Our finding that GAPPS is

caused by point mutations in the promoter 1B of APC,

and the description of gastric polyposis and gastric cancer

in some individuals with large deletions around the pro-

moter 1B,46–50 would suggest that families with alterations

in the promoter 1B are at risk of gastric adenocarcinoma,

regardless of whether colorectal polyps are or are not pre-

sent. Conversely, most observations to date indicate low

risk for colonic polyposis and cancer in GAPPS, but recog-

nition that GAPPS is due to a variant in the same gene that

causes FAP suggests that GAPPS exists along the pheno-

typic spectrum of FAP, thus broadening the understanding

of the disease spectrum caused by APC aberrations. There-

fore, in small GAPPS-affected families in which there has

been little opportunity to observe the family’s phenotype,

it might be prudent to undertake colonoscopic surveil-

lance to characterize a family’s colon phenotype with a

plan for reassessment dictated by the findings. In carriers

of these point mutations in the YY1 binding site of the pro-

moter 1B, penetrance of the gastric polyposis phenotype is

high, though not complete, with variable phenotype

ranging from asymptomatic adults to teenagers presenting

with massive symptomatic gastric polyposis. Figure 1

shows five unaffected carriers who had clean endoscopies

at ages ranging from 42 to 77. However, the penetrance

for gastric cancer is less clear becausemany of themutation

carriers in family 1 have had prophylactic gastrectomies,

often in their 20s. In summary, our data show that specific

point mutations in the YY1 binding site in the promoter

1B of APC are the cause of GAPPS, a new and potentially

severe variant of FAP.
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