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Abstract

We present a space-efficient algorithm for reporting all k intersections induced by a set of n line segments in the plane. Our
algorithm is an in-place variant of Balaban’s algorithm and, in the worst case, runs in O(n log2 n+ k) time using O(1) extra words
of memory in addition to the space used for the input to the algorithm.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Researchers have studied space-efficient algorithms since the early 1970s. Examples include merging, (multiset)
sorting, and partitioning problems; see [14,15,17,24,27]. Brönnimann et al. [7] were the first to consider space-efficient
geometric algorithms and showed how to compute the convex hull of a planar set of n points in O(n logh) time using
O(1) extra space, where h denotes the size of the output. Recently, Brönnimann et al. [6] developed some space-
efficient data structures and used them to solve a number of geometric problems such as convex hull, Delaunay
triangulation, and nearest neighbor queries. Bose et al. [5] developed a general framework for geometric divide-and-
conquer algorithms and derived space-efficient algorithms for the closest pair, bichromatic closest pair, and orthogonal
line-segment intersection problems, and Chen and Chan [11] presented an algorithm for the general line-segment
intersection problem: to report all k intersections induced by a set of n line segments in the plane.

1.1. The model

The goal is to design algorithms that use very little extra space in addition to the space used for the input to the
algorithm. The input is assumed to be stored in an array A of size n, thereby allowing random access. We assume
that a constant-size memory can hold a constant number of words. Each word can hold one pointer, or an O(logn)
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bit integer, and a constant number of words can hold one element of the input array. The extra memory used by an
algorithm is measured in terms of the number of extra words. In certain cases, the output may be much larger than
the size of the input. For example, given a set of n line segments, the number k of intersections may be as large as
�(n2). We consider the output memory to be write-only space that is usable for output but cannot be used as extra
storage space by the algorithm. This model has been used by Chen and Chan [11] for variable size output, space-
efficient algorithms and accurately models algorithms that have output streams with write-only buffer space. In the
space-efficient model, an algorithm is said to work in-place iff it uses O(1) extra words of memory.

1.2. Related work

There is a large number of algorithms for the line-segment intersection problem that are not in-place, and we refer
the reader to the recent survey by Mount [20]. We point out, however, that there are only two deterministic algorithms
that solve the general line-segment intersection problem in optimal time O(n logn + k): The first such algorithm,
proposed by Chazelle and Edelsbrunner [9], has a space requirement of O(n + k) which is prohibitive in an in-place
setting even if the constant hidden in the “Big-Oh”-notation is c = 1. The second algorithm, proposed by Balaban [1],
has an O(n) space requirement and will be the starting point for our in-place approach. Thus, we will discuss it below
in more detail.

In the space-efficient model of computation, Bose et al. [5] have presented an optimal in-place algorithm for the re-
stricted setting when the input consists of only horizontal and vertical segments. Their algorithm runs in O(n logn + k)

time and uses O(1) words of extra memory. Chen and Chan [11] modified the well-known algorithm of Bentley and
Ottmann [2] and obtained a space-efficient algorithm that runs in O((n + k) log2 n) time and uses O(log2 n) extra
words of memory. If the model is changed such that the input can be destroyed irrevocably, the bounds can be im-
proved to O((n + k) logn) time and O(1) extra space.1 We will improve these bounds to O(n log2 n + k) time and
O(1) extra space thus making the algorithm in-place and establishing an optimal linear dependency on the number k

of intersections reported.

1.3. In-place algorithmic tools

The philosophy of our approach is to identify building blocks of the original algorithm and to try to replace them
by in-place counterparts wherever possible. We now summarize the main algorithmic ingredients that will be used
(note that, since we are working in an in-place setting, the input elements always reside in an array):

Sorting: Sorting n items can be done in-place and in optimal time O(n logn) using, e.g., HEAPSORT [27]. There are
also in-place, asymptotically optimal algorithms for stably sorting a multiset using constant extra space [18,22].

Priority Queue: A priority queue for n items may be realized in-place using a heap data structure [27]. Each
insert-, min-, and deleteMin-operation takes time O(logn).

Interchanging adjacent blocks: Given two adjacent subarrays A[x0, . . . , x1 − 1] and A[x1, . . . , x2 − 1], these blocks
can be interchanged in linear time. The in-place algorithm INPLACE_INTERCHANGE first uses swaps to reverse
the order of the elements in each of the blocks separately and then reverses the order of A[x0, . . . , x2 − 1] again
using swaps. Katajainen and Pasanen [17] attribute this algorithm to “computer folklore”.

Merging: Given two arrays A and B that are sorted according to the same total order, an in-place algorithm IN-
PLACE_MERGE replaces A and B by one single sorted array L using only linear time. Merging two sorted sets
had been identified as a key ingredient for in-place sorting, and thus a considerable number of approaches have
been taken (see [12] and the references therein). As of today, the most practical, yet asymptotically optimal, in-
place approaches seem to be the linear-time, non-stable algorithm of Chen [13] and Chen’s optimization [12] of
a linear-time, stable algorithm due to Geffert et al. [15].

(Stable) Unmerging: Given a sorted array A[x0, . . . , x2 − 1] and a {0,1}-valued predicate π , the in-place algorithm
INPLACE_UNMERGE of Salowe and Steiger [24] stably partitions a sorted array A[x0, . . . , x2 −1] into two sorted

1 In this model, there is no way of retrieving the original data after (or even during) the run of the algorithm. Furthermore, Chen and Chan observe
that, due to the use of division, their implementation “is not guaranteed to be robust” [11].
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subarrays A[x0, . . . , x1 − 1] and A[x1, . . . , x2 − 1] such that π(x) = 0 for all x ∈ A[x0, . . . , x1 − 1] and π(x) = 1
for all x ∈ A[x1, . . . , x2 − 1]. This algorithm runs in linear time.2

Sorted Subset Selection: Given an array A[x0, . . . , x2 − 1] that is sorted according to some total order <A and a
{0,1}-valued predicate π , the linear-time, in-place algorithm SORTEDSUBSETSELECTION of Bose et al. [5] sta-
bly moves all x ∈ A[x0, . . . , x2 − 1] for which π(x) = 0 to the front of A[x0, . . . , x2 − 1]. In contrast to the
INPLACE_UNMERGE algorithm, the values of π need not to be known in advance but may be computed during
the algorithm. The effects of SORTEDSUBSETSELECTION can be undone in-place and in linear time by essen-
tially running the algorithm backwards. More specifically, the UNDOSORTEDSUBSETSELECTION uses only the
information how many elements have been selected and the fact that <A is a total order, i.e., that any two elements
are directly comparable. It should be pointed out that, to reconstruct the original sorted order of A[x0, . . . , x2 −1],
the function π is not required at all. This implies that the value π(x) that is used during SORTEDSUBSETSELEC-
TION may also depend on additional information (such as global variables or information about the position of x

in the <A-order) without affecting the correctness of UNDOSORTEDSUBSETSELECTION.

To simplify the exposition, we will from now on refer to these in-place algorithms by their short names, e.g., HEAP-
SORT, INPLACE_INTERCHANGE, or SORTEDSUBSETSELECTION.

2. The algorithm

Our algorithm is an in-place version of the optimal O(n logn + k) algorithm proposed by Balaban [1]. Balaban
obtained this complexity by first developing an intermediate algorithm with running time O(n log2 n + k) and then
applying the well-known concept of fractional cascading [10]. As fractional cascading relies on explicitly maintained
copies of certain elements (or, in the case of Balaban’s algorithm, pointers to such elements), this concept can only be
applied with O(n) extra space which is prohibitive for an in-place algorithm. Thus, we build upon the (suboptimal)
intermediate algorithm.

Balaban’s intermediate algorithm is a clever combination of plane-sweeping and divide-and-conquer; the plane is
subdivided into two vertical strips each containing the same number of segment endpoints, and each strip is (recur-
sively) processed from left to right—see Fig. 1.

While doing so, the algorithm maintains the following pre- and postconditions:

Precondition Γpre: Prior to processing a strip, all segments crossing the left strip boundary are vertically ordered at
the x-coordinate of the left strip boundary. The algorithm may store this set of segments in several groups; in this
case, the segments are required to be ordered only within each group.

Fig. 1. Processing the recursion tree. Numbers indicate the order in which the strips are finished.

2 It should be noted that this algorithm relies on the fact that each element can be classified in constant time according to the value of π . Usually,
this implies that the elements explicitly maintain an extra bit (thus requiring extra space). For the special scenario where we will employ this
unmerging algorithm, it is possible to avoid this explicit labeling. We will discuss this in more detail in Section 2.3.
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Postcondition Γpost: After having processed a strip, the segments crossing the right strip boundary are rearranged such
that they are vertically ordered at the x-coordinate of the right strip boundary. Again, the algorithm may store this
set of segments in several groups; in this case, the segments are required to be ordered only within each group.

The recursion base case is the case when a set L of line segments spans a vertical strip 〈b, e〉 := [b, e] × R that
does not contain any endpoint of a segment. Precondition Γpre implies that this set of segments is sorted according to
<b , the vertical order at x-coordinate b.

In the following subsections, we will demonstrate how the recursive calls and the partitioning of the segments
to be processed can be realized using only O(1) extra space. A main result of Balaban’s analysis is that the overall
number of (occurrences of all) segments participating in all recursive calls is O(n logn + k). This fact, formalized
in Section 2.8 as Theorem 1, implies that all algorithmic subroutines that exhibit a superlinear running time will
have to be accounted for separately whereas all linear-time subroutines contribute at most O(n logn + k) time to the
overall complexity. We will start our discussion by presenting an important concept that allows intersection-finding
by merging and binary search.

2.1. Intermezzo: Using staircases

A main algorithmic ingredient of Balaban’s algorithm is to find intersections by synchronized scans over two sorted
sets of segments. To formalize the terminology, Balaban defines the concept of staircases:

Definition 1. (Balaban [1]) Let b � e be two real numbers and define 〈b, e〉 := [b, e] × R to be the vertical strip
encompassing [b, e]. An ordered set Q = (s1, . . . , sm) of segments is called a staircase iff the following properties
hold:

(i) Each segment s ∈ {s1, . . . , sm} spans the strip 〈b, e〉.
(ii) No two segments s, t ∈ {s1, . . . , sm} intersect inside the strip 〈b, e〉 unless they are identical.

(iii) The segments in Q are sorted according to the vertical order at x = b.

These properties imply that all segments are sorted according to the vertical order at any x′ ∈ [b, e].
A staircase Q is said to be complete relative to a strip 〈b, e〉 and a set S of segments intersecting 〈b, e〉 iff no

segment from S can be added to Q without violating Properties 1 or 2. The segments of a staircase are referred to as
stairs.

As usual, the “vertical order at x = b” breaks ties by ordering segments with the same y-coordinate at x = b by
increasing slope and (in the case of identical slope) by the x-coordinates of the right and left endpoint. Note that the
above definition allows two stairs to intersect on one slab boundary, i.e., at x = b or at x = e, but not on both unless
they are identical. We will come back to the question of how to report these intersections later. Whenever the strip for
which a staircase is defined is apparent from the context, we will not explicitly refer to it. An example of a staircase is

Fig. 2. Examples of a staircase and its use in intersection-finding. Stairs are drawn with solid lines, and segments not belonging to a staircase are
drawn with dashed lines.
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Require: A[�b, . . . , �c − 1] is a staircase for 〈b, e〉, A[�c, . . . , �e − 1] is sorted in <ξ -order, ξ ∈ [b, e].
1: �′ := �b ;
2: for � := �c to �e − 1 do
3: while �′ < �c and A[�′] <ξ A[�] do
4: �′ := �′ + 1; {Find highest stair below A[�].}
5: if A[�] intersects A[�′ − 1] inside 〈b, e〉 or at x = b then
6: �′′ := �′ − 1; {A[�] intersects stairs below.}
7: while �′′ � �b do
8: if A[�] intersects A[�′′] inside 〈b, e〉 or at x = b then
9: Report intersection between A[�] and A[�′′].

10: �′′ := �′′ − 1; {Scan backwards in A[�b, . . . , �′ − 1].}
11: else if �′ < �c and A[�] intersects A[�′ − 1] inside 〈b, e〉 or at x = b then
12: �′′ := �′; {A[�] intersects stairs above.}
13: while �′′ < �c do
14: if A[�] intersects A[�′′] inside 〈b, e〉 then
15: Report intersection between A[�] and A[�′′].
16: �′′ := �′′ + 1; {Scan forward in A[�′, . . . , �c − 1].}

Algorithm 1. Algorithm MERGEINTξ (A, b, e, �b, �c, �e).

Require: A[�b, . . . , �b − 1] is a staircase for 〈b, e〉; A[�] is a segment whose endpoints lie inside 〈b, e〉.
1: p := lower endpoint of A[�].
2: q := upper endpoint of A[�].
3: Use binary search in A[�b, . . . , �b − 1] to find the index i such that A[i] is the lowest segment above p. If no such index exists, set i := �b .
4: if i < �b then
5: Use binary search in A[i, . . . , �b − 1] to find the index j such that A[j ] is the lowest segment above q . If no such index exists, set j := �b .
6: for �′ := i to j − 1 do
7: Report intersection of A[�] and A[�′].
8: else
9: Do nothing. {s lies above A[�c − 1].}

Algorithm 2. Algorithm SEARCHINT(A, b, e, �b, �e, �).

given in Fig. 2(a); the stairs are drawn with solid lines. Note that no dashed segment may be added without violating
the properties of a staircase.

Figs. 2(b) and (c) show the use of staircases for intersection-finding. Assume we want to find, inside a strip 〈b, e〉,
the intersections between segments in a staircase Q and another set of segments L′. If, as in Fig. 2(b), the segments
in L′ cross the strip’s left boundary and thus can be ordered by the y-coordinate of their intersection point with this
boundary, we can find all intersections between segments in Q and L′ using a synchronized merge-like scan over
both ordered sets. These intersections are marked as hollow discs. The running time of such a scan while reporting
κ intersections is O(|Q| + |L′| + κ), and we will refer to this subroutine as MERGEINTξ , where ξ the x-coordinate
at which the total order is computed (in the above case, ξ would be the x-coordinate of the strip’s left boundary).
This routine will not only report intersections inside 〈b, e〉 but also intersections that coincide with the left strip
boundary. The code of this subroutine, given below as Algorithm 1, is easily seen to be implementable such that
the resulting algorithm runs in-place. In this implementation the staircase Q and the set L′ are presented in-place as
Q = A[�b, . . . , �c − 1] and L′ = A[�c, . . . , �e − 1].

Let us now assume we want to find, inside a strip 〈b, e〉, the intersections between segments in a staircase Q and
an unordered set L′ of segments each of which has both endpoints inside 〈b, e〉—see Fig. 2(c). As the segments of a
staircase do not induce intersections with each other and span the strip, we can use binary search to locate for each
segment s ∈ L′ the segment of Q above or below one of its endpoints. Starting from here, we can trace s through the
staircase reporting all intersections with stairs of Q. The running time of this subroutine, referred to as SEARCHINT,
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Require: L = (s1, . . . , sm) is ordered by <b .
Ensure: L′ and Q are ordered by <b ; Q is complete relative to 〈b, e〉.
1: Q := ∅; L′ := ∅;
2: for j = 1 to m do
3: if sj spans 〈b, e〉 and does not intersect the last segment of Q within 〈b, e〉 then
4: Q← sj ;
5: else
6: L′ ← sj ;
7: Scan though Q and report intersections at x = b.

{Stairs may intersect at either x = b or x = e, but intersections are only reported at x = b.}
8: return (Q,L′);

Algorithm 3. The algorithm SPLITb,e(L) [1].

is O(|L′| log |Q| + κ) where κ is the number of intersections reported.3 Again, the code (given below as Algorithm 2)
can implemented in such a way that the resulting algorithm runs in-place.

2.2. The recursion base case

As mentioned above, the recursion base case is the case when a set L of line segments spans a vertical strip
〈b, e〉 := [b, e] × R that does not contain any endpoint of a segment. Before discussing the algorithm for this case in
detail, we will briefly comment on an algorithmic subroutine that is used throughout the algorithm (and also in the
algorithm for the base case) to construct a staircase for a sorted set of segments.

The set L of segments is a group of segments crossing the left boundary of a strip, and thus, by Precondition Γpre,
it is sorted according to <b, the vertical order at x-coordinate b. Algorithm 3 partitions L into a staircase Q and a set
L′ = L \Q such that both sets are sorted according to <b , and that Q is complete relative to 〈b, e〉. (This partitioning
reflects the situation mentioned in the pre- and the postcondition where the algorithm is allowed to have more than
one ordered set of segments crossing a strip’s boundary.) Also, this algorithm reports all stairs that intersect on the left
boundary of 〈b, e〉.

The resulting staircase Q can be verified to be maximal using the following line of reasoning: If the staircase is
not maximal, there is at least one segment s ∈ L′ spanning 〈b, e〉 that could be added to Q without intersecting any
segment in Q. In particular, this segment s would intersect the segment s′ that was the topmost segment in Q at the
time the segment s had been considered for addition to Q. This would contradict the outcome of the test in line 3
of Algorithm 3 that caused s not to added to Q. As we will see below, the charging scheme used for analyzing the
complexity of the global algorithm will only rely on each staircase being maximal, so there is no need to actually
require that the staircase constructed is a maximum staircase.

Balaban, in his original paper [1], gave an Algorithm SEARCHINSTRIPb,e(L) that recursively uses SPLIT to par-
tition a set L of segments spanning 〈b, e〉 and sorted by <b such that the set Intb,e(L) of intersections induced by
L and falling into the strip 〈b, e〉 can be found easily using a synchronized scan over the staircase Q and the set L′,
both of which are ordered by <b. As a side effect, this algorithm reorders the segments in L such that they are sorted
according to <e. This implies that, in the process of sweeping the plane, L can be used as the input for processing an
adjacent strip 〈b′, e′〉, i.e., a strip 〈b′, e′〉 for which b′ = e.

2.2.1. An in-place algorithm for the recursion base case
While this algorithm can be made in-place with relatively little effort (see the conference version of this paper [26]),

we can also follow an observation due to Boissonnat and Snoeyink [3] who pointed out that, in the base case, we are
computing a portion of an arrangement of lines. Exploiting the well-known correspondence between the intersections
induced by a set of segments spanning 〈b, e〉 and the inversions between the permutations that give the vertical order of
the segments at x = b and x = e [19], Algorithm INPLACE_SEARCHINSTRIPb,e(L) thus can be implemented using

3 It should be noted that this part of the algorithm is the sole reason for why Balaban’s intermediate algorithm has a slightly suboptimal running
time of O(n log2 n + k). Balaban resolves this problem by the use of fractional cascading, but (as noted before) the use of this technique is
prohibitive in an in-place setting.
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an insertion-sort based algorithm for constructing inversions, see, e.g. [8, Lemma 1]. This implementation is easily
seen to be in-place, and its running time is linear in number |L| + |Intb,e(L)|, that is, linear in the number of segments
plus the number of intersections reported. This matches the running time of Balaban’s subroutine.

2.3. Separating stairs from non-stairs in linear time

The simplified algorithm for the recursion base case given at the end of the previous section could avoid assuming
the existence of a linear-time, in-place algorithm for partitioning L into Q+L′ while maintaining both resulting sets
in sorted order. During the execution of the overall algorithm, however, we need to have access to such an algorithm,
and we will present such an algorithm in this section.

In order to obtain a partition of L into Q + L′ where both sets are in sorted order, we could proceed as follows:
we could implement an algorithm called INPLACE_SPLITANDSORT such as to use the approach of the SORTEDSUB-
SETSELECTION subroutine [5]. This algorithm would stably move the non-stairs, i.e., the set L′ to the front of (the
subarray holding) L. Using the incremental SORTEDSUBSETSELECTION would be feasible as we would only need to
keep track of the (position of the) topmost stair in order to decide whether the next segment in question can be added
to the staircase or not. We then would sort the segments in Q using an optimal in-place sorting algorithm and would
stably interchange the blocks holding Q and L′ such that the stairs would appear in the front of the subarray. The
running time of the resulting algorithm would then be summarized as follows:

Lemma 1. The total time of Algorithm INPLACE_SPLITANDSORT, when run over all strips, is O(n log2 n + k logn).

Proof. Selecting the non-stairs can be done in-place in linear time using SORTEDSUBSETSELECTION, and each
segment not added to a staircase and thus considered in another pass can be charged to (at least) one intersection
with the topmost stair. Each segment appears in a exactly one staircase per invocation of INPLACE_SPLITANDSORT.
However, as the overall number of segment appearances is O(n logn + k) (see Theorem 2 in [1]), the global running
time of sorting all staircases is in O((n logn + k) log(n logn + k)) ⊂ O(n log2 n + k logn). �

Besides the fact that using this subroutine would introduce an undesirable extra logarithmic factor in the output-
sensitive part of the algorithm, a potential drawback is that only the non-stairs would be selected stably. Both issues
can be resolved if we use a linear-time, stable unmerging algorithm. However, as the INPLACE_UNMERGE algorithm
of Salowe and Steiger [24] technically requires an extra bit for encoding which elements belong to which set, we need
to be very carefully not to violate the requirement that no extra space in addition to the geometric description of each
segment may be used.

A standard technique in the design of in-place algorithms is to encode a bit by the relative order of two comparable
elements [21]. Assuming that no segment degenerates to a point, the two endpoints of a segment are distinct and com-
parable according to their lexicographical order. Exploiting this fact, we can implicitly encode a {0,1}-labeling of the
segments by temporarily reversing the order of the endpoints as needed, and we derive a linear-time implementation
of Algorithm INPLACE_SPLIT:

Lemma 2. If the order of the endpoints of the input segments may be reversed temporarily, Algorithm INPLACE_SPLIT

can be realized such that it runs in time O(|L|).

Proof. The implementation of the subroutine INPLACE_SPLIT first runs a variant of SORTEDSUBSETSELECTION

in which no segments are extracted. Instead, the algorithm keeps track of the (index of) the topmost stair and re-
verses the order of the segments not belonging to the staircase. Using this implicitly encoded {0,1}-labeling, the
INPLACE_UNMERGE subroutine [24] can partition L into Q and L′. After this unmerging, all segments in L′ are
re-reversed to restore the original order of the endpoints. As all subroutines employed run in-place and in linear time,
the correctness of the lemma follows. �

Even though we are not aware of any impact of this temporary modification on the intrinsic complexity of
intersection-finding, one might find it irritating not to consider the input objects as atomic. Also, one might con-
sider a setting where the segments are stored in read-only memory and where the algorithm can only access and
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modify an “address translation table” of pointers referencing these segments. In this case and in the presence of de-
generated segments, the above approach collapses. As it turns out, we can directly modify the algorithm of Salowe
and Steiger [24] to separate stairs from non-stairs, and doing so, we obtain the final version of the algorithm needed
to process the base case.

Lemma 3. Algorithm INPLACE_SPLIT can be realized such that it runs in time O(|L|).

To obtain this result we use the algorithm implied by the proof of the following lemma:

Lemma 4. Let L be a set of segments that cross the left boundary of a strip 〈b, e〉. If L is sorted according to <b , we
can unmerge L into a maximal set of staircases Q and L′ := L \Q such that both and Q and L′ remain sorted. The
algorithm runs in-place and in O(|L|) time.

Proof. The proof consists of an explanation of how to modify the unmerging algorithm of Salowe and Steiger [24] to
directly work with line segments. For the brevity of explanation, define ν := |L| and κ := 	√ν � and assume w.l.o.g.
that the subarray in which L is stored is A[0, . . . , ν − 1].

The main idea of the algorithm of Salowe and Steiger is to use the first 2κ entries of A as a temporary buffer for
rearranging the rest of the array. After the first partitioning phase the subarray looks as follows:

After Phase 1: M G1 G2 . . . Gi q �

0 2κ 3κ (i − 1)κ ν − 1

The set M stored at the beginning of A contains the smallest 2κ elements from L, i.e., both stairs and non-stairs in
arbitrary order. Each group Gi consists of exactly κ elements from either Q or L′ in sorted order and, if Gi1 and Gi2

contain elements from the same subset (Q or L′), the elements in Gi1 are smaller than the elements in Gi2 iff i1 is less
than i2. The groups q and � are potentially empty and contain the largest stairs and non-stairs in sorted order.

During the second phase of the algorithm, the groups G1, . . . ,Gi are rearranged such that all stairs appear consec-
utively and all non-stairs appear consecutively.

After Phase 2: M Q1 L′
1 q �

0 2κ ν − 1

Next, the sets q and � are swapped into their correct position.

After Phase 3: M Q1 q L′
1 �

0 2κ ν − 1

During the fourth phase of the algorithm, the set M is separated into a sorted set Q0 of stairs and a sorted set L′
0

of non-stairs.

After Phase 4: Q0 L′
0 Q1 L′

1

0 2κ ν − 1

After the fifth and final phase, these blocks have been rearranged to form the desired partition of L into Q :=
Q0 &Q1 and L′ := L′

0 &L′
1 (the operator “&” denotes concatenation).

After Phase 5: Q L′

0 ν − 1

We will now describe the details and the running time each of these five phases separately. Clearly, the third and
the fifth phase can be performed in-place and in linear time as both phases can be realized using a constant number of
invocations of the INPLACE_INTERCHANGE subroutine. The additional space requirement is constant, as all groups
except for the groups q and � contain exactly κ elements.

However, as we are working with blocks of stairs and non-stairs instead of a set of typed items from an ordered
universe, we need to be a bit more careful with implementing the remaining phases. Recall that all segments in the
same group are sorted according to <b and that the defining property of stairs is that a stair completely crosses the
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strip and does not intersect any other stair. A staircase is complete (relative to 〈b, e〉) if no segment may be added
without violating these properties. Consequently, if we scan the segments in sorted order and maintain a pointer τ to
the topmost stair seen so far, we can classify each element as a stair (and update τ accordingly) or as a non-stair.

The algorithm for the first phase starts at the index 2κ and scans forward until the end of the array A. The algorithm
swaps all stairs into the first block of the array, i.e., into A[0, . . . , κ − 1], and all non-stairs into the second block of the
array, i.e., into A[κ, . . . ,2κ − 1]. As soon as either of these blocks is full, say the block A[κ, . . . ,2κ − 1] of non-stairs,
we increment the number g of groups constructed so far and swap this full block to the beginning of the subarray
A[(2 + g)κ, . . . , ν − 1]. Then we continue, reusing the subarray A[κ, . . . ,2κ − 1] for the next group of non-stairs.
Iterating this way until the end of the array has been reached, the algorithm always swaps elements in one group with
a subset of the elements that originally constituted the subarray A[0, . . . , κ − 1]. Since each element is swapped into
A[0, . . . , κ − 1] at most once, as each block swap takes O(κ) time, and as there are at most O(κ) such block swaps
(each swap moves one group into its final position), the running time of this phase is O(κ2) = O(ν).

The above description implicitly assumes that we know the (index of the) topmost stair in A[0, . . . ,2κ − 1]—or
have access to a special, constant-size location where we store (a copy of) the topmost stair. Hence, prior to starting
the first phase, we scan over the subarray A[0, . . . ,2κ − 1] and simulate running Balaban’s SPLIT algorithm. We do
so without actually permuting the stairs but instead only keeping track of the topmost stair seen so far. After we have
done this, we are ready to start with the first phase. We also need to keep track of this information for running the next
phase.

The second phase, i.e., regrouping the presorted groups Gi into two groups Q1 and L′
1 can be realized by perform-

ing an in-place sort of the blocks [24]. To regroup the blocks, we first perform a selection-sort type algorithm to move
the groups Gi constituting the set Q1 to the front of A[2κ, . . . , ν − 1]. In the i—the iteration of this algorithm, let
g1 be the number of groups of stairs already moved to the front of A[2κ, . . . , ν − 1]. Since all groups except for the
groups q and � contain exactly κ elements, and since q contains the largest stairs, in each iteration of the selection
sort, we know that the smallest stairs identified so far are stored in A[2κ, . . . , (2 + g1)κ − 1]. During an iteration, we
look at every κ-th index (starting at index (2 + g1)κ) to find the smallest segment sgi

not intersecting the topmost
stair seen so far (which is stored at index (2 + gi)κ − 1). Since all elements inside a group are sorted and since the
staircase to be constructed is complete (relative to 〈b, e〉), we know that the segment sgi

is the start of the next group
of stairs to be moved to the front. We then interchange (using O(κ) swaps and employing the block A[0, . . . , κ − 2]
as an intermediate buffer) this block with the block starting at index (2 + gi)κ .

This first part of the second phase of the algorithm runs in-place and performs O(κ2) comparisons and O(κ) block
swaps. As each of the block swaps takes O(κ) time, the overall cost for selecting the set Q1 is O(κ2) = O(ν). For
the second part of the second phase, grouping L′

1 in sorted order, we run the classic selection sort algorithm on the
blocks where the key of a block is the <b-value of its smallest segment. This part again runs in O(κ2) = O(ν) time.

A close look at the fourth phase of the algorithm reveals that we can run exactly the same in-place algorithm again
but this time exchanging single elements instead of blocks. As we are working on a set of 2κ elements, the running
time again is O(κ2) = O(ν).

Summing up the above discussion, we conclude that the algorithm of Salowe and Steiger [24] can be implemented
to directly extract a complete staircase from a set of sorted segments. Following the original analysis, we see that this
algorithm runs in-place and in linear time. �
2.4. The “divide” and “conquer” phases

When analyzing the complexity and the correctness of Balaban’s algorithm, it is helpful to keep in mind that
this algorithm reports a pair (s, t) of intersecting segments when processing the unique strip 〈b, e〉 where one of the
segments, say s, is part of the staircase Q spanning the strip 〈b, e〉 and where the intersection point lies within 〈b, e〉
or on the left boundary of 〈b, e〉.4 The case of stairs intersecting on the left boundary has been handled by SPLIT,
so we can assume that the other segment t is not part of the staircase Q because segments in the same staircase
do not intersect inside 〈b, e〉. There are three possible situations: (1) t crosses the left boundary of 〈b, e〉, (2) t lies

4 Since the algorithm sweeps all slabs from left to right, the right boundary of the strip 〈b, c〉 is handled as it appears as the left boundary of the
adjacent strip 〈c, e〉. See Appendix A for a description of how to handle intersections on the right boundary of the initial strip.



222 J. Vahrenhold / Computational Geometry 38 (2007) 213–230
Require: L is ordered by <b , each segment in I has both endpoints inside 〈b, e〉.
Ensure: R is ordered by <e .

1: if e − b = 1, i.e., if 〈b, e〉 does not contain an endpoint then
2: R := SEARCHINSTRIPb,e(L); {Base of recursion.}
3: else
4: (Q,Lleft) := SPLITb,e(L); {Compute staircase.}
5: Compute Intb,e(Q,Lleft) using MERGEINTb . {Handle Situation (1).}
6: c := �(b + e)/2; {Find endpoint with median rank.}
7: Ileft := {s ∈ I | s lies completely inside 〈b, c〉};
8: Rleft := TREESEARCH(Lleft,Ileft, b, c);
9: Construct Lright from Rleft by insertion/deletion of the segment whose endpoint corresponds to c.

10: Iright := {s ∈ I | s lies completely inside 〈c, e〉};
11: Rright := TREESEARCH(Lright,Iright, c, e);
12: Compute Intb,e(Q,Rright) using MERGEINTe . {Handle Situation (3).}
13: for each segment s ∈ I
14: Compute Int(Q, {s}) using SEARCHINT. {Handle Situation (2).}
15: R := MERGEe(Q,Rright); {Establish Postcondition Γpost.}
16: return R;

Algorithm 4. The algorithm TREESEARCH(L,I, b, e) [1].

completely within 〈b, e〉, or (3) t crosses the right boundary of 〈b, e〉. Note that there might be segments appearing both
in Situation (1) and Situation (3); we can detect (and skip) those segments when handling Situation (3) because these
segments are exactly the segments crossing both strip boundaries. Thus, we make sure that no endpoint is reported
twice.

Precondition Γpre implies that, when processing a strip 〈b, e〉, all segments intersecting the left boundary of the strip
〈b, e〉 are available in the form of an ordered set L that is sorted according to <b . Similarly, Postcondition Γpost requires
the existence of an ordered set R (which is the set returned by Balaban’s algorithm (Algorithm 4)) that contains the
segments crossing the right strip boundary—again in sorted order. The unordered set I contains all segments that lie
completely within the strip 〈b, e〉. Handling Situations (1)–(3) then consists of computing Intb,e(Q,L), Intb,e(Q,I),
and Intb,e(Q,R), the sets of intersections inside 〈b, e〉 and between the segments in the staircase Q and in the sets L,
I , and R, respectively. The intersections involving segments from Q and segments from L and R, respectively, can
be found using the MERGEINT subroutine presented in Section 2.1, and the intersections involving segments from Q
and I can be found using the subroutine SEARCHINT. The intersections inside 〈b, e〉 that do not involve any s ∈ Q
are found recursively.

To obtain a logarithmic depth of recursion, Balaban subdivides the set of segments that are not part of the staircase
for the current strip in such a way that the same number of endpoints is processed in each of the recursive calls. Under
the simplifying assumption that the x-coordinates of the segments are the integers [1, . . . ,2n],5 this corresponds to
subdividing with respect to the median c := �(b + e)/2, and Balaban’s algorithm can be stated as Algorithm 4.

2.5. Implementing the recursive algorithm in an in-place setting

There are several issues that complicate making this algorithm in-place: First of all, like in any recursive algorithm
that has to be transformed into an in-place algorithm, one has to keep track of the subarrays processed in each recursive
call. It is not feasible to keep the start and end indices on a stack as this would result in using 
(logn) extra words
of memory. The second issue to be resolved is how to partition the data prior to “going into recursion”. Whereas
algorithms working on point data can easily subdivide the data based upon, say, the x-coordinate by first sorting and
then halving the point set, subdividing a set of segments such that the same number of endpoints appear on each side
of the dividing line, seems impossible to do without splitting or copying the segments. Both splitting and copying,
however, are infeasible in an in-place setting.

5 This assumption is impossible to make in an in-place setting as one would need an extra lookup-table for translating the integer i to the
x-coordinate with rank i.
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Fig. 3. Some of the configurations of segments whose endpoints define 〈b, e〉.

To guarantee both the correctness of the algorithm and the property that it uses only O(1) extra space, we will re-
quire the following invariants to be established at each invocation of the subroutine INPLACE_TREESEARCH(A, b, e,

�b, �e):

Invariant A: There exists an integer �l ∈ {�b, . . . , �e} such that all segments in A[�b, . . . , �e − 1] that cross the left
boundary of 〈b, e〉 are stored in sorted <b order in A[�b, . . . , �l − 1] (see Precondition Γpre).

Invariant B: A[�b, . . . , �e − 1] contains all segments in A that have at least one endpoint inside 〈b, e〉.

Additionally, we will require the following invariants to be established whenever we return from a call to IN-
PLACE_TREESEARCH(A, b, e, �b, �e):

Invariant C: The strip boundaries 〈b′, e′〉 of the “parent strip” are known.
Invariant D: There exists an integer i ∈ {0, . . . , �b −�e} such that all segments of A[�b, . . . , �e −1] that do not cross

the right strip boundary are stored in A[�b, . . . , �b + i −1] and that all other segments are stored in A[�b + i, . . . , �e −1]
sorted according to <e (see Postcondition Γpost).

Establishing Invariant (C) in-place is one of the most crucial steps of the algorithm. We will establish this invariant
as follows: Prior to “going into recursion”, we select the segments qb and qe whose endpoints define the strip boundary
and then move it (using a linear number of swaps) to the front of the staircase Q.6 When moving these segments,
however, it is important to keep in mind that they might be part of the staircase (Fig. 3(a)), part of L and/or R
(Fig. 3(b)), identical (Fig. 3(c)), or not intersecting the interior of 〈b, e〉 at all (Fig. 3(d)), and that qb and qe need to
be handled accordingly when looking for intersections.

In particular, this implies the following: if a segment s ∈ {qb, qe} is part of the staircase Q, all invocations
MERGEINT and SEARCHINT for Q also need to check s. If a segment s ∈ {qb, qc, qe} is (technically) part of L
or R we need to account for the fact that s is not passed to recursive calls. Since the algorithm usually reports an
intersection at the unique strip where one of the segments is part of a staircase, an intersection between s and some
other segment t ∈ L∪I ∪R would be reported at a subslab of 〈b, e〉 where either s or t would eventually become part
of a staircase. Since s is not passed down to the corresponding recursive call, we need to ensure that no such inter-
section will be missed. Fortunately, Invariant (B) ensures that all segments that have at least one endpoint in 〈b, e〉 are
stored in A[�b, . . . , �e − 1]. This implies that we can compute all intersections involving s by simply checking each
t ∈ A[�b, . . . , �e − 1] in turn and reporting intersections inside 〈b, e〉 or at x = b.

Any combination of the configurations for qb and qe is possible (see Fig. 3 for some examples), but as the over-
all number of combinations is constant, a constant number of bits is sufficient to encode the specific combination.
Thus a “configuration” stack C of O(logn) bits, i.e., using O(1) extra space, can be used to store the information
necessary to recover the subset(s) into which qb and qe have to be reinserted when returning from the “recursive”
calls.

We first use Algorithm INPLACE_SPLIT to compute the staircase Q and the set Lleft such that the subarray looks
as follows:

. . . qb qe Q Lleft I ∪ {R \Lleft} . . .
�b �e

6 Here and throughout the remainder of this section, we will assume that no two endpoints have the same x-coordinate. In Appendix A, we then
will discuss how to get rid of this assumption.
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We also maintain a “staircase” stack S of depth O(logn) to indicate whether Q contains zero, one, or more
segments in addition to (qb ∪ qe) ∩ Q. This information can be encoded using O(1) bits per entry, i.e., using O(1)

extra space in total. We then establish Invariant (A) by shifting Q in front of qb , and prior to going into the “left
recursion” we also prepare for establishing Invariant (C): We determine the segment qc whose endpoint induces the
right boundary of the left subslab (see Section 2.7 for the details of how to do this in-place) and shift the segments
qe, qb , and qc in front of Lleft. We then establish Invariant (B) by moving all elements in Ileft ∪ {Rleft \ Lleft} to
immediately behind Lleft using simple swaps (we use N to denote the set (I ∪ R) \ (Ileft ∪ Rleft); note that this set
is not ordered in any way). We also update �b to point to the first element in Lleft and update �e to point to the first
segment not in Ileft ∪ {Rleft \Lleft}:

. . . Q qe qb qc Lleft Ileft ∪ {Rleft \Lleft} N . . .
�b �e

If we let Oleft denote the set of segments whose right endpoint lies within the left subslab (i.e., Oleft contains the
segments that will have been swept over after we are finished with processing this subslab), Invariant (D) guarantees
that upon returning from the “left recursive” call, the array has the following form:

. . . Q qe qb qc Oleft Rleft N . . .
�b �e �

We can recover qe, hence establishing Invariant (C), by simply looking at the at most three entries in front of A[�b]
(depending on the configuration encoded by the topmost element of the configuration stack C). While doing this we
also recover the old value of e; the index � which corresponds to the old value of �e prior to going into the “left
recursion” can be recovered by scanning forward from �e until we find the first segment not intersecting 〈b, e〉 (or
reach the end of the array). We use the INPLACE_INTERCHANGE subroutine to interchange Rleft ∪N and Oleft. Note
that Rleft = Lright in our setting as these sets only differ by the segment qc which is stored separately. Also, relative
to the subslab at right, N = Iright ∪ {Rright \ Lright}. We update �e to point to the first element in Oleft, and shift qe ,
qb , and qc in cyclic order.

. . . Q qb qc qe Lright Iright ∪ {Rright \Lright} Oleft . . .
�b �e �

If we let Oright denote the set of segments whose right endpoint lies within the right subslab (i.e., Oright contains the
segments that will have been swept over after we are finished with processing this subslab), Invariant (D) guarantees
that upon returning from the “right recursive” call, the array has the following form:

. . . Q qb qc qe Oright Rright Oleft . . .
�b �e �

Again, we recover the values of b and e and find the index � by scanning forward from �e. Depending on whether
qc crosses the right boundary of 〈b, e〉 or not, we insert qc into Rright or into Oright. Scanning backward from �b

and using the information on top of the staircase stack S as well as the fact that the segments in Q span 〈b, e〉, are
non-intersecting, and are ordered by <b , we determine the start of the subarray in which Q is stored. We then use
the INPLACE_INTERCHANGE subroutine to interchange the blocks such that Oleft and Oright as well as Q and Rright

appear next to each other. Finally, we use the linear-time INPLACE_MERGE subroutine to construct R(= Rright)∪Q,
thus establishing Invariant (D).

The resulting subarray then has the following form (O := Oleft ∪Oright):

. . . qb qe O Q∪R . . .
�b �e

Note that, due to the use of linear-time subroutines, all interchanging, shifting, and scanning done so far takes time
linear in |L ∪ I ∪ R|. As all invariants can be established for the base case of the recursion, we conclude that the
invariants can be established for each “recursive call”, and thus we have established the correctness of the following
algorithm:

Note that in contrast to Balaban’s algorithm (Algorithm 4), the intersections between the segments from Q and
the segments from I are found prior to going into the recursion. The intuition behind this is that segments that have
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been swept over have to be moved outside the current subarray as soon as possible such as not to interfere with
reconstructing the strip boundaries.

The above description does not contain the detailed code for simulating the two “recursive” calls to IN-
PLACE_TREESEARCH, since we have shown previously [5] that it is possible to handle these calls using a stack
of O(logn) bits, that is using O(1) extra space.7 To do so we need to be able to retrieve the subset to work with upon
returning from a recursive call using only O(1) extra space, and this is guaranteed by Invariant (C). We also did not
include the code for handling the segments qb, qe, and qc; for example, the step in line 19 would need to be expanded
to do this. We need, however, to fill in the details of how to select the endpoint with median x-coordinate which in
turn determines the segment qc. This will be done in Section 2.7.

2.6. Intermezzo: Practical considerations

As discussed at the end of the previous section, we need to simulate running a recursive algorithm using only O(1)

extra space, and this leads to a technically quite involved algorithmic scheme. Research on space-efficient algorithm,
however, has not only focused on in-place algorithms but also, more generally, on algorithms with o(n) extra space
requirement. In a more relaxed setting, sometimes referred to as in-situ [7], we have O(logn) extra space available.
An immediate consequence is that this allows a (balanced) recursion scheme without having to use the technically
involved scheme discussed by Bose et al. [5]. Since most “real” machines have a separate “activation frame” buffer
for maintaining the recursion stack, the only advantage of insisting on O(1) extra space is that this is a theoretically
“cleaner” model that takes the question of space-time dependency to the extreme. Other than that, in-situ algorithms
are quite interesting since they have a much higher potential of being practical.

To realize our algorithm in an in-situ setting, we can basically remove all constructs that occurred in connection
with the problem of restoring the strip boundaries (Invariant (C)). These constructs encompass all computations in-
volving the segments qb , qc, and qe (e.g., in lines 7, 10, and 28 of Algorithm 5) and are listed in Section 2.5. Since,
in an in-situ setting, we can keep track of the relevant indices needed for recovering the sets of stairs and non-stairs,
we can also get rid of lines 14, 15, and 18–23 of Algorithm 5 (with the appropriate changes to the rest of the code
to ensure that the indices are handled correctly). Finally, we would be able to avoid implementing the flow-control
mechanism needed for simulating the recursion [5].

2.7. Selecting the median in-place

When selecting the median of the endpoints in line 5 of Algorithm 5, we have to do so while maintaining the set
L′ = A[�b, . . . , �c − 1] (see line 5 of Algorithm 5) in sorted <b-order. To make sure that the overall cost of median-
finding does not depend on the number k of intersections reported by the algorithm, we also need to guarantee that we
only process segments that have at least one endpoint inside the strip 〈b, e〉. Doing so, we enforce that each segment
participates in no more than O(logn) invocations of median-finding, namely in O(1) such invocations on each level
of the recursion tree. To make the algorithm reflect this, we use SORTEDSUBSETSELECTION to stably select the
segments of L′ spanning 〈b, e〉, i.e., those segments that do not have any endpoint inside 〈b, e〉. The segments that have
at least one endpoint in 〈b, e〉 are then stored consecutively in A[�b + j, . . . , �e − 1] (for some j ∈ {0, . . . , �e − �b}).
We can count the number of endpoints inside 〈b, e〉 (and thus compute the rank of the median element) in linear time
and then apply the following lemma:

Lemma 5. Given m segments and a strip 〈b, e〉, the k-th endpoint in sorted order inside 〈b, e〉 can be found in-place
and in O(m logm) time.

Proof. We simulate a plane-sweep over the set of m segments and maintain the current x-coordinate ξ as well as
the number o of endpoints inside 〈b, e〉 that have already been swept over. The segments are maintained in-place in

7 In a nutshell, we need to realize a flow-control mechanism (as in an interpreter) that keeps track of the line currently executed and also keeps
track of the line at which to resume execution after returning from an “recursive” call. As there is only a constant number of possible lines where
execution may resume (in our case, lines 14 and 18), we can encode this information using a constant number of bits per recursive call simulated,
hence using a recursion stack of O(logn) bits, or O(1) words.
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1: if 〈b, e〉 does not contain any endpoint of a segment s ∈ A[�b, . . . , �e − 1] then
2: INPLACE_SEARCHINSTRIP(A, b, e, �b, �e); {Recursion Base Case.}
3: else
4: Scan forward in A[�b, . . . , �e − 1] to find the index �l of the first segment in A[�b, . . . , �e − 1] that does not cross the left strip boundary.

{L = A[�b, . . . , �l − 1]}.
5: �c := INPLACE_SPLIT(A, b, e, �b, �l ); {Q= A[�b, . . . , �c − 1];Lleft = A[�c, . . . , �l − 1].}
6: {In lines 7, 10, and 28, remember to also check for qb and qe}.
7: MERGEINTb(A, b, e, �b, �c, �l); {Situation (1): Compute Intb,e(Q,Lleft).}
8: for � := �l to �e − 1 do
9: if A[�] lies entirely inside 〈b, e〉 then

10: SEARCHINT(A, b, e, �b, �c, �). {Situation (2): Compute Intb,e(Q, {A[�]}).}
11: Find the index of the median of the endpoints inside the current strip. Let c be the x-coordinate of this endpoint.
12: Establish Invariants (A) and (B). Update �b and �e to prepare for processing left.
13: INPLACE_TREESEARCH(A, b, c, �b, �e);
14: Use the configuration stack to recover the old value of e. {Establish Invariant (C).}
15: Scan forward in A[�b, . . . , n − 1] to recover the old value of �e .
16: Establish Invariants (A) and (B). Update �b and �e to prepare for processing right.
17: INPLACE_TREESEARCH(A, c, e, �b, �e);
18: Use the configuration stack to recover the old value of b. {Establish Invariant (C).}
19: Scan backward in A[0, . . . , �b − 1] to find the index �′ such that A[�′, . . . , �b − 1] stores Q.
20: q := �b − �′; {Number of stairs in Q.}
21: �r2 := �e ;
22: Scan forward in A[�b, . . . , �r2 − 1] to find the index �r1 such that A[�r1 , . . . , �r2 − 1] stores R.
23: Scan forward in A[�r2 , . . . , n − 1] to find the index � such that A[�r2 , . . . , � − 1] stores Oleft .
24: �e := �; {�e has been recovered.}
25: INPLACE_INTERCHANGE(A, �′, �b, �r1 ); {Interchange Q and Oright.}
26: INPLACE_INTERCHANGE(A, �b, �r2 , �e); {Interchange Q∪Rright and Oleft.}
27: � := �b + (�e − �r2 ); {A[�b, . . . , � − 1] stores O.}
28: MERGEINTe(A, b, e, �, � + q, �e); {Situation (3): Compute Intb,e(Q,Rright).}
29: INPLACE_MERGEe(A, b, e, �, � + q, �e); {Establish Invariant (D).}

Algorithm 5. Algorithm INPLACE_TREESEARCH(A, b, e, �b, �e).

a heap-based priority queue H, the priority of a segment s being the smallest x-coordinate of s’s endpoints that still
is at least ξ . Let p(s, ξ) denote the endpoint of s that realizes the priority of s at time ξ . When deleting the minimal
element s from H we set ξ to the x-coordinate given by p(s, ξ) and distinguish two cases:

Case 1: The endpoint p(s, ξ) lies inside the strip 〈b, e〉. We increment the number o of endpoints inside 〈b, e〉 that
have already been swept over. If o = k, we report s and the endpoint p(s, ξ).
Case 1.1: The endpoint p(s, ξ) is the left endpoint of s. Let q be the right endpoint. We reinsert s into the priority

queue using the x-coordinate of q as its priority.
Case 1.2: The endpoint p(s, ξ) is the right endpoint of s. We delete s from the priority queue.

Case 2: The endpoint p(s, ξ) lies outside the strip. We can abort the algorithm because all elements still in the priority
queue will have their unswept endpoints outside the strip 〈b, e〉.

Note that, using a heap-based priority queue [27], we can implement the priority queue in-place as all priorities are
implicitly given by ξ and the segments’ endpoints. As there are O(m) priority queue operations, the algorithm runs in
time O(m logm). �

After we have found the median using the algorithm implied by Lemma 5, we need to restore L′ in sorted <b

order. To this end, we then select the elements from A[�b + i, . . . , �e − 1] that cross the left strip boundary, sort
them in-place by <b , and then merge them in-place with the segments in A[�b, . . . , �b + i − 1] using the linear-time
INPLACE_MERGE subroutine.
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2.8. Analysis of the running time

For the main part of the analysis, Balaban’s results carry over. Using the notation Sv = Lv ∪ Iv ∪ Rv where the
subscripts indicate that this set is “active” when processing the strip corresponding to a node v in the recursion tree
T , the following theorem holds:

Theorem 1. (Theorem 2 in [1])
∑

v∈T |Sv| � n	4 logn + 5� + 2k.

To make the algorithm in-place, we had to resort to some algorithmic techniques not captured in Balaban’s analy-
sis. The global cost for running the in-place version of the algorithm SPLIT is O(n logn + k) (see Lemma 3 and
Theorem 1). From Theorem 1, it follows that the overall extra cost for establishing the invariants is O(n logn + k) as
all operations performed at a node v ∈ T take time linear in |Sv|.

Finally, we had to realize the median-finding in-place while maintaining the original order of the elements. By
Lemma 6, the overall cost for this is in O(n log2 n).

Lemma 6. The global cost incurred by median-finding is O(n log2 n).

Proof. The median-finding algorithm considers only those segments that have at least one endpoint in the current
strip. Hence, on each level of recursion, each segment is considered at most twice, so we can charge each segment
s O(logn) cost per level for median-finding (see Lemma 5). We charge s an additional O(logn) cost per level for
the at most one sorting step it participates in (when restoring L′) and for the at most four priority queue operations
(insert and deleteMin) that operate on its endpoints. As all other operations (including building the heap) require
only linear time per level, the global cost incurred by median-finding is O(n log2 n) as claimed. �

The last component of the analysis is the for-loop in line 8 of Algorithm 5 which resembles the SEARCHINT

subroutine: Each iteration of this loop takes O(log |Qv|) ⊆ O(logn) time in addition to the time needed for reporting
the intersections found, and each of the n segments can be part of Iw for O(logn) nodes w ∈ T . Thus, we have to
account for an additional global O(n log2 n) time complexity, and combining this with Balaban’s original analysis, we
obtain our main result:

Theorem 2. All k intersections induced by a set of n segments in the plane can be computed in O(n log2 n + k) time
using O(1) extra words of memory.

We conclude with the obvious open problem: Is it possible to compute all k intersections induced by a set of n

segments in the plane in-place and in optimal time O(n logn + k)?
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Appendix A. Degenerate configurations

In the discussion of Lemma 2, we noted that segments that degenerate to points pose a potential problem (which
then was resolved by Lemma 3). In this appendix, we discuss how to handle such segments and other “degenerate”
configurations. For a detailed discussion of how to address robustness and precision issues, we refer the reader to the
survey by Schirra [25] and to the more specialized article by Boissonnat and Vigneron [4].
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A.1. Vertical segments

Using standard (implicit) shearing techniques, it is possible to implicitly rotate or shear the coordinate system such
no segment is vertical and such that the output of the algorithm is not affected—see the survey by Schirra [25] and the
references therein.

A.2. Zero-length segments

Zero-length segments may pose a problem in several situations, e.g., when using the version of INPLACE_SPLIT

that uses the relative order of the endpoints to encode a bit (Lemma 2). To handle input instances that contain zero-
length segments (points), we proceed as follows: In a preprocessing step, we partition the input such that A[0, . . . , n′ −
1] contains all segments that do not have length zero and such that A[n′, . . . , n − 1] contains all points. Additionally,
we sort A[n′, . . . , n − 1] according to the lexicographic <x -order. A simple scan over A[n′, . . . , n − 1] then allows us
to identify all “point-point” intersections in O(n + k) time.

To find all “point-segment” intersections, we then run the algorithm for finding “segment-segment” intersections
on A[0, . . . , n′ − 1] and maintain two indices �′

b and �′
e with n′ � �′

b � �′
e � n such that A[�′

b, . . . , �
′
e − 1] contains all

points inside 〈b, e〉 or at x = b (note that this subarray may be empty). Whenever we invoke MERGEINT on a strip’s left
boundary x = b, we additionally scan forward in A[�′

b, . . . , �
′
e − 1] to find the subarray A[�′

b, . . . , �
′′
b − 1] the contains

the points at x = b. Since the points are sorted according to the lexicographic <x -order, we know that A[�′
b, . . . , �

′′
b −1]

is sorted according to the vertical order at x = b (all points have the same x-coordinate). This allows us to identify all
“stair-point” intersections at x = b by invoking MERGEINT. Similarly, for each invocation of SEARCHINT on a strip
〈b, e〉, we also invoke SEARCHINT for all points in A[�′′

b, . . . , �
′
e] (note that invoking SEARCHINT for A[�′

b, . . . , �
′
e −1]

would also identify intersections on the left boundary which have been reported by a previous call to MERGEINT).
The cost for processing these points can be easily seen to be accounted for by the cost for the non-degenerate case—
imagine all points to be infinitesimally short horizontal segments that belong to some set I . It is also easy to verify
that the indices �′

b and �′
e can be updated in linear time after the boundaries of the next strip to be processed have been

computed; the global cost for updating these pointers is O(n logn) (for the proof of a similar statement, see Theorem 1
in Balaban’s paper [1]). Thus, the overall running time is not affected by separately processing zero-length segments.

A.3. Overlapping segments

As noted before, our algorithm reports a pair (s, t) of intersecting segments when processing the unique strip 〈b, e〉
where one of the segments, say s, is part of the staircase Q spanning the strip 〈b, e〉 and where the intersection point lies
within 〈b, e〉 or on the left boundary of 〈b, e〉. In the case of overlapping segments, we define the “intersection point”
(as referred to in the previous statement) to be the rightmost left endpoint of the two segments. This definition implies
that for overlapping segments starting at the same left endpoint p, this “intersection point” is p; this is consistent with
our convention that intersections on the boundary of a strip are reported only for the left boundary of the strip. To
avoid intersections reported multiple times, the algorithm MERGEINT (merging a staircase and a sorted set L or R)
needs to check whether this “intersection point” of overlapping segments actually falls within the current strip. The
algorithm SEARCHINT does not need to be modified since both endpoints are guaranteed to lie within the current
strip.

A.4. Identical segments

The main idea of handling identical segments is to handle them as one group. To do so, we first sort the segments
such that identical segments appear next to each other. Depending on whether or not identical segments are considered
to be intersecting, we can scan through the sorted set and report all self-intersections in O(n + k) time.

We then run the intersection-finding algorithm. Throughout the algorithm, we maintain the invariant that, whenever
segments appear in some sorted order, all copies of an element are stored consecutively. The reason for this is that the
relevant operations for finding intersections always access elements in sorted order. The only exception is SEARCHINT

where the segments in I are not required to be presented in sorted order. If this invariant is maintained, we can perform
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each constant-time operation that would access a single segment (in the case of non-degenerate input) on the k copies
of a segment in O(1 + k) time (simply scan forward to see how many identical copies exist).

Let us now consider in turn each subroutine that moves elements: Algorithms INPLACE_MERGE, INPLACE_
UNMERGE, and INPLACE_INTERCHANGE can be implemented to work stably which implies that they maintain
the above invariant. As a consequence, Algorithms INPLACE_SPLIT and INPLACE_SEARCHINSTRIP have the same
property. Also, the SORTEDSUBSETSELECTION maintains the order in the selected set and UNDOSORTEDSUBSET-
SELECTION is guaranteed to re-establish the original order as long as identical segments have been treated in a
consistent way by the selection algorithm, i.e., if identical segments have been selected or not selected as a group.
Note that this is not the same as requiring that the selection and restoring process is stable, i.e., that the relative order
of identical segments is maintained.

Finally, for the median-finding algorithm (Section 2.7), we need to take into account that multiple copies of a
segment also induce multiple copies on the endpoints. Since we want to treat identical segments as a group, we need
to modify the algorithm for computing the rank of the median as well as the algorithm for actually finding the element
with median rank. To do so, we run the heap-based sweep-algorithm twice. In the first run, we simply compute
the number of endpoints induced by different segments: whenever we extract the next segment from the heap, we
increment a counter by one iff the sweep-line has moved since the last extraction or this segment is different from the
segment extracted before. In the second run, we again sweep left to right, and whenever we extract a segment identical
to the segment we have extracted before and have not moved the sweep-line, we simply ignore it.

A.5. Multiple occurrences of x-coordinates

In Section 2.5, we had assumed that no two endpoints share the same x-coordinate. As a consequence, the median
of the endpoint alway gave a balanced partitioning. If multiple endpoints share the same x-coordinate it is not always
obvious how to split according to the vertical line through the median.

We will handle such situations similar to the approach described in the previous paragraph. Using a small modifi-
cation of the sweep-line algorithm, we determine the median ĉ of the set of x-coordinates realized by endpoints inside
the strip 〈b, e〉. We then partition the segments such that the set E of segments that end at x = ĉ is considered to be
inside 〈b, ĉ〉 whereas the set B of segments that start at x = ĉ is considered to be inside 〈ĉ, e〉. This also allows us to
uniquely reconstruct the right boundary when returning from a “recursive” call. While the recursion may not be bal-
anced, the important point is that the recursion depth is given by the logarithm of the number of distinct x-coordinate,
and thus still is in O(logn). In fact, multiple endpoints sharing the same coordinate will lead to an earlier end of the
recursion process, since the condition for terminating the recursion is whether or not endpoints exist inside a strip.

It remains to discuss how to report intersections that are induced by segments that meet at x = ĉ. These segments
can be identified (and their intersection reported) by sorting both B and E according to the vertical order at x = ĉ.
Intersections induced by E can be found by a single scan and intersections between E and B as well as intersec-
tions between E and the set R of segments crossing x = ĉ are found by invoking (a slightly modified version of)
MERGEINTĉ. Note that intersections induced by B are found when processing 〈ĉ, e〉. The cost for performing these
steps is dominated by the cost for the heap-based sweep and the cost for reporting the intersections, so the global
complexity of the algorithm is not affected.

A.6. Intersections on the rightmost boundary

In Section 2.4, we noted that the algorithm finds all intersections inside a strip 〈b, e〉 and on the left boundary of
the strip 〈b, e〉. With the exception of the initial strip, each strip 〈b, e〉 has an adjacent strip 〈e, f 〉, so intersections
at x = e will be found while processing 〈e, f 〉 (this also prevents intersections from being reported more than once).
To identify intersections on the right boundary of the initial strip 〈b, e〉, we first note that the value of e is given by
the rightmost x-coordinate of any input segment. Thus, an intersection at x = e corresponds to coinciding endpoints
at x = e. To prevent this from happening, we simply add a horizontal dummy segment to the right of the bounding
box containing all segments such that the right boundary of the initial strip is strictly to the right of x = e. Since this
segment does not introducing new intersections, it does not affect the output and does not asymptotically increase the
time and space complexity of the algorithm. Alternatively, we could also identify the segments ending at x = e and
use a sorting-based approach to identify all intersections in a post- or pre-processing step.
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