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c Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo, 3 I-56127 Pisa, Italy

Received 1 January 2004; received in revised form 1 May 2005; accepted 1 June 2005
Available online 12 September 2005
Abstract

The pattern recognition problem in Ring Imaging CHerenkov (RICH) counters concerns the
identification of an unknown number of rings whose centers and radii are assumed to be unknown.
In this paper we present an algorithm based on the possibilistic approach to clustering that automat-
ically finds both the number of rings and their position without any a priori knowledge. The algo-
rithm has been tested on realistic Monte Carlo LHCb simulated events and it has been shown very
powerful in detecting complex images full of rings. The tracking-independent algorithm could be
usefully employed after a track based approach to identify remaining trackless rings.
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1. Introduction

The LHCb experiment [2] (A Large Hadron Collider Beauty Experiment for Precision

Measurements of CP-Violation and Rare Decays) at CERN (Geneve, Switzerland) is ded-
icated to the study of CP-Violation in the B-meson system [1].

Two Ring Imaging CHerenkov (RICH) counters [3] will carry the very important task
of identifying the type of stable charged particles (p,K,p,l and e) for LHCb.

If a charged particle goes through a dielectric material at a speed greater than the speed
of light in this material, photons are emitted at a characteristic angle. This characteristic
Cherenkov angle hc is given by coshc = 1/(bn) where bc is the velocity of the charged par-
ticle in the medium with index of refraction n. By a clever arrangement of mirrors, the
radiated Cherenkov photons are reflected and focused on a detector plane keeping their
circular distribution. To optimally carry on the identification task, LHCb is instrumented
with two RICHes [7,8]. RICH1 has two radiators (Aerogel with n = 1.03 and C4F10 with
n = 1.0014) while RICH2 has only one radiator (CF4 with n = 1.0005).

In LHCb collaboration an algorithm based on the knowledge of the particle track has
been already prepared [4,5] for the Cherenkov rings detection. Its performances are satis-
factory except while the information about the tracks are unreliable or completely missed.

In this paper, we present a new approach to the pattern recognition in RICH counters
based on the possibilistic approach to clustering [6,13]. This algorithm works without track-
ing information and is able to find automatically the number of rings and their position
without using information given by the tracking system.

In the next section, relevant aspects of RICH1 and RICH2 for the pattern recognition
problem will be summarized. In Section 3, we will present the generic clustering problem
and we will describe in details the possibilistic algorithm we developed for the pattern rec-
ognition problem. In Section 4, we will describe the realistic LHCb simulated data used
while in Section 5 we will develop the application of the clustering algorithm and we will
present results. In Section 6, a comparison between the possibilistic and the track based
algorithm performances will be given. Finally, we will summarize the main results
achieved in Section 7.

2. RICH1 and RICH2

2.1. Detectors

RICH1 provides the identification of low-momentum tracks [7–9]. The detector is split
into two halves on either side of the beam axis. The optical system consists of a single
focusing mirror, tilted, reflecting Cherenkov photons onto a photodetector plane. Unfor-
tunately, for a tilted mirror, the focal surface is no longer spherical and as a result distor-
tions are introduced to the ring image: rings take roughly elliptical shapes. Moreover, the
presence of two focusing mirrors, one for each side of the beam pipe, causes that tracks
passing close to their interface could generate images in both photodetectors. The detector
layout leads to the consequence that the produced rings could be incomplete and then the
pattern recognition must be able to recognize not only distorted rings but simple arcs too.
From simulation studies [10], for b � 1 tracks (saturated tracks) the mean number of
detected photoelectrons is estimated to be 6.9 for the aerogel and 35.3 for the C4F10.
Taking into account that for these tracks Cherenkov angles are about 242 and 53 mrad
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respectively and the azimuthal distribution of photons is stochastic, a typical event in the
RICH1 is a collection of small diameter somewhat densely populated rings from the C4F10
radiator and larger but more sparsely populated rings from the aerogel radiator.

RICH2 provides the identification of high-momentum tracks. The optical system con-
sists of a spherical mirror and a flat mirror for each side of the beam pipe. For a saturated
ring, 19.1 detected photoelectrons and a Cherenkov angle of about 32 mrad are expected
[10]. As a consequence a typical event in the RICH2 is a collection of only one type rings
radiated from the gas.

Obviously, noisy signals are expected such as backscattered charged particles whose sig-
nal will be galaxy-like with a radius between about 1/2 (RICH1) and about 1/10 (RICH2)
of the typical radius of a regular ring. Another important difference in shape between noisy
galaxies and rings is that the first ones are filled with detected photons.

The Monte Carlo studies presented in this paper are related to the state of apparatus as
of the Technical Proposal. Since then, an optimization process undertaken by the collab-
oration and principally aimed to reducing materials in the experiment has slightly changed
the typical numbers given above but without significant effects for this presented study.

2.2. Pattern recognition in RICH counters

The pattern recognition problem in RICH counters can be stated as to identify an
unknown number of imperfect but roughly elliptical rings made of a low number of
discrete hits in presence of background.

An algorithm using the knowledge of the particle track has been developed inside
LHCb collaboration [4,5]. It compares the number of detected photoelectrons in the
photodetectors with the expected number based on the tracks reconstructed. Assignments
to all tracks are treated simultaneously (global approach) and a global log-likelihood fit
function minimized. For each track, 5 mass hypothesis can be made (l,p,K,e,p). For n
tracks in a given event the number of possible event hypothesis becomes 5n. It is therefore
infeasible to fully investigate the hypothesis space due to the exponential growth in the
number of combinations to be checked. Since the most numerous particles are pions,
the global algorithm starts by assuming that all tracks in the event are pions and the
log-likelihood for such an event is calculated. For each track the mass hypothesis is then
changed and the track is successively supposed to be muon, kaon, electron or proton. The
4n new log-likelihood for the 4n corresponding hypothesis are recalculated. The mass
hypothesis causing the highest increase in the likelihood is accepted and the procedure
is repeated until no further improvement in the likelihood is achieved. Doing so, the algo-
rithm converges to the local maxima close to the starting hypothesis. The global algorithm
gives good but not perfect results, because it requires to know the reconstructed tracks and
hence is sensitive to the tracking system efficiency.

3. Possibilistic clustering

Clustering is a computer-science and mathematical notion for the broad idea of group-
ing similar objects in the same set. In the frame of Pattern Recognition, such an object is
named data point and the set is named class or cluster. The whole set of all data points
under consideration is a database. The grouping operation aims to recognize common
traits shared by the data points of a given class and to group peculiar data points con-
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tained in an unlabeled database (training set) into different classes. In the case of pattern
recognition in RICH counters, a database is a list of hits in a given photodetector plane, a
data point is a single hit and a cluster is a ring. To perform this classification, in this paper,
we will present a fully automatic algorithm, a so called unsupervised technique. The group-
ing is obtained via the minimization of a given cost function on the basis of an assigned
criteria of similarity among data points. The notion of similarity is practically anchored
by defining a distance between data points.

Supposing that N data points must be classified into C classes, the possibilistic clustering
formulation [6,13] assumes that each data point could belong simultaneously to several
clusters but with a different degree of membership. So it is possible to introduce a fuzzy
membership matrix, U = [ujk], of dimension N · C, whose elements ujk represent the
membership of the kth data point to the jth cluster and whose values belong to the con-
tinuous range (0,1]. This approach is based on the assumption that the membership value
of a data point in a cluster is absolute and it does not depend on the membership values of
the same data point in any other cluster, in other words each cluster existence is indepen-
dent of the other ones. The possibilistic constraint is the set of the following conditions:

ujk 2 0; 1½ � 8j; k;

0 <
XN
k¼1

ujk < N 8j;

max
j

ujk > 0 8k.

ð1Þ

The third constraint in Eq. (1) is a relaxation of the probabilistic constraint
ð
PC

j¼1ujk ¼ 1 8kÞ that would introduce, via the summation, a dependence of membership
values on the relative distances among classes—which is a feature that we want to discard
in this paper.

By choice, noise figures are not grouped in a dedicated class, hence, a noise data point
should have a low membership in all clusters. Representative data points of rings could
have high memberships to several clusters non exclusively.

In the next subsection we show the main characteristics of the possibilistic C-spherical
shells (PCSS) algorithm [6], introduced in 1993 for the spherical shell clusters detection
problem, and we discuss its main aspects. For the RICH rings clustering we had to face
some peculiar problems and we developed an algorithm by extending the PCSS. In Section
3.2 we present the enhancements we added in order to face the particular problem of the
Cherenkov rings.
3.1. Possibilistic C-spherical shells algorithm

The possibilistic C-spherical shells algorithm searches for cluster prototypes bj consist-
ing of the couple (cj, rj), where cj is the geometrical center and rj the radius of the jth ring.
The algorithm aims to find a partition of the given training set, by minimizing an ad hoc
function iteratively.

Given a generic xk, belonging to a set Y of N data points, an Euclidean distance mea-
sure from the jth prototype can be defined as

d2
jk ¼ d2ðxk; cj; rjÞ ¼ ðkxk 
 cjk2 
 r2j Þ

2. ð2Þ
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The objective function iteratively minimized is

JðU ;YÞ ¼
XC
j¼1

XN
k¼1

ujkd
2
jk þ

XC
j¼1

gj

XN
k¼1

ðujk ln ujk 
 ujkÞ; ð3Þ

where the first term demands the minimization of the distance from the data points to the
prototypes (with weighting factors ujk) while the second one, independent of the prototype
parameters and the distance measure, is a monotone function in (0,1] that forces the mem-
bership values ujk to be as large as possible in order to avoid the trivial solution 0. Finally
the gj parameters must be chosen a priori and play a central role; formally they are regu-
larization parameters. They represent the weight of the second term in the objective func-
tion with respect to the first one. In order to weight the two terms equally, gj should be
chosen of the order of d2

jk. If clusters with similar distributions are expected, the various
gj should have similar values.

Rewriting the distance (2) in the so called algebraic form

d2
jk ¼ pTj Mkpj þ vTk pj þ bk; ð4Þ

where

bk ¼ ðxT
k xkÞ2; vk ¼ 2ðxT

k xkÞyk; yk ¼
xk

1

� �
; Mk ¼ yky

T
k ; pj ¼


2cj

cTj cj 
 r2j

" #
; ð5Þ

the vectors pj minimizing the objective function (3) are given by

pj ¼ 
 1

2
ðHjÞ
1xj; Hj ¼

XN
k¼1

ujkMk; xj ¼
XN
k¼1

ujkvk; ð6Þ

while the update equations for ujk are

ujk ¼ exp 

d2
jk

gj

 !
. ð7Þ

Table 1 shows the main steps of the basic PCSS algorithm. In particular we want to
point out that the initial number of rings has to be (over)estimated. In the possibilistic
frame, each prototype is independent of the other ones and then more than one prototype
Table 1
The PCSS algorithm

(1) Initialize the number of rings;
(2) Initialize the centers coordinates and radii values;
(3) Estimate gj parameters values;
(4) do until no more prototype changes (within a fixed preset threshold);

(a) update the centers coordinates and radii values using Eqs. (5) and (6);
(b) update the membership values of all data points to all rings using Eq. (7);

(5) end do

(6) assign the data points with high membership values to the corresponding rings;
(7) do not assign the data points with low membership values to any ring (noise).
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may converge into the same cluster. The identification of identical solutions leads to the
automatic determination of the number of clusters present in the database.
3.2. Extended PCSS algorithm

For the RICH rings clustering we developed an algorithm whose core is the PCSS. In
particular we embedded the PCSS inside an iterative loop. At each iteration a certain num-
ber of rings is detected and data points with a high membership removed from the data-
base. In the following we will describe briefly the additional steps. For a fully detailed
description of the whole extended algorithm see [14].

3.2.1. Heuristics for evaluating gj parameters
For the gj parameters, we introduced an ad hoc definition for the case of spherical shell

detection. Interpreting the distance of a generic data point x from the center of the cluster
as function of a radius percentage pðkx
 cjk2 ¼ r2j � pr2j Þ and using Eq. (7), we can link
the gj with the value for which the membership value of a point to a cluster becomes
1/2. Accordingly, we set

gj ¼
p2

ln 2
r4j . ð8Þ

Hence, tuning the p parameter is analogous to controlling the fuzziness of the clusters and
then the smearing of the hits across the rings. In other words, gj corresponds to a zone of
influence of the cluster. Moreover, we inserted the computation of the gj parameters inside
the do loop of the PCSS in order to update the corresponding values at each iteration.

3.2.2. Space transformation

We introduced a pre-processing step on the data by a space transformation

x0 ¼ axþ b;

y0 ¼ affiffiffiffiffiffiffi
1
e2

p y þ cffiffiffiffiffiffiffi
1
e2

p ;

(
ð9Þ

where e is the expected eccentricity (e � 20%) of the detected elliptical rings and a, b and c
are scale and translation parameters.

Because of the influence of the parameters gj, the algorithm is not really sensitive to
non-circularity of the figures looked for, but the above transformation reshapes ellipse-like
figure in a non-perfect ring which helps the algorithm. Another way would be to change
the d2

jk formula (Eq. (2)) to take directly into account the actual elliptic shape. It would
have the disadvantage to make Eq. (4) much more complex.
3.2.3. Initialization step
The initialization step is necessary to set an initial overestimated number of rings and

their prototypes as starting point. The PCSS is very sensitive to the initialization step, an
inaccurate initialization can degrade its performances. We chose the analytic initialization
suggested by Muresan in [15].

Given three non-collinear points A(x1,y1), B(x2,y2) and C(x3,y3), there is only one ring
passing through them. Its center coordinates (x0,y0) and radius r are given by the formulas
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x0 ¼
1

2

ðx22 
 x23 þ y22 
 y23Þðy1 
 y2Þ 
 ðx21 
 x22 þ y21 
 y22Þðy2 
 y3Þ
ðx2 
 x3Þðy1 
 y2Þ 
 ðx1 
 x2Þðy2 
 y3Þ

; ð10Þ

y0 ¼
1

2

ðx21 
 x22 þ y21 
 y22Þðx2 
 x3Þ 
 ðx22 
 x23 þ y22 
 y23Þðx1 
 x2Þ
ðx2 
 x3Þðy1 
 y2Þ 
 ðx1 
 x2Þðy2 
 y3Þ

; ð11Þ

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi 
 x0Þ2 þ ðyi 
 y0Þ

2
q

i ¼ 1; 2; 3. ð12Þ

For each data point in the database, the algorithm looks for the two nearest neighbors and
proceeds to (x0,y0, r) calculation using Eqs. (10)–(12). Only if r assumes a physically pos-
sible value (x0,y0, r) is taken as initial prototype.

3.2.4. Cardinality and collapse criteria

After the basic PCSS, with the realistic Monte Carlo data, in the set of reconstructed
ring candidates, usually the number of correct ones are less than the expected ones and
a certain number of them are completely wrong. To distinguish between good and bad
rings, we introduced the so called Cardinality Criterion. We have observed that noisy rings
are generally less densely populated than the right ones. Via a threshold parameter, an
automatic selection of right rings is possible. If the cardinality of a ring is greater than
the threshold, the ring is accepted, otherwise it is rejected. Besides that, in the set of ac-
cepted rings, the algorithm may find many times the same ring. A Collapse Criterion is
introduced to identify coincident rings: two rings are identical if their distance in a
three-dimensional space (cj, rj) is less than another fixed threshold.
3.2.5. a-cut and stop condition
After the previous double selection, hits belonging to good rings have very high mem-

bership values and can be removed from the database if overpassing a threshold, the so
called a-cut. Doing so, the database is cleaned from the data points associated to unques-
tionable rings. In order to find the remaining rings, it is necessary to reiterate the PCSS
algorithm on the new cleaned database (the number of rings to be found now depends
on the surviving hits).

At each step, the algorithm can find a certain number of correct rings and at each step
the database cardinality and the number of undetected rings progressively diminish. The
algorithm ends up when the remaining patterns are supposed to be outliers (the number
of surviving data points is less than some fixed threshold) or when the cardinality thresh-
old, decreased step by step, reaches a minimal value that we set to 6. The algorithm is rather
sensitive to this value.

Note that the cardinality threshold is progressively decreased to allow the algorithm to
find, first of all, well defined rings, and then the less populated ones. In particular, in the
last iterations, the cleaned database may consist of rings with holes and arcs that are frag-
ments of rings already recognized and removed. It is worth noting that the algorithm can
infer perfectly valid rings from points forming partial rings (arcs).

3.2.6. Filters

At the very end, two filters examine the whole set of recognized rings and eventually
reject ghosts or contaminations. One filter rejects rings with points too close in azimuth,
the other one rejects rings sharing their whole set of hits with other valid rings.
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4. Application to LHCb simulated data

The algorithm depends on 10 critical parameters: number of initial rings, threshold for
the cardinality, updating rule for the cardinality threshold, threshold for the collapse,
accuracy in the PCSS stop condition, threshold for the a-cut, influence region for the
prototypes, minimum number of surviving data points, filter on the azimuthal distribution
and filter on shared points.

Hence, the algorithm has to be tuned first by using synthetic databases [11,12], and next
by using more realistic data coming from LHCb Monte Carlo simulation. The data refer
to the Monte Carlo simulation as of April 2000.

4.1. Data analysis

We tested the algorithm on the whole database but, in principle, it is an intrinsic limit of
the algorithm, to find rings populated by less than 6 hits, in fact, as we explained previ-
ously (Section 3.2.5) we had to fix a lower limit for the minimal cardinality of the rings
to be detected and we set this parameter to that value. Close inspection of Fig. 1(a) and
(b), allows to evaluate the percentage of expected rings with more than 6 hits per ring
and then the realistic potentialities of the algorithm. In RICH1, from gas 83% of rings ver-
ify this condition, while this percentage is only 13% for the aerogel. In RICH2, the distri-
bution of hits per ring is rather uniform (no evident peak), 71% of rings have more than 6
associated hits. Note that the same ring could have several hits in a photodetector plane
and very few in the other one. We consider images, from each photodetector plane, sep-
arately. As a consequence, a ring, giving less than 6 hits in a photodetector plane (that
we can not find), may have a twin ring very populated in the other one (and then
detectable).

4.2. Sources of noise

Noise is included in the Monte Carlo (photoelectrons from backward track, incident
background photon, photoelectrons/background from incident background non-photon,
Rayleigh scattering, backscattered photoelectrons and other stochastic noise). The main
source of noise are galaxies-like figures on the detector planes.

In a preliminary study [11,12], we have proven that the PCSS algorithm, and the ex-
tended ring detector algorithm we prepared, are very robust to the presence of uniform
noise (no degradation up to 80% of noise). However their performances could be dramat-
ically degraded by the presence of localized clusters of noise data points. These galaxies, in
fact, constitute strong attraction poles that could induce the algorithm to place rings
across them. It is then necessary to reject them, at least partially. In a pre-processing step,
the algorithm looks for these galaxies, by searching for small areas, characterized by high
density of points. This procedure is rather efficient in RICH2 data but not in RICH1
where the overlapping among rings is such that the distinction between high density due
to galaxies or ring superposition is ambiguous.

This brief discussion about the strong presence of noise in RICH1 images and previous
remarks about the number of hits per ring, leads to an important conclusion: it is practi-
cally impossible, for our algorithm, to detect rings radiated from aerogel. As we have
remarked, only 13% of such rings have more than 6 hits per ring (but at most 10–11)



(a)

(b)

Fig. 1. (a) RICH1. Histogram of the number of hits per ring from GAS and AEROGEL. Total rings are 377
for GAS and 363 for AEROGEL. (b) RICH2. Histogram of the number of hits per ring from GAS. Total rings
are 200.
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and, furthermore, RICH1 images are generally affected by hundreds of noisy data points,
not always rejectable. It is impossible to distinguish a circular long radius shape, made of
only 7–8 hits. For these reasons, in the following, we will waive to detect aerogel rings.
Undetectable aerogel hits constitute an additional source of noise.

5. Results on RICH data

In the previous section, we have quantified the percentages of rings effectively detectable
by the algorithm. Its performance is then evaluated with respect to these values and then



Table 2
Efficiency

Expected rings in RICH1 (GAS) 312
Detected rings in RICH1 (GAS) 241
Efficiency (%) 77

Expected rings in RICH2 141
Detected rings in RICH2 141
Efficiency (%) 100

Values refer to the set of detectable rings, excluding rings with less than 6 hits per ring.
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summarized in Table 2. Performances are excellent in detecting RICH2 rings, finding all
the expected rings (efficiency of 100%). The performances are poorer in RICH1, where
the number of detected rings corresponds to an efficiency of 77%.

In RICH2 the algorithm is able to find the correct solution in almost any conditions:
huge overlapping, presence of galaxies, few points per ring, presence of arcs instead of
complete rings. However, we should not forget that RICH2 data are nearly free of noise
and the few present galaxies can be easily rejected.

Processing RICH1 data, the algorithm faced more difficulties than in RICH2. As pre-
viously described, the presence of a high level of noise and its localization in galaxies
turned out to be the limiting factor. Analyzing the output of the algorithm, we can say that
its performances are still very good in presence of very populated rings, even in presence of
overlapping. But it shows problems in recognizing rings with less than 10 hits. Moreover,
differently from RICH2 data, the overlapping among rings can be of an unacceptable level
for the algorithm.

In Figs. 2–4, three examples of clustering are shown. Fig. 2 refers to a RICH2 image
while the other ones refer to different difficulty levels in detecting rings in RICH1. All
the graphics are plotted in the transformed space (Section 3.2.2) in arbitrary units.
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Fig. 2. RICH2. (a) Input database. (b) Solution found superimposed to the database. In this example 13 rings
were expected, but only 12 with more than 6 points. The algorithm finds all the 12 well populated rings. The
quality of the solution is evident, especially in the region of high overlapping and in the border regions where hits
describe arcs and not complete rings.
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Fig. 3. RICH1. (a) Input database. (b) Solution found. The expected rings are 10, while the algorithm finds 9. In
this simple example, there is no high overlapping among rings, but we can appreciate how the algorithm is able to
approximate the ellipses by rings, in the upper part of the image (b). We can also appreciate the presence of two
big galaxies in the left upper part of the figures and a general level of noise higher than the one of Fig. 2.
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Fig. 4. RICH1. (a) Input database. (b) Solution found. This example is a very complicated case with high overlap
and high number of rings to be found. The overlap is huge and it seems impossible, in some regions, to distinguish
different circular shapes. The expected rings were 42 but the algorithm finds 33. The lost rings are populated, in
most cases, by less than 10 hits.
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6. Possibilistic versus global algorithm

In the previous section we have shown the algorithm potentialities. We have underlined
the quality of the performed clustering in RICH2 counter and highlighted its limits in clus-
tering RICH1 data. But how may it be effectively useful in Pattern Recognition in RICH
counters?



Table 3
Comparison between possibilistic and global algorithm performances

Global (%) Possibilistic (%)

Lost rings in RICH1 (GAS) 35 36
Lost rings in RICH2 29 29

Values refer to the whole set of rings to be found, including rings with less than 6 hits per ring.
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Fig. 5. The PCSS algorithm may be usefully applied in sequence after the track based algorithm.
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The usual algorithm for the Pattern Recognition in RICH counters inside LHCb col-
laboration is the global approach based on the knowledge of the particle track (Section
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2.2). This algorithm, however, is not able to detect rings generated by tracks that the track-
ing system did not reconstruct. It is completely dependent of the tracking system. We
postulated that our algorithm could be usefully employed in a second step after the global
approach. Hence using track information several rings could be detected, and then re-
moved from the database by the global approach algorithm. At this stage the possibilistic
algorithm could detect the remaining ones. For this reason, we have, first, compared the
results of the algorithm with the output of the global algorithm, and, then, evaluated its
performances when applied in sequence to the global approach.

As we can see in Table 3, in RICH1 35% of the rings are associated to tracks not recon-
structed, while for RICH2 the corresponding value is 29%. Using the possibilistic
algorithm, we reach values absolutely comparable taking into account the undetectable
rings too (the ones with less than 6 hits per ring). It is worth noting that our algorithm
reaches these values without using any kind of information about the track and then about
the position of centers. Besides that, values for wrong/lost rings from global approach dra-
matically increase considering the cases in which the particle assignment is wrong. Suppos-
ing that the possibilistic algorithm would be applied in a second step, after the global
approach, let consider the case in which the global algorithm seems to give the worst
results. In Fig. 5(a) the whole database is shown. 45 rings are expected (35 with more than
6 hits) and PCSS algorithm alone finds 27 when applied to the whole dataset (Fig. 5(b)).
The global algorithm alone detects 17 rings and misses 28. In Fig. 5(c) we plotted the
new database obtained considering only the 28 rings not detected by the global approach
and all the noise sources. Among them, 19 have more than 6 points. The possibilistic algo-
rithm applied to this reduced database detects now 16 rings (Fig. 5(d)). Hence, the two
algorithms in sequence detect 33 rings with more than 6 hits. From this example, it is
evident that by using the two algorithms in sequence, it is possible to solve also very com-
plicated cases that, separately, none of them could solve well. Besides that, we would
underline, once more, that fragments of very few points in a plane (and then not detectable
or lost) could be associated to well populated rings in the other one. Hence, even though
we can not detect them in a plane, we can do it in the other one.

7. Conclusions

In this paper, we addressed the pattern recognition problem in RICH counters.
In the case of Cherenkov rings detection we have presented results using a clustering

algorithm, whose core is the possibilistic C-spherical shell algorithm, to recognize rings
on images without any preliminary knowledge of number and position of the rings. The
algorithm has been shown very powerful in detecting complex images full of rings. Besides
that, the rings are not requested to be complete, only arcs are sufficient to recognize the
underlying rings. The fuzziness included in the algorithm adds tolerance to the imperfect
circular shape of the rings and to the intrinsic scattering of Cherenkov photons. The algo-
rithm has been tested on realistic Monte Carlo LHCb simulated events. Its performances
are excellent in detecting RICH2 rings. It is able to find the correct solution in almost any
conditions: huge overlapping, presence of galaxies, few hits per ring, presence of arcs in-
stead of complete rings. Processing RICH1 data, the first conclusion we have made is that
because of the strong presence of noise in RICH1 images and low number of hits per ring,
it is impossible, for the proposed algorithm, to detect rings from aerogel radiator. On the
contrary, its performances are still very good in detecting rings from gas radiator, even in
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presence of overlap. Anyway the presence of a high level of noise and its localization in
galaxies, turned to be a limiting factor in RICH1 images. The usual algorithm for the
Pattern Recognition in RICH counters inside LHCb collaboration is the so called global
approach based on the knowledge of the particle track. This algorithm, however, is not
able to detect rings generated by tracks that the tracking system did not reconstruct.
We have shown that the algorithm described in this paper could be usefully employed
in a second step after the global approach. Hence, using track information several rings
could be detected by the global algorithm, and then removed from the database. At this
stage the extended PCSS algorithm could detect the remaining ones.

References

[1] J.H. Christenson et al., Phys. Rev. Lett. 13 (1964) 138.
[2] The LHCb Coll., LHCb Technical Proposal, CERN/LHCC/98-4.
[3] T. Ypsilantis, J. Seguinot, Nucl. Instrum. Meth. A 343 (1994) 30.
[4] R. Forty, Ring-imaging Cherenkov detectors for LHC-B, LHC-B/96-5 RICH/96-1.
[5] R. Forty, O. Schneider, RICH pattern recognition, LHCB/98-040 RICH.
[6] R. Krishnapuram, J.M. Keller, A possibilistic approach to clustering, IEEE Trans. Fuzzy Syst. 1 (2) (1993)

98–110.
[7] G.J. Barber et al., The mechanical design of RICH-1, LHCb 2000-077 RICH.
[8] LHCb RICH Group, LHCb RICH 2 Engineering Design Review Report, LHCb EDR 2002-009.
[9] The LHCb Coll., LHCb RICH Technical Design Report. CERN/LHCC 2000-037, LHCb TDR 3,

September 7, 2000.
[10] M. Adinolfi et al., A simulation study of the LHCb RICH performance, LHCb 2000-066 RICH.
[11] A.M. Massone, L. Studer, F. Masulli, Pattern recognition in RICH counters using the possibilistic

C-spherical shell algorithm, in: Proceedings of the Fourth International Conference on Knowledge-Based
Intelligent Engineering Systems & Allied Technologies (KES�2000) Brighton, IEEE 2000, UK, pp. 792–795.

[12] A.M. Massone, L. Studer, F. Masulli, Possibilistic rings detection for RICH pattern recognition, in:
Proceedings of the Eusflat 2001 International Conference in Fuzzy Logic and Technology, 2001, pp. 63–66.

[13] R. Krishnapuram, J.M. Keller, The possibilistic C-means algorithm: insights and recommendations, IEEE
Trans. Fuzzy Syst. 4 (3) (1996) 385–393.

[14] A.M. Massone, A study of soft computing clustering methods with illustrative applications in segmenting
MR images and detecting trackless ring for RICH detectors, PhD Thesis, Université de Lausanne, Lausanne,
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