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Abstract 

The shape of a protein is important for its functions. This includes the location and size 

of identifiable regions in its complement space. We formally define pockets as regions in the 

complement with limited accessibility from the outside. Pockets can be efficiently constructed by 

an algorithm based on alpha complexes. The algorithm is implemented and applied to proteins 
with known three-dimensional conformations. 1998 Published by Elsevier Science B.V. All 

rights reserved. 

Kq~roru’s: Combinatorial geometry and topology; Algorithms; Molecular biology; Molecular 

modeling; Docking; Space filling and solvent accessible models; Voronoi cells; Delaunay simplices; 

Alpha complexes 

1. Introduction 

The motivation for the work reported in this paper is the apparent difficulty to talk in 

mathematically concrete terms about intuitive geometric concepts sometimes referred 

to as ‘depressions’, ‘canyons’, ‘cavities’, and the like. In topology, the notions of 

homotopy and homology have long been used to define and study (perfect) holes of 

various types and dimensions. We are after a definition and study of imperfect holes, 

of regions people would instinctively refer to as holes although they are neither holes 

in the homotopical nor the homological sense. 
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Observations about common language reveal a great deal of confusion (or hidden 

wisdom?) on what holes are. A hole in the ground is usually a depression deep or big 

enough so we would care about its existence. The fact we can fall into but not through 

it reveals it is not a hole in a topological sense. Or consider exploding a balloon by 

poking through its surface with a needle. The needle connects the hole holding the 

balloon’s air with the outside. Topologically, poking a needle through the surface re- 

moves rather than creates a hole. 

Pockets in proteins. The study of imperfect holes in this paper focuses on proteins 

and other macromolecules. The ideas are more general though and can be extended to 

other 3-dimensional shapes and to higher dimensions. 

The functions of a protein are determined through its interaction with other molecules. 

Such interactions happen frequently in protected yet accessible regions of appropriate 

size and shape. The shape complimentary between such a protected binding site and 

the ligand is largely responsible for the specificity observed in protein-ligand/protein 

interactions. There are also the less frequent situations where the binding ligand sits in 

an isolated cavity/void and is completely engulfed by the protein (such as the Xe bind- 

ing sites in myoglobin). For such cases, we refer to our earlier results in cavity/void 

identification and their area and volume measurements [lo]. The above intuitive but 

vague description of protein binding pockets is certainly not sufficient to distinguish 

protected regions from unprotected ones, or to specify the precise location and extent 

of a protected region once it is identified. In this paper, we will formally define pockets 

as regions in the complement space with limited accessibility from the outside. The 

definition deliberately excludes shallow valleys or depressions. Although there are also 

binding sites of the latter type, their determination will either require a priori knowl- 

edge or an extension of the ideas described in this paper. 

Intuition. The following intuition guides our formulation of an unambiguous cri- 

terion. We declare a region in the complement a pocket if it can be reached only 

via relatively narrow pathways: “all paths into the pocket get narrow before they get 

wider”. This intuition can also be captured through a continuous growth process that si- 

multaneously thickens every part of the protein: “a pocket becomes a void inaccessible 

from the outside before it disappears”. 

It is clear that considerations based on relative distance are required to make this in- 

tuition concrete and algorithmically useful. Such considerations are expressed in terms 

of Voronoi cells [24] and Delaunay simplices [6]. These are key concepts in this paper 

and they play a crucial role in defining, delimiting, and algorithmically constructing 

pockets. The algorithm is implemented and sample applications to proteins whose co- 

ordinates are available from the protein databank are given. 

Outline. Section 2 discusses common sphere models of molecules and their rela- 

tionship to Voronoi cells. Section 3 describes dual sets and complexes of simplices. 

Section 4 defines pockets based on an acyclic relation over the Delaunay tetrahedra. 
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Section 5 presents an algorithm constructing pockets. Section 6 reviews problems on 

proteins where pocket computations have led to new insights. Section 7 mentions pos- 

sible extensions of this work and directions for further research. 

2. Spherical hall models 

It is common in biology to represent an atom by a spherical ball and a molecule by 

a union of balls. Geometric models of this type go back to Lee and Richards [ 151 and 

Richards [20]. For a fixed set of atom centers, the space jilling model uses van der 

Waals radii, see e.g. [5, Chapter 41, to unambiguously specify the balls and thus their 

union. The solvent accessible model increases radii to reflect accessibility for a solvent, 

itself modeled as a spherical ball. This section introduces the geometric terminology 

necessary to talk about these models and their relationship to Voronoi cells. 

Distance and growth. The Euclidean distance between points x, y E lR3 is denoted 

by /x - yl, and the (spherical) ball with center z E [w3 and radius r E R is 

b(z,r)={xER311x-zl<r}. 

The union of a finite set B of balls is UB= {x E R3 jx E b E B}. The complement, 

[w3 - UB, consists of one or more components. Exactly one component is unbounded 

and usually referred to as the outside. The other components are bounded and referred 

to as voids of UB. Fig. 1 shows the union of a set of 2-dimensional balls or circular 

disks. 

The solvent accessible model differs from the space filling model by the size of the 

balls; the centers are the same. This suggests we consider the union while growing the 

balls continuously and simultaneously. As the balls grow the union grows and the voids 

shrink. Which voids appear depends on the relative growth. We find it convenient to 

grow the balls such that the circles where two spheres meet sweep out a plane. 

Fig. 1. The union of 16 disks is connected and decomposes its complement into 1 unbounded component 

(the outside) and 2 bounded components (voids). 
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Fig. 2. The 16 disks in Fig. I define a decomposition of R* into 16 Voronoi cells. 

The growth is controlled by a real parameter ~1~. Formally, we choose CY from [WI/*, 

that is, c( is either a non-negative real or it is a positive real multiple of the imaginary 

unit, J-1. Define b,(z, Y) = b(z, v?%?) and 

If r2 + u2 < 0, the radius is imaginary and b, = bcc(z, r) is empty. In this case, b, does 

not contribute to UB, but it does influence the formation of pockets. This makes sense 

since we argue pockets are regions that will become voids in the future. Future is 

defined in the direction of increasing LX~, and b, is born when cz2 passes -r*. 

Yoro~oi cells. Define the distance of a point x E Iw3 from a ball b = b(z,r) as 

zb(x) = Iz - xl2 - r2 and note it is defined even if r2 < 0. In general, x E b iff Q,(X) < 0. 

The Voronoi cell of b E B is 

In words, 6 is the set of points x at least as close to b as to any other ball in B. 

Define Vor B = { 5 1 b E B}. The set of points with equal distance from two balls form 

a plane. It follows V, is the intersection of finitely many closed half-spaces and hence 

a convex polyhedron. Voronoi cells overlap at most along their boundary, and together 

they cover the entire space: [w3 = UVor B, see Fig. 2. The vertices, edges, and facets 

of the Voronoi cells are referred to as Voronoi vertices, Voronoi edges, and Voronoi 
facets. It is convenient to assume general position so every Voronoi edge belongs to 

exactly 3 Voronoi cells and every Voronoi vertex belongs to exactly 4 Voronoi cells. 

Observe a point x E Iw3 is simultaneously contained in a ball c E B and the Voronoi 

cell Vb of b # c only if ~Q,(x) <z,(x) 60. This implies x E b. In other words, Vh n 
UB = V, n b for every b E B. The sets Rb = &, n b are convex and any two overlap at 

most along their boundary. Define Res B = {Rb I b E B} and note it covers the union of 

balls: IJB = URes B, see Fig. 4. 
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The growth process is defined so Voronoi cells do not change. Indeed, rch(x) d q(x) 

iff nhz(x) 6 Q(X), and therefore Vor B = Vor B, for every GI E R”*. This will be im- 

portant later when we take advantage of the fact the same Voronoi cells decompose 

every UB, into convex cells. 

3. Simplex collections 

The connectivity of a union of balls can be expressed by a collection of simplices 

that keeps track of which cells Rb overlap. This collection is used to represent the 

union. Similarly, sets of simplices are used to represent voids and later pockets. We 

begin by introducing some general terminology. 

Simplicial complexes. An abstract simplicial complex is a finite system of sets, &, 

with X E ~4 and Y C X implying Y E .c4. X E & is referred to as an abstract simplex 

and its dimension is dim X = card X - 1. The vertex set is Vert J&’ = ULZI. A subcomplex 

is an abstract simplicial complex 3 C &‘. For example, if S is any finite set, then the 

Izerue of S, 

is an abstract simplicial complex with vertex set S. The nerve of every subset of S is 

a subcomplex of Nrv S. More generally, if S’ is a collection of sets and i : S’ + S is an 

injection with a’ & i(a’) for each a’ E S’ then Nrv S’ is isomorphic to a subcomplex of 

Nrv S. Indeed, .%? = {X C S 1 X = i(X’),X’ E Nrv S’} is clearly a subcomplex of Nrv S 

and isomorphic to NrvS’. 

Every abstract simplicial complex, &‘, can be realized geometrically by a collection 

of simplices in R d, for some finite dimension d. The elements of Vert .d are represented 

by points, and an abstract simplex, X E &, is represented by the convex hull of the 

corresponding points. Provided d is large enough, the points can always be chosen 

so the convex hull is a simplex of dimension dimX and no two simplices intersect 

improperly. Formally, let I : Vert .d + Rd be an injection so 

conv z(X) n conv z(Y) = conv r(X n Y) 

for all X, Y E J$‘. The resulting set of simplices, 

.K = {conv z(X) /X E ,d}, 

is a (geometric) simplicial complex. The underlying space of LK is the union of simplex 

interiors: 137 I= UaEx int Q. In the case of a simplicial complex, the union of interiors 

is the same as the union of simplices. A subcomplex of .K is a set {conv z(X) 1 X E B}, 

$3 a subcomplex of JZZ. 
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Fig 3. The Delaunay complex of the 16 disks in Fig. 1. 

Delaunay simplices. We form simplices by taking convex hulls of 1,2,3, or 4 ball 

centers. The collection of such simplices reflecting the overlap relation among the 

Voronoi cells is a complex which is now formally introduced. 

Let B be a finite set of balls in [w3, assume general position, and recall Vor B is the 

set of Voronoi cells. The nerve of VorB is of course an abstract simplicial complex. It 

is geometrically realized by mapping each Voronoi cell to the center of the generating 

ball. Formally, let I : Vor B + [w3 be defined by z( Vj) =z if b = b(z, r). The Delaunay 

complex of B is 

DelB={convr(X)IXENrvVorB}, 

see Fig. 3. General position implies Del B is indeed a simplicial complex. The simplices 

CJ E Del B are referred to as Delaunay simplices. 

Consider a tetrahedron r = conv z(X) in Del B. The 4 Voronoi cells in X intersect 

at a point z, = nX referred to as the orthogonal center of r. Let bl, b2, b3, b4 be the 

balls generating the Voronoi cells in X. By construction, the distance of z, from the 

balls is the same: 

The radius of z is r, and the orthogonal ball is b, = (z,,r,). The name suggests b, 

meets the bi in some ways orthogonally. Indeed, for a point on two intersecting spheres, 

x = bd b, n bd bi, the two tangent planes passing though x meet at a right angle. 

Alpha complexes. The union of balls covers only a portion of the Voronoi cells, 

and this portions is represented by a subcomplex of the Delaunay complex, see [ 131. 

Recall the definitions of Rh = V, 1’7 b and Res B = {Rb 1 b E B}. The nerve of Res B is 

an abstract simplicial complex that can be geometrically realized by mapping cells to 

ball centers, the same way as before. Let I : Res B ---f KY3 be defined by t(Rb) = z with 

b = (z, r). The dual complex of UB is 

CpxB = {conv z(X) 1 X E Nrv Res B}, 

see Fig. 4. Clearly, Nrv Res B is isomorphic to a subcomplex of Nrv Vor B, and there- 

fore CpxB C Del B. The dual complex inherits the property of being a simplicial com- 

plex from Del B. 



H. Edelsbrunner et al. I Discrete Applied Mathematics 88 (1998) 83-102 89 

Fig. 4. The union of disks in Fig. I is decomposed into convex cells. The dual complex connects 2 centers 

by an edge and 3 centers by a triangle if the corresponding cells have non-empty common intersection. The 

union of disks has 2 voids, each contained in a void of the dual complex. 

We refer to [8] for a list of properties CpxB enjoys. This includes CpxB is homotopy 

equivalent to UB. More precisely, 1 CpxB ] C UB and there is a deformation retraction 

that takes IJB to ]CpxB]. The same is true for the respective complements. More 

precisely, each void of UB is contained in a void of I CpxB I and there is a deformation 

retraction that takes iw3 - I CpxB I to [w3 - UB. 

Recall the definition of B,, which is obtained by simultaneously growing or shrinking 

all balls in B. The cc-complex of B is the dual complex of (JBa: Cpx, B = Cpx B,. For 

N: < CI~ we have b,, C_ b,,, which implies 

(8) C Cpx,, B C Cpx,*B C Del B. 

The bounds are tight. For sufficiently small ~1~ all balls have imaginary radius and are 

empty, which implies Cpx,B = (0). For sufficiently large U* the nerves of Res B and 

Vor B = Vor B, are isomorphic, which implies Cpx,B = Del B. 

The dual set of a void. Recall a void of UB is a bounded component of the com- 

plement. To be specific, let 

[w3 - UB=H&Hl Ij...ljHk 

be the partition into maximal connected subsets. Assume Ho is unbounded and Hr 

through Hk are the voids of IJB. As mentioned earlier, there is a deformation retraction 

that takes the complement of I CpxB I to the complement of IJB. Let 

iw3 - IQxBI=H~LIH~I~...LJH~ 

be the partition into components so the above mentioned deformation retraction takes 

H/ to Hii, see Fig. 4. The voids of I CpxB I are naturally represented by the simplices 

in Del B - CpxB that cover them. For 1 d i d k the dual set of H; is 

.P;={(aEDelBIintaCH,‘}. 
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For example, the smaller of the two voids in Fig. 4 has a dual set consisting of 2 

triangles and 1 edge. The dual set of the larger void consists of 4 triangles and 3 

edges. As shown in [8], the volume and surface area of a void Hi can be computed 

directly from X;, without explicit construction of Hi. 

4. Pockets 

The concept of a pocket is based on an acyclic relation over the set of Delaunay 

tetrahedra motivated by a continuous flow field. After defining and classifying pockets 

we compare them with related concepts in the literature. 

Flow relation. Let T’ be the set of tetrahedra in DelB and T = T’ U {zoo}, where 

r o;l =cl(R3 - ]DelBI) is a dummy element. We define the flow relation ‘+’ C T x T 

with r + a if 

(i) r and a share a common triangle, cp, and 

(ii) int z and the orthogonal center z, of r lie on different sides of the plane aff cp. 

The conditions makes sense for a = r, but not for r = r,. The flow relation is acyclic 

because r + a implies Y,’ <v: or a = z,. In words, the radius of the orthogonal ball 

increases with the flow relation. This is the intuition behind the flow or vector field that 

motivates the definition of ‘+‘: a point flows in the direction of the closest orthogonal 

ball whose radius exceeds the distance of the point from the closest ball in B. 

If r 4 a we call z a predecessor of a and a a successor of r. The set of descendents 

of r is 

Desr={r}U U Desa, 

7-X&T 

and the set of ancestors of a is 

Anca={a}U U Ancr. 
CC-TET 

a E T is a sink if it has no successors, or equivalently Des a = {a}. 7co is necessarily 

a sink. A tetrahedron a E T’ is a sink iff it contains its orthogonal center: z, E a. In 

general, a cannot have more than 3 successors because z, can be on the other side of 

at most 3 of the 4 triangles bounding a. 

Sinks are important since they are responsible for the formation of voids. Indeed, if 

H, is a void of UB then at least one tetrahedron in &?i is a sink. This follows from 

the observation that r E Xi and r < a implies a E Sii. If a E T is a sink that belongs to 

Xi then z, E Hi and Y: > 0. The radii of sinks thus predict the moment in time Hi will 

disappear, namely when a reaches the maximum radius of any sink in Xi. Of course, 

before Hi disappears it may break up into several voids, each with at least one sink. 

Pockets. The point set topological notions of closure, interior, and boundary motivate 

analogous combinatorial notions applicable to sets of simplices. The closure of a subset 
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Fig. 5. The 16 disks are obtained by shrinking the disks in Fig. 1; 3 of them have now imaginary radii. 

There are 2 pockets each grown from one of the voids in Fig. 1. Consult Figs. 2 and 3 to see that 5 

Delaunay triangles are ancestors of r=. All other triangles belong to .‘P and none to the dual complex of 

the disk union. The component of 4 disks in the middle of the picture defines a chain of 4 vertices and 3 

edges in the dual complex. This chain separates .‘P into 2 components, each defining a pocket. 

L of a simplicial complex 3” is ClL = {z E X 1 z C o E L}; it is the smallest subcomplex 

that contains L. The star of r E X is St T = {G E X 1 t C o}. L C X is open in Y if 

St T C_ L for every r E L. The interior of a subset L C: X is Int L = {r EL 1 St 7 C_ L}; it 

is the largest open set contained in L. The boundary of L is BdL = ClL - Int L. L 

is connected if its underlying space is path-connected: for every two points X, y E 1 L 1 

there is a continuous path p : [0, l] + 1 L 1 with p(O) =x and p( 1) = y. The components 

of L are the maximal connected subsets. 

As mentioned earlier, the intention is to define pockets so they are generalizations of 

voids, possibly with connections to the outside. The relation over the tetrahedra decides 

which side tetrahedra belong and the divide forms the connection to the outside. More 

precisely, pockets consist of the Delaunay tetrahedra that do not belong to CpxB and 

that are not ancestors of r,. Define .9 = Cl (T - Ant 7, ) - CpxB, and let 

be the partition into components. For each 1 <i6 k, 

is a pocket of UB, and Pi is its duul set. These definitions are illustrated in Fig. 5. 

The above definition of pockets treats the unbounded component special and different 

from the voids. Sometimes this may not be appropriate and large voids are to be 

treated the same way as the unbounded component. This can formally be done by 

bounding the radii of the sinks used in the construction. For a size limit p* E R define 

~,~={z,}U{~~~‘I~~>P~} and 

.+=Cl [T-i,,Anco) -CpxB. 
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Fig. 6. The upper bound on the sink radii used for the example shown excludes sinks whose orthogonal 

centers are not covered by the disk union in Fig. 1. As a result, the 2 pockets in Fig. 5 are reduced to 5 

smaller pockets. 

As before, the subset of R3 - UB covered by the interiors of the simplices in a com- 

ponent of P,q is a pocket, and the component is its dual set, see Fig. 6. 

MO& openings. The only type of pockets without connection to the outside are the 

voids. All other pockets connect to the outside at one or more places. For a pocket 

Pi consider the part of BdPi not contained in CpxB. Bd Pi is a simplicial complex 

and connectedness and components relative to Bd$ are well defined for all its open 

subsets. The mentioned set is indeed open in BdYi and we let 

be the partition into components. The mouths of Pi are the sets Mj = U&j - UB, for 

1 <j 6/, and their dual sets are the J%‘__. Consider for example the two pockets in 

Fig. 5. The left and smaller pocket has 3 mouths, each defined by a single Delaunay 

edge. The right and bigger pocket has 4 mouths, 3 defined by a single Delaunay edge 

each and 1 defined by a chain of 2 Delaunay edges and 1 Delaunay vertex. 

The number of mouths, /, is a useful characteristic of a pocket and can be used 

to distinguish between different types. One would expect a pocket with different num- 

ber of mouths in a protein implies different functionalities. We suggest the following 

terminology reflecting the resulting classification. Call a pocket a 

void if e = 0, 

normal pocket if 8= 1, 

simple connector if /=2, 

multiple connector if 8 2 3. 

In the presence of a size limit one can furthermore distinguish between connectors 

whose mouths connect to the same or to different components of the outside. 

Related concepts. The computational biology literature contains at least 3 concepts 

defined as tools to study regions of limited accessibility. These are the ‘molecular 
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surface’, the ‘interstitial skeleton’, and the ‘molecular interface’. We briefly point out 

the similarities and differences between pockets and these concepts. The authors of 

this paper believe pockets are superior to all 3 concepts in terms of visual appearance, 

objective quantification, and wide applicability. 

The molecular surface model defined by Richards [20] is a union of balls, UB, 

where gaps inaccessible to a sphere modeling a solvent are filled. Let MS > UB be 

the resulting object. The union of pockets is similar to albeit not the same as the 

difference, MS - UB, union all voids of MS. While pockets are defined in terms of 

relative distance, the criterion employed for defining molecular surface uses absolute 

distance, namely the radius of the solvent. Furthermore, the object obtained from MS 

is cluttered with tiny remains within the crevices and cusps of U B. Pockets do not 

share this visual distraction. 

The interstitial skeleton defined by Connolly [3] consists of all Voronoi edges outside 

IJ B and within the convex hull of the balls. A problematic feature of this concept is 

the lack of any possibility to clip edges inside delta regions where a depression opens 

up slowly towards the outside. Another disadvantage is the mess of edges that possibly 

attracts the eye to large pockets, but they offer little in terms of objective quantification. 

The molecular interface has recently been suggested by Varshney and coauthors 

[23] to study the region between interacting molecules. It assumes 2 or more differ- 

ent molecules and consists of the points outside all molecules at distance at most E 

from at least 2 of the molecules. F is a parameter that can be chosen and adjusted. 

A shortcoming of this definition is its lack of dependence on any local shape charac- 

teristic. Also, it cannot be used to study depressions in a single molecule. On the other 

hand, pockets are easily adjusted to study the interface: compute pockets for the union 

of the molecules and select only the ones that touch at least 2 different molecules. 

5. Algorithm 

We construct pockets by growing them from sinks. We assume a pointer based data 

structure for Del B and a linear list that distinguishes between Delaunay simplices in- 

side and outside an alpha complex. Both data structures are part of the alpha shape 

software [ll], which forms the basis of our implementation. The entire software is 

based on exact arithmetic and the simulation of general position by infinitesimal per- 

turbation [ 121. We begin by describing the two data structures in sufficient detail to 

provide the context for the construction of pockets. 

Simplex digraph. We refer to the pointer based data structure for Del B as the 

simplex digraph. It supports access to neighboring simplices in constant time each. 

Data structures with this functionality are reasonably standard and different versions 

have been described in the literature, see e.g. [ 1, 71. 

The simplices of Del B are the nodes of the digraph, and they are referenced through 

pointers. Each simplex has direct access to its location in the linear list or filter, see 
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below. In order to avoid a tedious discussion of the details of the simplex digraph, we 

stipulate functions FACES and COFACES that provide access to the neighborhood. Given 

a simplex o E Del B and a dimension k < dim c, FACES returns the k-dimensional faces: 

FACES((T,~)={TE Cl(o) 1 dimr=k}. 

For k > dim 0, COFACES returns the k-dimensional simplices that share o as a face: 

COFACES(cJ,k)={tEStcr/dim7=k}. 

It is convenient to assume COFACES(CJ, 3) includes z, if cr lies on the boundary of 

(DelBI. We assume both functions take constant time per returned simplex. As an 

example consider the problem of computing the set N(c) of tetrahedra adjacent to a 

given tetrahedron (T E Del B. 

N(o) := 0; 
for all q E FACES(C~, 2) do 

for both r E COFACES((P, 3) do 

if r # CJ then N(a) :=N(a) U {z} endif 

endf or 

endfor. 

The first loop is over 4 triangles and the second over 2 tetrahedra each, so the total 

time for finding all adjacent tetrahedra is constant. 

Filter and filtration. The Delaunay simplices are stored in the order they enter 

the alpha complex. We assume an array representation with constant time access via 

indices. Recall the at-complex of B is a subcomplex of the C(2-complex if zi <xi. 

It follows that the sequence of real numbers a 2 defines a sequence of nested com- 

plexes. Two consecutive complexes differ by one or more Delaunay simplices, and the 

cardinality of Del B is an upper bound on the number of complexes in the sequence. We 

represent the sequence by a list of simplices sorted in the order they enter. We break 

ties by letting vertices precede edges precede triangles precede tetrahedra. Remaining 

ties are broken arbitrarily. The resulting sequence of simplices, 

is a jilter of Del B. The array is a representation of the filter, with pointers linking 

simplices to their locations in the simplex digraph. Each prefix of the filter defines a 

simplicial complex, $ = { CJO, 01, . , Do}. The resulting sequence of complexes, 

is a $Itration of DelB. For each ~1~ E [w there is an index i(a) with Cpx,B = Xi::(,), 

but not necessarily vice versa. 

Suppose we wish to construct the pockets of UB,, or rather their dual sets. The 

general idea is to traverse the latter part of the filter, from r~i+t to g’n. The algo- 

rithm is incremental, and after processing the simplices in 4 the data structures 
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represent the pockets for the corresponding size limit. Each encountered tetrahedron 

either joins the outside, joins a set of delayed tetrahedra because it does not belong 

to the current set of pockets, or starts a new pocket and possibly merges some of 

the existing pockets into one. The delayed tetrahedra will be added at the appropriate 

time. 

Representing pockets. The pockets are stored as sets of tetrahedra in an evolving 

system, r, represented by a union-find data structure. The sets in r are pairwise 

disjoint and the data structure supports the following operations: 

ADD(U): Add {u} as a new set to LX+. 

SET(U): Find set XE r with u~X. 

UNION(X, Y): Replace sets X and Y by X U Y. 

A sequence of m operations takes time O(mcr(m)), where x(m) is the extremely slowly 

growing inverse of Ackermann’s function, see e.g. [4, Chapter V]. For all practical 

purposes, a(m) can be considered a small constant. 

In our application, the elements in the system are tetrahedra. r is initialized to 

{ {tx}}. SET(T,) represents the outside and is the only set in r that does not repre- 

sent a pocket. 

Truversing the jlter. The index of a simplex specifies its position in the filter. If ai 

is a tetrahedron its depth is 

dp Oi = max{k 1 Gk E Des fli} 

=max({j}U{dpzIa,+r}). 

The depth determines the minimum size limit from which moment on the tetrahe- 

dron belongs to the set of pockets. The recursive specification of depth lends itself to 

computing all depth values in a single traversal of the filter. 

for j:=n downto 1 do 

dpaj:=j; 

for all z EN(oj) do 

if G,i 4 z then dp O, := max{dp Oi, dp T} endif 

endf or 

endf or. 

Pockets are constructed by following the evolution of the ball growth. Only tetra- 

hedra Oj with i(x) <j ,< i(p) need to be considered, and such a Oj belongs to 9~ 

iff dpaj <i(p). When the traversal reaches o,i, all tetrahedra with depth j are added 

to the union-find system representing the pockets. These tetrahedra are collected in 

an initially empty set Yj. At the time Yj is processed it may or may not 

contain c,. 
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for j:=i(a)+ 1 to i(B) do 

k 1: dp oj; Yk := Yk U (0j); 

for all d 6 Yj do 

ADD(a); 

for all r E N(a) with r E U r do 

let cp be the triangle shared by r and a; 

if cp # Cpx,B then UNION(SET(G), SET(Z)) endif 

endf or 

endf or 

endf or. 

Note the test whether or not the tetrahedron z belongs to any set in r that occurs in 

the inner for-loop. For r = ok the test is equivalent to i(a) <k and dp r < j. 

Dual sets of pockets and mouths. The traversal constructs a pocket P as a set of 

tetrahedra. To compute the dual set, 9, we still need to take the closure of this set 

and remove simplices in the dual complex of UB. Similarly, to get the dual sets of 

the mouths, we need to take the boundary, remove simplices in the dual complex, and 

collect components. We first describe the process for pockets and then for mouths. 

Let X E YY be the collection of tetrahedra defining P. The closure 9 = ClX is ob- 

tained by collecting all faces, with a straightforward marking mechanism to avoid 

duplication: 

%? :=x u (0); 
for all VEX do 

%?:= %?u FACES(T, 2)u FACES(T, l)UFACES(T,O) 

endf or. 

The dual set of P is finally obtained by removing all simplices from V whose indices 

in the filter are less than i(u) + 1. The dual sets of the mouths A4j are the components 

Aj of Bd P - Cpx B. To construct them, we first compute 9 = Int ClX but making 

use of the fact that a vertex or edge in %’ belongs to 9 iff all triangles in its star 

belong to 9: 

$a:=%? - (0); 

for all triangles cp E 9 do 

for both ZE COFACES((P, 3) do 

if z$!X then Y:=9 - {cp} - FACES((P,~)- FACES(~,O) endif 

endfor 

endfor. 

Every boundary simplex of 9 belongs to 54 = Bd ClX = % - 9 or to CpxB or to 

both. We can therefore work with &9, which can be constructed along with 9 by the 

above algorithm. 59 is a 2-dimensional connected manifold because j is connected. 
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Fig. 7. The alpha shape of gramacidin A reflecting the topological structure of the molecule 

This means every edge belongs to exactly 2 triangles and the star of every vertex is an 

alternating cycle of edges and triangles. The J?‘j are the components of g--CpxB. They 

are computed in a way analogous to the computation of the dual sets of pockets, only 

in one dimension lower. First, traverse the triangles cp E g and collect the ones outside 

CpxB in a system represented by a union-find data structure. Whenever a triangle is 

added, check the 3 adjacent triangles and merge sets if they are already in the system. 

In the end, each set Y in the system contains the triangles of a mouth Mj. The dual 

set of Mj is J$‘j = Int Cl Y - C, B. 

6. Protein examples 

In this section we give examples of pockets in proteins and of protein studies that 

gained new insights with the help of pockets. 

Tunnel extraction for Gramacidin A. Gramacidin A is a synthetic membrane chan- 

nel and has been used as an antibiotic. It is composed of D and L amino acid residues 

in alternating order. Fig. 7 shows the alpha complex of the molecule for r = 0 to the 

left and for some larger value of CI to the right. Fig. 8 shows that the tunnel of the 

potassium channel is extracted by the pocket construction of gramacidin A. 

Inhibitor binding site of HIV-I protease. HIV-l protease is an essential viral pro- 

tease for the generation of mature structural proteins and enzymes of HIV. The protease 

is the target of several new inhibitor drugs that are part of the cocktail recipe for AIDS 

patients. The binding site of the HIV-l protease is computed for one structure (pdb 

name lhos) after removal of the inhibitor. It is the largest pocket on the protein, and 

the dual set can been seen in Fig. 9 (left, tetrahedra in solid), whereas the alpha com- 

plex of the enzyme is represented by wireframe. To the right, thhe corresponding atoms 

in the dual set are drawn as space filling balls using RASMOL [21]. 
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Fig. 8. The pocket constructed from the alpha shape model of gramacidin A shown in the right part of 

Fig. 7. It is a simple connector. 

Fig. 9. The HIV-l protease, (left) tetrahedra in the dual sets with gold mouth triangles, and (right) the dual 

set atoms shown in space filling balls, and the inihbitor in red. 

Binding site for FK.506 immunosuppressant. The protein that binds to the potent 

immunosuppressant FK506, the FK binding protein (FKBP), can block T cell activa- 

tion and is involved in signal transduction of immune stimulation. The binding pocket 

(ivory) for FK506 in a X-ray structure (pdb name lfkf) is shown in Fig. 10. The atoms 

in the dual set of the binding pocket for FK506 (red) are drawn in space filling balls. 

They are computed from the X-ray structure of FKBP after the removal of FK506. On 

the left hand side another pocket (green) can be seen in the vicinity. 

A promising drug design strategy is the linked fragment method, where optimized 

compounds binding to different nearby pockets with moderate affinities can be linked 

to produce a high affinity ligand [ 181. The two pockets of FKBP as shown in Fig. 10 

indicate that FKBP is a good target protein amenable to such design strategy. Recently, 

a high affinity (9nM) ligand for FKBP has been designed by linking two compounds 

of low affinities (2 and 100 PM) [22]. NMR experiments have identified the residues 

that interact with the compounds, and all come from the two pockets shown in Fig. 10. 

Residues interacting only with the substrate-like compound, are in the ivory pocket, 
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Fig. IO. The active site of FK506 binding protein (ivory) and another pocket nearby (green). 

residues interacting only with the second compound are in the green pocket, and those 

interacting with both are in the ivory pocket and are near the green pocket. Analysis 

based on pocket computation using the method described in this paper may therefore 

provide useful information about the selection of target protein a priori, the selection 

of compounds for pockets to avoid mutual steric exclusion, as well as the design of 

linker of the right length and geometry, see [16] for more details. 

Proton ucceptor of redox-active tyrosine D in photosystem II. Another application 

where pocket computation has provided important information is photosystem II (PSII). 

Almost all oxygen in the atmosphere is generated by the photosystem II in plant and 

algae. A redox-active tyrosine D in the D2 subunit of PS II plays important role. 

Tyrosine D releases its phenolic proton upon lighting. Identification of the acceptor of 

this proton is important for understanding the energetics of PSII. 

Recently, mutants of His 189 of the D2 subunit have been generated and chemical 

rescue experiments have been conducted using imidazole to mimic histidine. Results 

suggest that His 189 is the proton acceptor. However, there is uncertainty about the 

existence of any empty space near His 189 to accommodate imidazole. Such structural 

support is now provided by the pocket analysis of analogous sites in bacterial reaction 

centers [ 141. Fig. 11 shows the pocket containing both analogous residues to tyrosine 

D and His 189 on the structure of bacterial reaction center of R. sphaeroides (pdb 

name 4rcr). It has a volume of 524A3, large enough to allow imidazole (about 86A3) 

to gain access. Similar pockets are found in all structures of bacterial reaction centers. 

This structural evidence of a pocket is further strengthened: compared to the full se- 
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Fig. 11. The pocket near Arg 164 (red) and His 193 (yellow) of the M subunit of bacterial reaction center. 

quences, the fragments that fold together forming this pocket have significantly higher 

sequence similarity across species among bacterial reaction centers and photosystem II. 

Analysis of protein hydration changes: correlation with experiments. Water as- 

sociated with the solvation of macromolecules play a fundamental role in biological 

processes. An experimental technique, called osmotic stress [2], probes protein hy- 

dration by observing the changes in biological process (equilibrium binding constants, 

reaction rates, etc.) with different concentrations of polymer in the system. These poly- 

mers in the bulk solution generate osmotic pressure, but are sterically too large to enter 

the protein hydration space. Changes in biological processes, when correlated with the 

changes in the osmotic stress, can be used to measure the number of hydration waters 

that are transferred during protein conformation changes. At the molecular level, the 

hydration spaces that exclude polymers are pockets on the protein surface and voids 

in the interior. Exactly polymer of what size is excluded is related to the mouth area 

of the pocket. 

The pocket method has been applied to the analysis of the role of hydration in 

antithrombin III (aTIII), a protein involved in the blood clotting process and is of 

interest for cardiac disease. Fig. 12 shows the hydration space in the two conformations 

of aTII1, that is, the pockets and voids of size allowing at least two water molecules. 

As can be seen, the distribution and size of these pockets and voids are quite different 

for the two conformations of the same protein. The details and change in the volume 

of hydration space upon enzyme inhibition can be computed. In the study of aTII1, the 

calculated results are well in consistency with the release of about 70 water molecules 

to the bulk during I to L transformation, as measured by osmotic stress [ 171. 
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Fig. 12. The hydration space of the two conformations (I, left; L right) of antithrombin III that are large 

enough to contain two water molecules. 

7. Discussion and extensions 

Initial experiments have shown that the algorithm for computing pockets described in 

this paper cannot find shallow pockets. In systems of large molecules, shallow pockets 

can occur quite frequently. One possible solution to this problem is an additional 

parameter specifying ‘steepness’ or ‘speed’ of flow that will add finer control over the 

inclusion or exclusion of the tetrahedra that flow to TV. 

The concept of a pocket can be applied to the complementary space of a macro- 

molecule thus defining protrusions of the molecule. An appropriate notion of com- 

plementarity is described in [9]. The authors of this paper expect that pockets and 

protrusion together provide a good handle on predicting docking pairs and sites. 

The notion of limited accessibility arises also in studies of shapes in other fields. 

For example, Miller [19] uses it to compute realistic shadings of statues. Notions of 

local and global accessibility are related to molecular surfaces and to pockets. The 

algorithmic techniques in this paper can be used to improve the performance of the 

algorithms in [ 193 by orders of magnitudes. 
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