
O

M
i

Y
A
D

a

A

R

A

A

K

c

fl

i

v

K

h
2
(

 by COREView metadata

sher Connector 
integr med res 5 ( 2 0 1 6 ) 11–21

Available  online  at  www.sciencedirect.com

Integrative  Medicine  Research

j our na l homepage: www.imr- journa l .com

riginal Article

echanisms  underlying  the volume  regulation  of
nterstitial fluid  by  capillaries:  a simulation  study

ukiko Himeno, Masayuki Ikebuchi, Akitoshi Maeda, Akinori Noma,
kira Amano ∗

epartment of Bioinformatics, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan

 r  t  i  c  l  e  i  n  f  o

rticle history:

eceived 31 October 2015

ccepted 5 December 2015

vailable online 6 January 2016

eywords:

apillary

uid exchange

nterstitial fluid

olume regulation

a  b  s  t  r  a  c  t

Background: Control of the extracellular fluid volume is one of the most indispensable issues

for  homeostasis of the internal milieu. However, complex interdependence of the pressures

involved in determination of fluid exchange makes it difficult to predict a steady-state tissue

volume under various physiological conditions without mathematical approaches.

Methods: Here, we developed a capillary model based on the Starling’s principle, which

allowed us to clarify the mechanisms of the interstitial-fluid volume regulation. Three well

known safety factors against edema: (1) low tissue compliance in negative pressure ranges;

(2)  lymphatic flow driven by the tissue pressure; and (3) protein washout by the lymph, were

incorporated into the model in sequence.

Results: An increase in blood pressure at the venous end of the capillary induced an

interstitial-fluid volume increase, which, in turn, reduced negative tissue pressure to pre-

vent  edema. The lymphatic flow alleviated the edema by both carrying fluid away from the

tissue and decreasing the colloidal osmotic pressure. From the model incorporating all three

factors, we found that the interstitial-fluid volume changed quickly after the blood pressure

change, and that the protein movement towards a certain equilibrium point followed the

volume change.

Conclusion: Mathematical analyses revealed that the system of the capillary is stable near

the  equilibrium point at steady state and normal physiological capillary pressure. The time
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course of the tissue-volume change was determined by two kinetic mechanisms: rapid fluid

exchange and slow protein fluxes.
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sue that their overall function becomes averaged. Therefore,
in the present model, the average function of the capillary will
be discussed.

Table 1 – Pressures used for calculating fluid effective
filtration pressure

Arterial end
(mmHg)

Venous end
(mmHg)

Capillary blood pressure
(Ppl)

25  15

Plasma colloidal-osmotic
pressure (�pl)

28

Tissue interstitial-fluid
pressure (Pisf)

−3

Tissue interstitial-fluid
colloidal osmotic

8

12  

1.  Introduction

Quantitative analysis of microcirculation at the capillary bed
is indispensable when studying systemic circulation. Fluids
that circulate through the vessels filter in and out through the
membrane at the capillary bed in organ tissues. In order to
comprehend the dynamics of complex fluid regulation, it is
important to estimate the amount of fluid exchanged at the
capillaries quantitatively.

Volume regulation, which includes fluid filtration, reab-
sorption, and formation of lymph, had been discussed using
analogue computer simulations in the 1970s and 1980s.1–3

They succeeded in simulating steady-state levels and tran-
sient responses of the essential physiological parameters
involved in volume regulation, such as plasma volume, inter-
stitial volume, and lymphatic flow (LF). However, such system
analyses put emphasis on understanding the fluid balance in
the whole body, and detailed analysis of the volume change
and protein flux at the level of capillary was not feasible in
those analyses due to the lack of computational capacity.

At a single capillary level, Curry and Michel4 suggested
the fibre-matrix theory of capillary permeability in 1980. This
theory led to the revision of Starling’s principle (1886) after a
centennial of belief (see Levick’s5 review article). In line with
the revision, Adamson et al6 introduced the idea of subglyco-
calyx fluid oncotic pressure (˘g) instead of ˘ isf in calculating
effective filtration pressure. In this revised theory, they esti-
mated that, in case of steady-state filtration, a subglycocalyx
protein concentration was lower than the interstitial protein
concentration, and there were smaller gradients between ˘ isf

and ˘g, which was assumed to be 70–90% of ˘ isf. However,
in case of steady-state absorption, they confirmed that the
reversed flow of the interstitial fluid caused reflected protein
to accumulate in the subglycocalyx space, and ˘g became
larger than ˘ isf to cease the absorption within a few minutes.
Although a thorough revision of the hypothesis was a land-
mark study to look into the detailed function of the capillaries,
it is also widely accepted that continuous vasomotion with
a cycle time of ∼15 seconds keeps all of the parameters in
the system in a transient state. Therefore, in the first stage
of our single capillary model, we adopted the classical Star-
ling’s principle consisting of four primary forces to move fluids
across the capillary membrane: the capillary plasma pres-
sure (Ppl), the interstitial fluid pressure (Pisf), the capillary
plasma colloidal osmotic pressure (˘pl), and the interstitial
fluid osmotic pressure (˘ isf), to evaluate the averaged func-
tion of multiple capillaries within tissue. There is also a tissue
specific nonlinear relationship between Pisf and the intersti-
tial fluid volume (Visf), which plays a key role in preventing
edema. Additionally, the LF, which is regulated by interstitial
fluid pressure, carries protein as well as fluid away from the
tissue.

In this study, we  aimed to construct a realistic and versa-
tile model of fluid exchange based on Starling’s principle and
included general features of tissue, such as the nonlinear rela-
tionship between P and V (tissue compliance) and the P
isf isf isf

dependency of the LF. Then we applied mathematical analy-
ses to the models to understand the mechanisms of the fluid
volume regulation, quantitatively.
Integr Med Res (  2 0 1 6 ) 11–21

2.  Methods

2.1.  Governing  equations  for  capillary  filtration

In the present study, the involvement of the crystalloid
osmotic pressure is entirely excluded, and the fluid filtration
(J) across the capillary is determined by the following equation
based on Starling’s principle:

J = K × PE · (mL/ms/mm) (1)

K (mL/ms/mmHg/mm) is the endothelial hydraulic con-
ductance, which is a measure of the capacity of the capillary
membrane to filter water per unit capillary length. PE is the
effective net filtration pressure that is the sum of four primary
forces to move fluids across the membrane, Ppl, Pisf, ˘pl and
˘ isf;

PE =
(

Ppl − Pisf

)
−

(
˘pl − ˘isf

)
(mmHg) (2)

When PE is positive, there will be a fluid filtration across the
capillary membrane. Inversely, if PE is negative, there will be a
fluid absorption from the interstitial space into the capillary.
Standard pressure values used in calculating PE in the model
are listed in Table 1.

2.2.  Structure  of  the  model

2.2.1.  A  capillary  vessel  model
The conformation of the capillary is assumed to be a cylinder
(Fig. 1A). Parameters used in the capillary model are listed in
Table 2. The internal radius of the capillary model (r) is 5 �m,
and the length of the vessel from the arterial end to venous end
(L) is 0.6 mm.  It is well known that blood flow through each cap-
illary is intermittent because of vasomotion, which is caused
by intermittent contraction of metarterioles and precapillary
sphincters. There are so many  capillaries present in living tis-
pressure (�isf)
Effective filtration pressure

(PE)
13  −7

dx.doi.org/10.1016/j.imr.2015.12.006


Y. Himeno et al/Capillary fluid exchange model 13

Table 2 – Parameter values for the capillary model

Symbol Definition Value Unit

t Time ms
�x Length of a capillary compartment (= L/N) 0.01 mm
xi Axial position of ith compartment in the capillary mm
N Number of compartment 60
K Serum conductivity 1.26 × 10−10 �L/mmHg/ms/mm
Hc Hematocrit 0.4
Gp Protein permeability of large pore system 1.13 × 10−11 �L/ms/mm
L Capillary length 0.6  mm
r Capillary radius 0.004 mm
rK Radius of the Krough muscle cylinder 18 �m
vflow Flow rate of capillary plasma 1.0 × 10−3 mm/ms
PE Effective net filtration pressure mmHg
Ppl,a Blood hydrostatic pressure at the arterial end of the capillary 25 mmHg
Ppl,v Blood hydrostatic pressure at the venous end of the capillary 15 mmHg
ppl(xi) Blood hydrostatic pressure at axial position (xi) mmHg
p̄pl Averaged value of hydrostatic pressure in capillary mmHg
P0

isf
Original interstitial fluid pressure −3 mmHg

Pisf(t) Interstitial fluid pressure at time (t) mmHg
V0

C
Original capillary volume 3.02 × 10−5 �L

V0
pl

Original initial capillary volume at each compartment 3.02 × 10−5 �L/mm

vpl(t, xi) Capillary compartment volume at axial position (xi) and time (t) �L
V0

isf
Original interstitial fluid volume 6.0 × 10−5 �L

Visf(t) Interstitial fluid volume at time (t) �L
Visf,L(t) Instantaneous equilibrium point of interstitial fluid volume at time (t) �L
˘0

pl
Initial plasma colloidal osmotic pressure in each capillary

compartment
25  mmHg

�pl(t, xi) Plasma colloidal osmotic pressure in capillary compartment at axial
position (xi) and time (t)

mmHg

¯̆ pl(t) Averaged value of colloidal osmotic pressure at time (t) mmHg
˘0

isf
Initial interstitial fluid colloidal osmotic pressure 3 mmHg

˘ isf(t) Colloidal osmotic pressure in interstitial fluid at time (t) mmHg
s Proportional factor for lymphatic flow 9.79 × 10−12 �L/ms
R Contamination ratio of protein in the serum filtrate 0.01555
Jv(t) The  volume change of interstitial fluid �L/ms/mm
Jv,C(t) Total transcapillary fluid flux �L/ms/mm
jv,C(t, xi) Transcapillary fluid flux at axial position (xi) and time (t) �L/ms/mm
jv,pl(t, xi) Plasma flux from ith compartment to (i + 1)th compartment at time (t) �L/ms/mm
Jv,LF(t) Lymphatic flow at time (t) �L/ms/mm
Jq,C(t) Total protein flux carried by large pore system by diffusion and fluid

convection at time (t)
�g/ms/mm

jq,C(t, xi)  Protein flux carried by large pore system by diffusion and fluid
convection at axial position (xi) and time (t)

�g/ms/mm

jq,pl(t, xi) Protein flux carried by blood flow from ith compartment to (i + 1)th
compartment

�g/ms/mm

Jq,LF(t) Protein flux carried by lymph flow at time (t) �g/ms/mm
qpl(t, xi) Amount of protein in capillary compartment at axial position (xi) and

time (t)
�g

Qisf(t) Amount of protein in interstitial fluid at time (t) �g
cpl(t, xi) Concentration of serum protein in capillary compartment at axial �g/�L

uid a

2
O
t
o
H
i
m
a
c
o

position (xi) and time (t)
Cisf(t) Concentration of serum protein in interstitial fl

.2.2.  Determination  of  the  permeability  for  capillary
n the capillary wall, there are intercellular clefts at the junc-

ion between adjacent endothelial cells. The size of the clefts,
r the pore size of the glycocalyx sieve, is large enough for the

2O molecules and most small water-soluble substances, but
s obviously too small for plasma proteins to permeate. In our

odel, this permeability of the capillary is represented as K,

nd is estimated by assuming that 8-mmHg filtration pressure
auses, on average, ∼1/200 of plasma of flowing blood to filter
ut of the arterial ends of the capillary and into the interstitial
t time (t) �g/�L

spaces each time the blood passes through the capillaries.7 It
is also assumed that one half of the capillary (L/2) is the arte-
rial end, 60% of the blood is plasma (Hc = 0.4; Fig. 1A), and the
velocity of capillary blood flow is v (1.0 × 10−3 mm/ms). K is
determined as follows:

VC × (1 − HC) × 1
200 2
K =
L

2×v × 8
×

L

= 1.26 × 10−10(�L/ms/mmHg/mm).
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Fig. 1 – Schematic representation of a single capillary. (A)
Effective filtration pressure along the capillary. (B, C)
Compartmentalization of a single capillary model and

Table 3 – Correspondence of equations used in Models
1–4

Model
no.

Model features Modifications in
the model

Model 1 Base model
Model 2 Base model + nonlinear tissue

compliance
Eq.  (9) → qEq. (9′)

Model 3 Model 2 + lymphatic flow Eq. (7) → qEq. (7′)
Model 4 Model 3 + protein dynamics Eq. (10) → qEq. (10′)

capillary model is assumed to be similar to plug flow rather
interstitial fluid facing to the capillary. Lymph drains from
the interstitial space.

2.2.3.  Estimation  of  the  interstitial  fluid  volume  in  relation
to blood  volume  for  a  single  cylinder  capillary  model
We  introduced the idea of the Krogh muscle cylinder to
estimate the interstitial fluid volume supplied by a single
capillary.8 The radius of the Krough muscle cylinder (rK)
varies between 18 �m and 36 �m,  depending on the metabolic
demand of the tissue. Here, we  assumed the most perfused
condition having the smallest rK value of 18 �m.  The radius (r)
and the length of the capillary (L) is 4 �m and 600 �m,  respec-
tively. Considering that 89% of the muscle is occupied by cells
and the rest by the extracellular fluid, the interstitial fluid
volume could be calculated by the following equation:

600 × � × (rk2 − r2) × 0.11 = 6.3862(mm3) ≈ 6.0(�L).

We used this value as the initial interstitial fluid volume,
V0

isf
.

2.3.  Mathematical  formulations  for  simulation

We  developed four models sequentially by introducing three
safety factors in preventing edema: (1) low tissue compliance
in negative pressure range; (2) increased LF; and (3) protein
washout by the LF, and clarified the involvement of these fac-
tors in the interstitial-fluid volume regulation. In Model 1,
there were two volumes with different hydrostatic and col-
loidal osmotic pressures, capillary, and the interstitial fluid.
They exchanged fluid across the membrane, but not for the
protein. Then, the nonlinear compliance of the tissue was
implemented in Model 2 to determine the effect of the small
tissue compliance in the range slightly negative to the atmo-
spheric pressure. In order to clarify the effect of LF, we firstly

assumed that the lymph carried only fluid in Model 3. Based
on Model 3, we  finally developed a full capillary model with
the protein dynamics in Model 4. Equations corresponding to
Eq. (11) → qEq. (11′)

the sequential development from Model 1 to Model 4 are listed
in Table 3.

2.3.1.  Model  1
2.3.1.1.  Calculation  of  plasma  flow  in  a  capillary  and  fluid  flux
across the  capillary  membrane.  The capillary model is divided
into N (60 in our model) compartments along the x-axis as
in Fig. 1B to calculate plasma flow within a capillary in a dis-
cretized manner.

The plasma flux between the ith and the (i + 1)th compart-
ment is expressed as jv,pl(t, xi) and calculated by the following
equation:

jv,pl(t, xi) = vpl(t, xi)

�x
× vflow × 1

L
, (3)

where vpl(t, xi), �x, and vflow are the plasma volume of the
ith compartment, the length of each compartment, and the
velocity of capillary plasma flow in the capillary, respectively.

Now we  assume that the capillary wall is facing the
interstitial-fluid space of the tissue, which has different P
and ˘, and the pressure difference across the wall forces flu-
ids to permeate between the capillary and the tissue. From
the governing equations, Eqs. (1) and (2), the trans-capillary
fluid flux at the ith compartment [jv,C(t, xi) (�L/ms/mm)] is
calculated from the fluid hydrostatic pressure and colloidal
osmotic pressure differences between plasma and interstitial
fluid [ppl(xi), Pisf, �pl(t, xi), and ˘ isf(t) (mmHg)], as a function of
axial position in the capillary [xi (mm))  and time (t (ms)] as
follows:

jv,C(t, xi) = K ×
{

(ppl(xi) − Pisf ) − (�pl(t, xi) − ˘isf (t))
}

(4)

Taken together, the inflow and outflow of the plasma vol-
ume  in the ith compartment, the change in vpl(t, xi) (�L) is
calculated as:

∂vpl(t, xi)

∂t
= jv,pl(t, xi−1) − jv,pl(t, xi) − jv,C(t, xi)

= −vpl(t, xi) − vpl(t, xi−1)

�x
× vflow − jv,C(t, xi) (5)

It is known that the red blood cell size is similar to that
of the capillary diameter. Therefore, the plasma flow in our
than laminar flow, assuming rapid radial diffusion. The fluid
flux between each capillary compartment and the intersti-
tial fluid space accumulates and changes the interstitial fluid

dx.doi.org/10.1016/j.imr.2015.12.006
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olume, Visf(t). The integration of the fluxes is calculated
y the following discretized equation using the term, Jv,c(t)
�L/ms/mm;  Fig. 1B):

v,C(t) = 1
L

×
∑N

i=1
{jv,C(t, xi) × �x}  (6)

∂Visf

∂t
= Jv,C(t) (7)

.3.1.2.  Equations  for  calculating  hydrostatic  pressure  of  the
apillary  plasma  and  the  interstitial  fluid.  In our capillary
odel, the plasma hydrostatic pressure, Ppl(xi) (mmHg), is

iven by a linear function of axial distance of the ith compart-
ent, xi (mm),  along the capillary of length L (0.6 mm),  which

s independent of time [t (s)].

pl(xi) = Ppl,a + (Ppl,v − Ppl,a) × xi

L
, (8)

here Ppl,a and Ppl,v are the plasma hydrostatic pressures at
he arterial and venous ends of the capillary, respectively. In
odel 1, Pisf is fixed to a given value:

isf = P0
isf (= −3) (mmHg). (9)

.3.1.3.  Equations  for  calculating  colloidal  osmotic  pressure  in
lasma  and  interstitial  fluid.  As the serum proteins are not
ssumed to move across the capillary membrane in Model 1,
he amount of protein stays constant. Therefore, the colloidal
smotic pressures for plasma �pl(t, xi) (mmHg) and intersti-
ial fluid ˘ isf(t) (mmHg) are given by the following equations,
espectively:

pl(t, xi) = ˘0
pl ×

V0
pl

vpl(t, xi)
, (10)

isf (t) = ˘0
isf ×

V0
isf

Visf (t)
. (11)
.3.2.  Model  2

.3.2.1.  Calculating  interstitial  fluid  pressure  using  a  nonlinear
ompliance  equation.  A nonlinear relationship is well-known

ig. 2 – Nonlinear relationship used in models. (A) Relationship b
elationship between Pisf and relative lymph flow introduced in 
15

between the interstitial fluid pressure and its volume from
experiments on living tissue (Fig. 2A):

Pisf (t) = f1
(

Visf (t)
)

= −3.139 × e

1−
Visf (t)

V0
isf

0.12 + 3.61 × Visf (t)

V0
isf

− 5.6964 (9′)

where f1 represents an equation fitted to the experimental
data.9

2.3.3.  Model  3
2.3.3.1.  Estimation  of  the  LF.  LF is known to increase as the
interstitial fluid pressure rises, but it reaches an upper limit
when the interstitial fluid pressure rises above a certain level
(Fig. 2B):

Jv,LF(t) = f2
(

Pisf (t)
)

= s

0.06 × e

Pisf (t)

2.16 + 0.015 × e

Pisf (t)

4.5

× 1
L

(12)

where f2 is obtained by fitting an equation to the relationship
given by Taylor et al10 and rescaled by multiplying the scal-
ing factor, s = 9.7922 × 10−12 (�L/ms), to balance with the net
filtration at the capillary.

As the LF carries fluid from the interstitial space to the
lymphatic capillaries (Fig. 1C), the volume change of the inter-
stitial fluid is expressed as:

∂Visf (t)

∂t
= Jv,C(t) − Jv,LF(t). (7′)

2.3.4.  Model  4
2.3.4.1.  Equations  for  calculating  colloidal  osmotic  pressure  in
plasma  and  interstitial  fluid.  Lastly, protein concentration is
taken into account to refine the model of fluid-volume reg-
ulation. It is known that there is a ‘large pore system’ that
transports plasma proteins through the membrane (Fig. 3A).
Additionally, a small amount of protein dissolved in plasma

or interstitial fluid leaks through the membrane in the pro-
cess of fluid convection. Therefore, the protein flux carried
out by blood flow through capillary vessels [jq,pl(t, xi)] and
the sum of the protein flux carried by the large pore sys-

etween Visf and Pisf introduced in Models 2–4. (B)
Models 3 and 4.
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Fig. 3 – Implementation of protein dynamics into Model 4. (A) Cross-section of capillary membrane showing
transmembrane protein transport. (B) Relationship between protein concentration and colloidal osmotic pressure. An

.

(in c

 case
equation (pink) was fitted to a curve from a textbook8 (blue)

tem by diffusion and fluid convection across the capillary
membrane [jq,C (t, xi)] are calculated for each compartment as
follows:

Jq,pl(t, xi) = qpl(t, xi)

�x
×  vflow × 1

L
(13)

∂qpl(t, xi)

∂t
= jq,pl(t, xi−1) − jq,pl(t, xi) − jq,C(t, xi)

= −qpl(t, xi) − qpl(t, xi−1)

�x
× vflow − jq,C(t, xi) (14)

{
jq,C(t, xi) = Gp ×

(
cpl(t, xi) − Cisf (t)

)
+ jv,C(t, xi) × cpl(t, xi) × R 

jq,C(t, xi) = Gp ×
(

cpl(t, xi) − Cisf (t)
)

+ jv,C(t, xi) × Cisf (t) × R (in

where jq,pl(t, xi) or jq,C(t, xi), qpl(t, xi), Gp, cpl(t, xi) or Cisf(t), and
R are protein fluxes along the capillary or across the capillary
membrane, the quantity of protein in plasma, protein perme-
ability through the large pore system, protein concentration in
plasma or interstitial fluid, and relative protein permeability
of the membrane to water, respectively. Then, similar to Jv,C(t),
integrated fluxes for the protein are calculated by the following
discretized equation using the term Jq,C(t) (�g/ms/mm):

Jq,C(t) = 1
L

×
∑N

i=1
{jq,C(t, xi) × �x}  (16)

The removal of plasma proteins by LF is given by:

Jq,LF(t) = Jv,LF(t) × Cisf (t) (17)

∂Qisf (t)

∂t
= Jq,C(t) − Jq,LF(t) (18)

The concentrations of protein [cpl(t, xi) and Cisf(t)] are calcu-
lated from the amounts of protein [qpl(t, xi) and Qisf(t)] and the
fluid volumes [vpl(t, xi) and Visf(t)].

cpl(t, xi) = qpl(t, xi)

v (t, x )
(19)
pl i

Cisf (t) = Qisf (t)

Visf (t)
(20)
ase of filtration)

 of reabsorption)
(15)

The relationship between plasma protein concentration
and colloidal osmotic pressure was given by a cubic equation
(Fig. 3B) in the literature.8 We fitted a secondary equation to the
relationship as f3 (Fig. 3B) and calculated the colloidal osmotic
pressures for the plasma and the interstitial fluid [�pl(t, xi) and
�isf(t)] as follows:

�pl(t, xi) = f3
(

cpl(t, xi)
)

= f3
(

qpl(t, xi)/vpl(t, xi)
)

= 0.157 × qpl(t, xi)

vpl(t, xi)
+  3.2 × 10−3 ×

(
qpl(t, xi)

vpl(t, xi)

)2

(10′)

˘isf (t) = f3
(

Cisf (t)
)

= f3
(

Qisf (t)/Visf (t)
)

= 0.157 × Qisf (t)

Visf (t)
+ 3.2 × 10−3 ×

(
Qisf (t)

Visf (t)

)2

(11′)

2.4.  An  experimental  protocol  and  the  pressure
balance  analysis

All models were examined by applying a common perturba-
tion to the capillary pressure, namely, Ppl,v was changed in
a stepwise manner as Ppl,v = 15 → 17 → 15 → 13 → 15 mmHg,
with a 100-minute interval. In Model 4, the LF could be modi-
fied by changing the scaling factor, s, in Eq. (12). We reduced s
to 10% of the original value for the simulation of the lymphatic
obstruction.

Contributions of each component to tissue-volume reg-
ulation in the simulation experiment was demonstrated by
piling inward and outward driving forces separately with pos-
itive and negative signs, respectively, referring to the direction
towards the tissue space (Figs. 4–8B). In this analysis, the
hydrostatic and colloidal osmotic pressure of individual cap-

illary spaces were averaged as P̄pl, and ¯̆ pl(t).

P̄pl = 1
N

×
∑N

i=1
ppl(xi) (21)

dx.doi.org/10.1016/j.imr.2015.12.006


Y. Himeno et al/Capillary fluid exchange model 17

Tim e (min)

0 100 20 0 30 0 400 500

Π
is

f 
(m

m
H

g
)

 (
m

m
H

g
)

1

26

22

24

20

18

-20

-22

-24

-26

2

3

4

V
is

f 
(x

 1
0

-5
μL

)

0

5

10

15

isfP−

isfΠ

plΠ−

plP

(A)

(B)

P
re

s
s
u
re

F
p
c

a

˘

s
c

o

F
p
c

Time (min)
0 100 200 300 400 500

Π
is

f
(m

m
H

g
)

P
re

s
s
u
re

 (
m

m
H

g
)

1.6

24

26

22

20

18

-20

-22

-24

LF/K

1.8
2.0
2.2

V
is

f

(x
1

0
-5
μL

)

6.0
6.2
6.4
6.6

P
is

f
(m

m
H

g
)

-5

-4

-3

isfP−

isfΠ

plΠ−

plP

(A)

(B)

Fig. 6 – (A) Visf, Visf,L, Pisf, and �isf change and (B)

We  derive an instantaneous equilibrium value of Visf(t) as
Visf,L (t), to which Visf (t) tends to approach at a given time.

Visf,L (t) can be obtained by solving
∂Visf (t) = Jv(t) = 0. To solve
ig. 4 – (A) Visf, Visf,L, and �isf change and (B)
ressure-balance diagram in Model 1 in experiment
hanging Ppl,v.

nd

¯ pl (t) = 1
N

×
∑N

i=1
�pl(t, xi) (22)

In case of Models 3 and 4, the LF (Jv,LF(t)) makes small but
dVisf (t)
ignificant contributions to
dt

. Jv,LF (t) is divided by K to cal-
ulate a pseudo pressure in order to evaluate the contribution

f LF to
dVisf (t)

dt
, and then added to the diagram.
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or absorbed fluid flux calculated by Eqs. (6) and (7) induced
Visf(t) change towards Visf,L(t), which, in turn, changed ˘ isf(t)
to cancel the pressure imbalance.

Table 4 – Steady state numerical values obtained at
steady-state level in Models 1–4

Model 1

17 mmHg  15 mmHg  13 mmHg

Visf (�L) 1.02 × 10−4

(+80.98%)
5.62 × 10−5 3.86 × 10−5

(−31.28%)
Pisf (mmHg) −3 −3 −3
	isf (mmHg) 1.18 2.14 3.11

Model 2

Visf (�L) 6.91 × 10−5

(+5.96%)
6.52 × 10−5 6.24 × 10−5

(−4.28%)
Pisf (mmHg) −2.43 −3.30 −4.19
	isf (mmHg) 1.74 1.84 1.92

Model 3

Visf (�L) 6.57 × 10−5

(+3.71%)
6.34 × 10−5 6.14 × 10−5

(−3.12%)
Pisf (mmHg) −3.16 −3.85 −4.59
	isf (mmHg) 1.83 1.89 1.95

Model 4

Visf (�L) 6.77 × 10−5 6.58 × 10−5 6.44 × 10−5
isf isf,L isf isf,L isf isf

pressure-balance diagram in Model 4 in lymphatic
obstruction experiment.

the equation, we  have slightly modified the calculation
method proposed by Shimayoshi et al.11 We  applied New-
ton’s method to obtain an x-intercept of a tangential line of
y = Jv

(
Visf (t)

)
iteratively by changing Visf (t), and detected a

point at which Jv(Visf (t)) becomes <10−4.
In order to understand the dynamics of the system around

the steady-state point, a phase plane was plotted around the
steady-state point (Visf = 6.305 × 10−5 �L, Qisf = 1.997 × 10−4 �g)
at a control condition of Ppl,v = 15 mmHg  in Model 4.

When we  define a Jacobian matrix, A, for the system at the
steady-state point at a control condition of Ppl,v = 15 mmHg  in
Model 4, eigenvalues, �1 and �2, and corresponding eigenvec-
tors, x1 and x2, are obtained. Then, �1 = − 1

�1
and �2 = − 1

�2
are

calculated as the time constants, which determine the dynam-
ics of the system. Visf(t) and Qisf(t) change their values in the
direction of eigenvectors, x1 and x2, with the time constants,
�1 and �2, respectively.

3.  Results

3.1.  A  simple  capillary  base  model  (Model  1)

First, in Models 1–3, we  assumed that the capillary mem-
brane was only permeable to water. Fig. 4A shows the
time course in Visf(t), Visf,L(t) and ˘ isf(t) in Model 1 induced
by perturbations changing Ppl,v as indicated in Section 2.
When Ppl,v was increased by 2 mmHg  from a control value

of 15 mmHg  at t = 100 minutes, PE, calculated by Eq. (2),
became positive and the fluid filtered out from the capil-
lary. As a result, Visf(t) increased by 81% within 100 minutes
(Fig. 4A, ∼100–200 minutes; Table 4). Switching Ppl,v back to the
Integr Med Res (  2 0 1 6 ) 11–21

original level of 15 mmHg  allowed Visf(t) to return to the basal
level of V0

isf
. Next, Ppl,v decreased by 2 mmHg  from the origi-

nal level and switched back to the original level of 15 mmHg.
This 2 mmHg  decrease, which was the same in size as the Ppl,v-
step increase, induced a smaller (∼-25%) decrease in Visf(t), and
reached a steady-state level (Fig. 4A, ∼300–400 minutes) and
returned to the basal level of V0

isf
with a relatively rapid time

course (∼400–500 minutes). To identify the cause-effect rela-
tionship, we  calculated an instantaneous equilibrium point,
Visf,L(t), and plotted this with a red line (Fig. 4A). It was clearly
shown that, after Ppl,v change, Visf(t) gradually approached
Visf,L(t) as fluid filtration or absorption proceeded until it
reached a new steady state. ˘ isf(t) changed according to the
Visf(t) change by Eq. (11). The deviation of ˘ isf(t) from the initial
value at each steady state after changing Ppl,v positively and
negatively by 2 mmHg  was approximately equal to the change
in P̄pl.

In order to obtain further insights into the mechanisms
underlying the volume change, we  applied the pressure-
balance analysis as shown in Fig. 4B. As Ppl,v was changed
manually in a stepwise manner, P̄pl was changed accordingly
(red area). Since Pisf is fixed to −3 mmHg  in Model 1, ˘ isf(t) is
the only parameter in the pressure balance that can be actively
changed by fluid movement  to reach a new steady state after
Ppl,v change. According to the diagram, ±2 mmHg  Ppl,v change
at t = 100, 200, 300, and 400 minutes broke the balance between
positive and negative pressures in PE, and the resultant filtered
(+2.89%) (−2.13%)
Qisf (�g) 7.24 × 10−4 8.42 × 10−4 9.69 × 10−4

Pisf (mmHg) −2.71 −3.14 −3.54
	isf (mmHg) 2.04 2.53 3.09

dx.doi.org/10.1016/j.imr.2015.12.006
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.2.  Effects  of  the  nonlinear  tissue  compliance  on  the
odel (Model  2)

ompliance is one of the fundamental properties of the tis-
ue and specifies characteristic behaviour of the tissue in
elation to volume change. The relationship between the inter-
titial fluid pressure and the volume was obtained from an
xperiment performed on dogs,12 and Pisf = 3 mmHg  [Eq. (9)]
n Model 1 was substituted with Pisf(t) = f1[Visf(t)] [Eq. (9′)] in

odel 2. The same stepwise change of Ppl,v as in Fig. 4 induced
maller changes compared to Model 1 (Table 4). The steep
lope of the fitted equation, f1, in the range slightly nega-
ive to atmospheric pressure meant that slight changes in

isf(t) effectively changes Pisf(t) to resist volume change and
nduces a strong negative feedback in the Visf(t) change. Visf,L(t)
n Model 2 (red line in Fig. 5A) was more  closely followed by

isf(t), and its deviation from the original level induced by

pl,v change was much smaller as compared to that seen in
odel 1, suggesting that the volume regulation by nonlin-

ar tissue compliance was more  efficient at preventing the
welling of the tissue in this model. In Fig. 5B, it is evident
hat the perturbation in P̄pl was almost totally balanced by

isf(t).

.3.  Draining  excess  interstitial  fluid  as  lymph
Model  3)

he introduction of the drainage by LF induced much smaller
eviations in Visf(t) as compared to Models 1 and 2 when pos-

tive and negative changes were applied to Ppl,v in Model 3
Table 4). Visf,L(t) was almost superimposable over Visf(t), sug-
esting that the control of the interstitial fluid volume was
ffectively accomplished by the change in the LF. The con-
ribution of the lymph drainage to interstitial-fluid volume
egulation was then analyzed by the pressure balance dia-
ram in Fig. 6. The lymph pumped interstitial fluid away from
he tissue, therefore, contribution of LF divided by K to the
ressure balance was negative, as shown at the bottom of the
iagram (Fig. 6B). As this negative contribution of LF increased
he net negative pressure,

∣∣−Pisf (t)
∣∣, the pressure-balance dia-

ram became larger to balance with the negativity. The same
2 mmHg  change in Ppl,v induced smaller changes in −Pisf(t)
nd −˘ isf(t) as compared to the changes in Model 2, because LF
layed a role in offsetting the stepwise changes in Ppl,v instead
f changing −Pisf(t) and −˘ isf(t). Visf,L(t) in Model 3 was almost
uperimposable over Visf(t), indicating that, due to the contri-
ution of LF, PE became zero immediately after the stepwise
hange in Ppl,v.

.4.  Lymphatic  flow  carries  protein  away  from  the
issue  (Model  4)

e  implemented protein permeation across the capillary
embrane and wash out by lymph into Model 3 to develop
odel 4 (see Table 3 for the modifications in equations). When

ositive and negative changes were applied to Ppl,v in the

odel, fluid moved to the interstitium from the capillary and
ade a jump in Visf(t). After the initial jump, Visf,L(t) kept

hanging and influenced Visf(t) until it reached a steady state,
hich was closer to a value obtained at Ppl,v = 15 mmHg  in
19

control conditions as compared to Models 1–3 (values are
compared in Table 4). It should be noted that the change in
Visf,L(t) was biphasic in Model 4, which was different from the
monophasic simple time courses observed in those of Mod-
els 1–3. The late gradual change in Visf,L(t) seemed to coincide
with that in Qisf(t). Therefore, we calculated Qisf,L(t) and plotted
the results together with Qisf(t) in Fig. 7A. The results revealed
that the jump in Visf,L(t) induced a large driving force in Qisf,L(t)
in the initial phase after the perturbation, which led Qisf(t) to
keep changing in the later phase.

3.5.  Simulated  swelling  induced  by  lymphatic
obstruction

In order to understand the mechanisms associated with
pathophysiological swelling, we  performed a simulation
experiment using our model (Model 4) to reproduce the effect
of lymphatic obstruction. In this experiment, the amplitude
of LF was scaled down to 10% of its original value. After the
obstruction at the time of 100 minutes, Visf,L(t) increased con-
tinuously and did not reach a steady state within 400 minutes
(Fig. 8A). From the pressure-balance diagram in Fig. 8B, it is
evident that ˘ isf(t) increased dramatically after the obstruc-
tion, whereas Pisf(t) reduced its contribution complementarily.
It was surprising that the reduction in the contribution of the
LF at the bottom of the pressure-balance diagram was rather
small compared to the change in ˘ isf(t) and Pisf(t). This result
suggested that the major effect of the lymphatic obstruc-
tion occurred through the change in Qisf(t), which, in turn,
increased ˘ isf(t) and reduced

∣∣−Pisf (t)
∣∣ dramatically favouring

increases in the positive pressure in PE to cause swelling effec-
tively. In case of edema in pathophysiological conditions, it
is known that interstitial compliance becomes higher and
less effective to prevent swelling.12,13 This effect could be
implemented simply by introducing a pathological compli-
ance curve into the model.

4.  Discussion

We  showed that the same positive and negative stepwise
change in Ppl,v induced various impacts on four different mod-
els developed sequentially. To obtain further insight into the
mechanisms underlying Visf(t) and Qisf(t) changes in the full
model comprising nonlinear tissue compliance, lymphatic
flow, and protein wash out (Model 4), we  performed three
mathematical analyses: 1) phase-plane analysis, 2) calculating
instantaneous equilibrium points, and 3) calculating eigenvec-
tors and eigenvalues from a Jacobian matrix.

In the phase-plane analysis in Fig. 9A, the flow vectors of
Visf(t) and Qisf(t), which correspond to Jv(t) and Jq(t), are plotted.
Two bent arrows indicate the trajectories of Visf(t) and Qisf(t)
obtained when the venous pressure was returned to 15 mmHg
(green circle) from 17 mmHg  (red circle) or 13 mmHg  (blue cir-
cle). In both cases, it was confirmed that first, Visf(t) changed
to compensate the ±2 mmHg  change in the pressure at the

venous end of the capillary. Then, Qisf(t) gradually changed and
Visf(t) reversed the direction of its change. Here, it should be
noted that the phase plane was calculated at an instant when
the system was in the steady state and might be valid only
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Fig. 9 – (A) Phase-plane diagram in steady state at Ppl,v = 15 mmHg  and (B, C) instantaneous equilibrium point for Jv and Jq.
Arrows in A and B represent the trajectories for Visf and Qisf. Jv and Jq were  multiplied by 3.0 × 103 and 6.0 × 104, respectively,
to visualize vectors in the diagram in A. Red and blue circles in A, Ba, and Bb indicate Visf and Qisf values obtained when
Ppl,v was switched back to 15 mmHg  from 17 mmHg  and 13 mmHg, respectively. Green circles in panels A, Ba, and Bb
indicate values obtained at steady state at Ppl,v = 15 mmHg. Red, green, and blue squares indicate equilibrium points, to
which the circles with corresponding colours tended to approach
in the area near the steady-state point of the figure. In order
to determine whether the model behaviour was stable in the
surrounding area near the steady state, we calculated instan-
taneous equilibrium points for both Jv(t) and Jq(t) in a range
used in our simulation experiment in this study and plotted
in Fig. 9A.

From the result of the instantaneous equilibrium points, we
confirmed that Jv(t) and Jq (t) had negative slopes and crossed
each abscissa axis only once, even when Ppl,v was changed,
suggesting that the behaviour of the system would not be
changed significantly after changing Ppl,v from 17 mmHg  or
13 mmHg  to 15 mmHg. Then, Jv(t) and Jq(t) in the instanta-
neous equilibrium point in Fig. 9B and 9C were reviewed in
relation with the phase plane (Fig. 9A). At the x-intercept
(Visf = 6.58 × 10−5 �L) in the instantaneous equilibrium point
diagram for Jv(t), the flow vector of Visf(t), Jv(t), in the phase
plane changed its direction when Qisf(t) was at the steady state,
Jq(t) = 0. The red and blue lines in Fig. 9B were obtained at the
red and blue points in the phase-plane diagram in Fig. 9A when
Ppl,v was switched to 15 mmHg  from 17 mmHg  or 13 mmHg.
Both red and blue lines tended to approach the green lines
when the transient changes in Visf(t) and Qisf(t) proceeded after
switching P , and converged with the green line at the steady
pl,v

state in Fig. 9B. Similarly, in the instantaneous equilibrium-
point diagram for Jq(t), the Qisf(t) component of the vectors,
Jq(t), in the phase plane changed its direction at the x-intercept
 at a given time.

(Qisf(t) = 8.42 × 10−4 �g) Visf(t) was at the steady state, Jv = 0.
Red and blue lines also converged with the green line at the
steady state in Jq(t) in Fig. 9C. Taken together, we  confirmed
that the system was stable and did not change its behaviour
significantly when Ppl,v was changed by ±2 mmHg.

Finally, we obtained a Jacobian matrix from differential
equations at Ppl,v = 15mmHg and derived eigenvectors and
eigenvalues of the system at the steady state.

A =

⎡
⎢⎣

∂Jv
∂Visf

∂Jv
∂Qisf

∂Jq

∂Visf

∂Jq

∂Qisf

⎤
⎥⎦ =

[
−4.48 × 10−5 4.56 × 10−7

−1.00 × 10−4 −8.36 × 10−7

]

x1 =
[

−0.394
−0.919

]
, �1 = −4.37 × 10−5,

�1 = − 1
�1

= 2.29 × 104(= 0.381 min)

[ ]

x2 = −0.0106

−1.00
, �2 = −1.90 × 10−6,

�2 = − 1
�2

= 5.26 × 105(= 8.77 min)

dx.doi.org/10.1016/j.imr.2015.12.006


Y. Himeno et al/Capillary fluid exchange model 21

Table 5 – Eigenvalues and time constants for the eigenvectors in the capillary model

Condition (mmHg) Time (min) �1 (min) �2 (min) �2/�1

Ppl,v 15 (steady state) 0 0.381 8.77 23.0
Ppl,v 17 → 15 0.05 0.445 8.52 19.1

30 0.377 8.96 23.8
90 0.381 8.77 23.0
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We  determined that the values along the trajectory of Visf(t)
nd Qisf(t) after switching Ppl,v to 15 mmHg  from 17 mmHg  or
3 mmHg  were not largely different from those obtained at the
teady state (Table 5). Both eigenvalues, �1 and �2, were nega-
ive, suggesting that the equilibrium point was stable. �2 was
lmost 22-fold larger than �1, suggesting that the change in
he direction of x2, which was determined mostly by the Qisf(t)
omponent, was 22-fold lower compared to that of x1, which
as determined by the Visf(t) component and a smaller Qisf(t)

omponent. These results could explain why the changes in

isf(t) and Qisf(t) after the change in Ppl,v were asynchronous.
The more  a mathematical model becomes integrative,

he more  difficult it becomes to investigate the mechanisms
nderlying the behaviour of the system. In this study, we  tried
o understand the mechanisms of the interstitial fluid volume
egulation by sequentially adding three components of the
ystem to the basal model of capillary (Model 1), nonlinear tis-
ue compliance (Model 2), LF (Model 3), and protein washout
Model 4), and applying mathematical analyses to each model.
s to Models 1–3, in which only fluid, but not protein, was
llowed to move, it was shown that the fluid flux across the
apillary membrane and through the lymph led Visf(t) to follow
he change in Visf,L(t). Both the nonlinear compliance of the tis-
ue and the LF added in Models 2 and 3 accelerated the volume
hange reaching a steady state. In Model 4, there was charac-
eristic behaviour of the system, where the change in Visf,L(t)
as biphasic. To investigate the mechanisms of the biphasic

hange, we  calculated the eigenvalues and time constants of
he system in order to understand the model behaviour. The
btained eigenvalues offered us a quantitative insight that
here were two different tendencies for the movement  within
he system; fast and slow movement. The fast component was

ainly influenced by the fluid that changed Visf(t), and the
low component was influenced by the protein that changed

isf(t). Given the higher mobility of the fluid compared to that
f the protein into account, it was reasonable to think that
he pressure imbalance induced externally was minimized by
he quick fluid movement  first, and then in the later phase,
he contribution of the hydrostatic pressure and the colloidal
smotic pressure within the pressure balance were adjusted
y the movement  of the protein.
onflicts  of  interest

he authors declare no conflicts of interest.
0.336 8.88 26.4
0.386 8.59 22.3
0.381 8.76 23.0

Acknowledgments

We  are grateful to Drs. T. Shimayoshi and Y. Takeda for fruitful
discussions. Mses. N. Morisato and Tsujikawa contributed to
development of the preliminary model in this study. This work
was supported by Grant-in-Aid for JSPS Fellows (to Y. H.) from
Japan Society for the Promotion of Science (JSPS) and by the
Programme for Application of the Grants-in-Aid for Scientific
Research at Ritsumeikan University (to Y. H.).

 e  f  e  r  e  n  c  e  s

1. Guyton AC, Coleman TG, Granger HJ. Circulation: overall
regulation. Annu Rev Physiol 1972;34:13–46.

2. Wiederhielm CA. Dynamics of capillary fluid exchange: a
nonlinear computer simulation. Microvasc Res 1979;18:48–82.

3. Bert JL, Pinder KL. An analog computer simulation showing
the effect of volume exclusion on capillary fluid exchange.
Microvasc Res 1982;24:94–103.

4. Curry FE, Michel CC. A fiber matrix model of capillary
permeability. Microvasc Res 1980;20:96–9.

5. Levick JR. Capillary filtration-absorption balance
reconsidered in light of dynamic extravascular factors. Exp
Physiol 1991;76:825–57.

6. Adamson RH, Lenz JF, Zhang X, Adamson GN, Weinbaum S,
Curry FE. Oncotic pressures opposing filtration across
non-fenestrated rat microvessels. J Physiol 2004;557:889–907.

7. Guyton AC, Hall John E. Textbook of medical physiology. 7th ed.
Philadelphia: Saunders; 2000:12899–9103.

8. Levick JR. An introduction to cardiovascular physiology. Oxford:
Butterworth-Heinemann; 2013, p. 183.

9. Guyton AC. Interstitial fluid presure. II. Pressure-volume
curves of interstitial space. Circ Res 1965;16:452–60.

10. Taylor AE, Gibson WH,  Granger HJ, Guyton AC. The
interaction between intracapillary and tissue forces in the
overall regulation of interstitial fluid volume. Lymphology
1973;6:192–208.

11. Shimayoshi T, Cha CY, Amano A. Quantitative
decomposition of dynamics of mathematical cell models:
method and application to ventricular myocyte models. PLoS
One  2015;10:e0124970.

12. Guyton AC, Taylor AE, Granger HJ. Dynamics and control of the
fluid pressure and arm volume in lymphoedema. Int J
Microcirc Clin Exp 1992;11:359–73.

http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0070
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0070
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0070
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0070
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0070
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0070
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0070
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0070
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0070
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0070
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0070
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0070
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0070
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0070
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0070
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0070
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0070
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0070
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0070
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0070
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0070
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0070
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0070
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0070
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0070
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0070
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0070
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0075
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0075
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0075
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0075
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0075
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0075
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0075
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0075
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0075
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0075
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0075
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0075
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0075
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0075
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0075
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0075
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0075
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0075
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0075
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0075
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0075
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0075
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0075
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0075
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0075
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0080
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0085
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0085
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0085
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0085
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0085
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0085
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0085
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0085
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0085
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0085
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0085
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0085
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0085
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0085
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0085
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0085
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0085
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0085
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0085
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0085
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0085
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0085
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0085
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0090
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0095
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0100
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0100
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0100
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0100
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0100
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0100
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0100
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0100
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0100
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0100
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0100
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0100
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0100
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0100
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0100
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0100
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0100
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0100
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0100
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0100
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0100
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0100
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0100
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0105
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0105
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0105
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0105
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0105
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0105
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0105
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0105
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0105
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0105
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0105
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0105
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0105
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0105
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0105
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0105
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0105
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0105
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0105
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0105
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0105
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0105
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0105
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0110
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0110
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0110
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0110
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0110
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0110
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0110
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0110
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0110
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0110
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0110
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0110
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0110
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0110
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0110
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0110
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0110
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0110
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0110
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0110
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0110
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0110
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0110
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0110
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0110
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0110
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0115
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0120
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0125
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0125
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0125
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0125
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0125
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0125
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0125
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0125
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0125
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0125
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0125
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0125
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0125
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0125
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0125
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0125
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0125
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0125
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0125
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0125
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0125
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0125
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0125
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0125
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0125
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130
http://refhub.elsevier.com/S2213-4220(15)00586-7/sbref0130

	Mechanisms underlying the volume regulation of interstitial fluid by capillaries: a simulation study
	1 Introduction
	2 Methods
	2.1 Governing equations for capillary filtration
	2.2 Structure of the model
	2.2.1 A capillary vessel model
	2.2.2 Determination of the permeability for capillary
	2.2.3 Estimation of the interstitial fluid volume in relation to blood volume for a single cylinder capillary model

	2.3 Mathematical formulations for simulation
	2.3.1 Model 1
	2.3.1.1 Calculation of plasma flow in a capillary and fluid flux across the capillary membrane
	2.3.1.2 Equations for calculating hydrostatic pressure of the capillary plasma and the interstitial fluid
	2.3.1.3 Equations for calculating colloidal osmotic pressure in plasma and interstitial fluid

	2.3.2 Model 2
	2.3.2.1 Calculating interstitial fluid pressure using a nonlinear compliance equation

	2.3.3 Model 3
	2.3.3.1 Estimation of the LF

	2.3.4 Model 4
	2.3.4.1 Equations for calculating colloidal osmotic pressure in plasma and interstitial fluid


	2.4 An experimental protocol and the pressure balance analysis
	2.5 Instantaneous equilibrium points and eigenvalue analyses

	3 Results
	3.1 A simple capillary base model (Model 1)
	3.2 Effects of the nonlinear tissue compliance on the model (Model 2)
	3.3 Draining excess interstitial fluid as lymph (Model 3)
	3.4 Lymphatic flow carries protein away from the tissue (Model 4)
	3.5 Simulated swelling induced by lymphatic obstruction

	4 Discussion
	Conflicts of interest
	Acknowledgments
	References


