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Abs t rac t - -This  note considers the solution to the  generalized Sylvester matr ix  equation A V  + 
B W  = E V J  + R, where A, B, E, and R are given matrices of appropriate dimensions, J is an 
arbitrary given Jordan matrix, while V and W are matrices to be determined. A general parametr ic  
solution for this equation is proposed, based on the Smith form reduction of the  matr ix  [A - sE  B] • 
The  solution possesses a very simple and neat form, and does not require the  eigenvalues of matr ix  
J to be known. An example is presented to illustrate the  proposed solution. (~) 2004 Elsevier Ltd. 
All rights reserved. 

K e y w o r d s - - G e n e r a l i z e d  Sylvester matr ix  equation, Parametr ic  solution, R-controllability, Smith 
form reduction. 

1. I N T R O D U C T I O N  

Consider the following generalized Sylvester matrix equation 

A V  + B W  = E V J ,  (1.1) 

where A , E  E R nxn, B C R nx~ are some given matrices, J E C pxp is a given Jordan matrix, 
and V C C nxv, W E C ~xp are to be determined. This matrix equation has found applications 
in many problems in linear systems theory, such as eigenstructure assignment [1-5], observer 
design [6], control of systems with input constraints [7], and robust fault detection [8,9]. For this 
equation, the general complete parametric solution has been explored in [1,2,10]. 

When dealing with complicated linear systems, such as large scale systems with interconnec- 
tions, second- or higher-order linear systems [11], linear systems with certain partitioned struc- 
tures or extended models, and linear systems with input constraints [7], we sometimes naturally 
encounter matrix equations in the following generalized form of (1.1), 

A V  + B W  = E V J  + R, (1.2) 
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where R E R nxp is some given matrix. Very recently, the author and his coauthors proposed 
complete parametric solutions to matrix equation (1.2) [3,11]. In [11], a complete parametric 
solution to this matrix equation is proposed for the special case E = I and J being diagonal 
based on right-coprime factorization. The solution is applied to eigenstructure assignment in 
second-order linear systems. In [3], a complete parametric solution to this equation is presented 
based on the Smith form reduction of the matrix [A - sE B]. However, the solution is not 
in an explicit closed form, but is iterative. The purpose of this paper is to derive, for matrix 
equation (1.2), simpler and general complete parametric solutions in direct closed forms. 

In the following sections, we use f(O(xo) to represent the lth derivative of function f ( x )  at 
x = xo. Moreover, we adopt the convention that f(0 (x) = 0 for l negative. 

2. P R E L I M I N A R I E S  

First, let us state the following simple fact. 

FACT 2.1. Let 
J=Blockd iag [ J1  J2 "'" Jq ] 

and partition the matrices V, W, and R, correspondingly as 

v = [ y l  v2 . . .  vq],  

w = [ w 1  w2 . . .  w q ] ,  

R = [ R 1  R2 .- .  R~],  

(2.1) 

(2.2) 

where the matrices Vi, Wi, and Ri are in consistent dimensions with the Jordan block J~. 
Then, (1.2) can be decomposed equivalently into the following set of equations: 

AV~ + BW~ = EV~J~ + R~, i = 1, 2 , . . . ,  q. (2.3) 

The above fact states that equation (1.2), with matrix J being a Jordan matrix, can be de- 
composed into a series of matrix equations in the same form as (1.2), but with matrix J being 
a Jordan block. Therefore, without loss of generality, we impose the following assumption, as 
in [10]. 

ASSUMPTION A1. The matrix J is a Jordan block of order p with eigenvalue ~r. 

In accordance with the above assumption, we can write 

V = [ v l  v2 "-. ~p], 

W - - [ W l  w2 ... w v], (2.4) 

R = [ r l  r2 . . .  rv].  

With these notations, the following result can be easily shown (proof omitted). 

LEMMA 2.1. Let Assumption A1 be valid. Matrix equation (1.2), then, is equivalent to the 
following group of vector equations: 

( A - a E )  v i + B w i = E v ~ _ l + r i ,  vo=O, i = 1 , 2 , . . . , p .  (2.~) 

The matrix triple [ E A B ] is called R-controllable [6], if and only if 

r a n k [ A - s E  B] = n ,  Vfinite s c C. (2.6) 

For convenience, we introduce the following assumption. 

ASSUMPTION A2. [E A B ] is R-controllable. 
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LEMMA 2.2. Let Assumption A2 be valid. Then, there exists a unimodular matrix Q(s) of order 
(n + r), such that 

[ A - s E  B]Q(s) = [I~ 0].  (2.7) 

PROOF. Due to Assumption A2, we can find two unimodular matrices P(s) and U(s) of appro- 
priate dimensions, such that  

P ( s ) [ A - s E  B]U(s )=[ I ,~  0].  (2.8) 

Letting 

then, Q(s) is clearly unimodular, and it can be verified that  this Q(s) satisfies (2.7). l 

3. T H E  M A I N  R E S U L T  

The following theorem gives the general complete parametric solution in explicit closed form 
for matrix equation (1.2). It  should be noted that  the result does not require the eigenvalue cr of 
matrix J to be known a priori. 

THEOREM 3.1. Let Assumptions A1 and A2 be valid, and Q(s) be a unimodular matrix satisfy- 
ing (2.7). Then, all the solutions to matrix equation (1.2) are characterized by 

wk fk + (0) k f k - l l  ÷ -~ ( k -  - (a) f l  ' (3.1) 
k = 1 , 2 , . . . , p  

where f~ C C r, i = 1 , 2 , . . . , p ,  are a group of parameter  vectors, which represent the degrees of 
freedom in the solution. 

PROOF. Partition Q(s) into 

I T ( s )  Y ( s ) ]  (3.2) 
Q ( s ) =  LL(s)  D( s )  ' 

where N(s) and D(s) are a pair of polynomial matrices of dimensions n x r and r x r, respectively, 
while T(s) and L(s) are a pair of polynomial matrices of dimensions n x n and r x n, respectively. 
It follows from (2.7), that  

(A - sE) N (s) + BD (s) --- O, 

(A - sE) T (s) + BL  (s) = I~. 

(3.3) 
(3.4) 

Furthermore, since the matrix Q(s) is unimodular, it is easy to see that  the pair of polynomial 
matrices N(s) and D(s) are right-coprime, and so are the pair of polynomial matrices T(s) 
and L(s). 

Because of (3.2), it is obvious that  solution (3.1) has the following equivalent form: 

w k - - - L L ( ~ )  L ( a )  J fk + ' " + ( k  1)-----~.Ln(k-1)(cr) n ( k - 1 ) ( a ) ]  f l  ' (3.5) 
k = 1 , 2 , . . . , p .  

To prove the result, let us first show that  the vectors vk and wk, k -- 1, 2 , . . .  ,p, given by (3.5) 
are solutions to matrix equation (1.2). In view of Lemma 2.1, it suffices only to show that  the 
vectors vk and wk, k = 1, 2 , . . .  ,p, given by (3.5) satisfy the equations in (2.5). 

Taking the differential of order l of both sides of (3.3), yields 

( A -  sE) N (0 (s) ÷ BD (0 (s) = IEN (1-1) (s), l -~ 0 , 1 , 2 , . . . , k -  1. (3.6) 
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Replacing s by a in (3.6), and then, post-multiplying by the vector (1/ l l ) fk- i  on both sides 
of (3.6), gives 

1 1 1 
(A - aE) - :N (a) A - 1  + B =D(Ol! (a) A - 1  = E ~ N  q-l) (c~) A - I ,  

1 = 0 , 1 , 2 , . . . , k -  1. 
(3.7) 

Summing up all the equations in (3.7) side-by-side, produces 

(A crE) v' k + Bw' k ' ' =0,  k 1,2, ,p, - -  = Z v k -  1 ,  V o  = • • • (3.8) 

where 
r ] = r N (a) N (1) ((7)] 

J D(1) (~)J [D(~) Lw£ ]A+[ 1 [ N(k-1)(a) ] f l .  (3.9) 
f k - 1  -~- " " - ~ -  ( k  - -  1)-"----~ LD(k-~) (~)J 

Similarly, taking the differential of order l of both sides of (3.4), yields 

(A - sE) T (0 (s) + BL  (t) (s) = lET q-l) (s) ÷ 5 (l) In, l = O, 1, 2 , . . . ,  k - 1, (3.10) 

where 5(l) is a function, which is 1 at l = 0 and zero at any other points. Replacing s by 
in (3.10), and post-multiplying by the vector (1/l!)rk_l on both sides of (3.10), gives 

(A - ¢E) 1T(O (a) rk-1 + B 1 L  (0 ((~) rk-1 = E T (~-1) (~) rk-1 + 5 (l) 
l! l! (3.11) 

1 = O, 1 , 2 , . . . , k -  1. 

Summing up all the equations in (3.11) side-by-side, gives 

(A aE) v~' + Bw~' Ev" " O, k 1 , 2 , . . , p ,  - -  ~ k- - I  -I- r k ,  V o = -= • 
(3.12) 

where 

w~: = LL(~)J rk + LL(~)j rk- ,  + - .  + 

It clearly follows from (3.5), (3.9) and (3.13), that  

1 
(k 1)! 

[ ]-- r £'1 
wk LWk J Lw~ J 

[T 
(k-1)(~) ] 

L(k_l)(~)j rl. (3,13) 

(3.14) 

By summing up the equations (3.8) and (3.12) side-by-side and using relation (3.14), we can 
obtain the equations in (2.5). Therefore, we have proved that  vectors vk and wk, k = 1, 2 , . . .  ,p, 
given by (3.5) satisfy the equations in (2.5). 

Secondly, we show the completeness of solution (3.5) in the sense tha t  it contains the maximum 
degree of freedom. It follows from the main result in [3], that  the maximum degree of freedom 
existing in the solution to matrix equation (1.2) is r × p, while solution (3.5) has exactly r × p 
parameters represented by the elements of the vectors fi,  i -- 1, 2 , . . . , p .  Since N(s) and D(s) 
are right-coprime, rank [NT(s) DT(s)] = n holds, for all s ~ C. Therefore, it follows from the 
format of solution (3.5), that  all the elements of the vectors fi,  i = 1, 2 , . . .  ,p, contribute to the 
solution. Therefore, all the p x r parameters in solution (3.5) represented by the elements of the 
vectors fi,  i = 1, 2, . . . .  p, are indeed an effective degree of freedom in the solution. This shows 
the completeness of solution (3.5), or equivalently, solution (3.1). | 

To finish this section, we finally give some remarks about Theorem 3.1. 

REMARK 3.1. When R = 0, both solutions (3.1) and (3.5) reduce to the main result in [10], 
which discusses the solution to matrix equation (1.1). 
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REMARK 3.2. It follows from the proof of Lemma 2.2, that the unimodular matrix Q(s) can be 
easily obtained based on the Smith form reduction (2.8), while the Smith form reduction (2.8) can 
be easily realized by manually using some simple elementary matrix transformations for relatively 
lower-order cases. For higher-order cases, the Maple function smith can be readily used. 

REMARK 3.3. Instead of solving the unimodular matrix Q(s), we can also find the right-coprime 
polynomial matrices N(s) and D(s), and T(s) and n(s) satisfying (3.3) and (3.4), respectively, 
emd derive the general solution to the equation based on (3.5). Regarding methods for solving 
these polynomial matrices, please refer to the comments in [1,2,10]. 

REMARK 3.4. Besides simplicity and neatness, solution (3.1) has the advantage that it can be 
applied to matrix equation (1.2) with J only structurally known. In other words, it only requires 
the order of the Jordan block J to be known, while the eigenvalue cr is allowed to be unknown. 
This offers a great advantage in certain control applications, where the closed-loop eigenvalues 
can be regarded undetermined and used as a part of the design parameters (see, e.g., [12-14]). 

4.  A N  I L L U S T R A T I V E  E X A M P L E  

Consider an equation in the form of (1.2), with 

[!10] EZi] [!°il A =  0 1 , B =  , E =  1 , 
0 - 1  0 

[! !] Io :1 R =  , J =  , crEC. 

It can be easily verified that Assumption A2 holds. By applying matrix elementary transfor- 
mations to the matrix [A - sE B], we obtain the unimodular matrices P(s) = Ia and 

Q(s) = u(8) = 

I i  0 0 1 
0 0 s 
0 0 0 
1 0 s 2 

0 1 0 

0 
0 
1 , 

- 1  
1 

which satisfy equations (2.7) and (2.8). 
According to Theorem 3.1, the general solution to the equation is given by 

f2 + Q(°) A '  

where rj represents the j th column of matrix R. Writing 

A "~- [Xli X2i] T, Xij e C, i , j  = 1,2, 

we can obtain the general solution to the equation as 

Xl I x12 ] 
V =  2+crx l l  3 + x l l + a x 1 2  , 

X21 X22 
W :  [2cr-]-3-~2Xll-X21 6- t -3cr--~2~rXl l -] -~2x12-x22]  

4 + x21 5 -~- x22 ' 

(4.3) 

where x~j, i , j  = 1, 2, are arbitrary complex numbers. 
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