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The  relationships between the concepts  of Garden-of -Eden configurations and 
restrictions, mutually erasable configurations, and injective parallel transformations 
are considered for the tessellation structure which is a model of a uniformly inter- 
connected array of  identical finite-state machines.  

1. INTRODUCTION 

There is a significant confusion in the current literature on "cellular" or "tessellation 
arrays" concerning the concept of a "Garden-of-Eden configuration." A number of 
current papers on this topic assume that what Moore [1] called "a Garden-of-Eden 
configuration" is just any array configuration not in the image of the array's global 
map. This misconception is due, at least in part, to the fact that what Moore called a 
"configuration" is not what is meant by the term in the current literature. In this 
note we show that Moore's concept is not the same as a configuration with no 
preimage, if one is concerned with the class of "finite" configurations. Almost  all 
authors concerned with this topic do limit their attention to this class. Clearing up 
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this point suggests a number  of other related questions, all of which are answered 
and tabulated in Fig. 1. 

Nonsurjeetivity for C t  ~ Nonbijectivity for Cr  Nonsurjectivity for C 

Noninjectivity for C r l 
~) :AA~ 3 G O E  conf. for Cr  ~ 3 G O E  conf. for C 

3 M E f o r  Ce ft ~ 
3 G O E  restr, for Cr  <:~ 3 G O E  restr, for C 

3 M E  for C 

Noninjectivity for C 

Nonsurjectivity for C 

FIG. 1. Summary of the results. 

2. THE TESSELLATION STRUCTURE 

For simplicity, we shall (following Moore [1] and Myhill [2]) limit our attention to 
arrays of two dimensions. We conjecture that all the concepts and results below carry 
over to arrays of arbitrary finite dimension. 

We use the set Z 2 of ordered pairs of integers to name the cells of the tessellation 
array (we use Z for dimension one). An array configuration, i.e., a symbol from a 
finite nonempty set A placed in each cell, is formally a mapping c: Z~---~ A. As in 
[1-3], we can fix the neighbors of any cell to be those cells which have each of their 
coordinate components differing by at most one from the corresponding coordinate 
components of the given cell. For one-dimensional arrays, the neighbors of cell i are 
cells i - -  1, i, and i + 1. We designate one symbol in A the quiescent symbol which 
we denote by 0. An array configuration will be called finite if only finitely many cells 
contain nonquiescent symbols in the configuration. For any given set A, we denote 
the set of all finite configurations by CF. 

Let  a be a function which specifies the symbol to be placed in a cell (at time t) given 
the symbols in the neighbors of the cell (at time t - -  1). We require that  a place a 0 
(at time t) into a cell if all its neighbors contain quiescent symbols (at time t - -  1). 
This  function a, which we call a local transformation, acting on all cells of an array 
simultaneously, determines a global transformation ~ which maps the set of all array 
configurations C into C. Any global transformation defined in this way, i.e., from a local 
transformation, will be called a parallel transformation. 
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3. DEFINITIONS 

The  restriction of an array configuration to a subsets S of Z 2 will be denoted by 
(C)s. Let N(S )  denote the set of cells containing exactly all neighbors of any cell in S. 
Note N(S )  D S. 

Let  S 1 = N(N(S ) )  for some finite set S C Z z. Restrictions (q)s,  and (C2)si of array 
configurations q ,  c2 E C (or Cr) will be called (after Moore) mutually erasable with 
respect to r, if conditions (a)-(c) below hold. 

(a) (el)s_ s = (C2)s1_ s , 

(b) (q)s  =/: (C2)s, 

(c) (~(q))N(s~ - -  (~(c2))~(s). 

The  concept of a Garden-of-Eden (GOE) configuration with respect to a parallel 
transformation r and C (or CF) was defined in [3] as an array configuration c ~ C(CF) 
for which no c' ~ C(C~) exists such that z(c') ~ c. This  is also what we shall mean when 
we speak of a G O E  configuration here. I t  was implied in [3] that this was what Moore 
in [1] and Myhill in [2] meant when they spoke of a Garden-of-Eden configuration. 
Actually, the concept that they had in mind for this phrase was the following. 

A restriction (C)s of an array configuration c ~ C (or Cr) to a finite set S will be 
called a Garden of Eden (GOE) restriction with respect to r and C (or CF) if for any 
extension c' E C (or Cr) there is no c" such that -r(c") = c'. 

Note that what Moore called a "Garden-of -Eden configuration" was not an array 
configuration, but  a restriction of an array configuration to a finite set S of cells. The  
following section should help to dear  up some of the confusion which may exist 
after [3]. 

PROPOSITION 1. (Moore and Myhill). The existence of G O E  restrictions is 
necessary and suffident for the existence of mutually erasable restrictions for universe 
C or C F . 

The  proof of this result is found in [1] and [2]. The  reader can verify that their 
arguments are valid independent of whether the universe is chosen to be C or C r ,  
although this is not explicitly stated there. 

PROPOSITION 2. For universe C, the existence of GOE configurations is necessary 
and sufficient for the existence of G O E  restrictions. 

Proof. The  proof of necessity is immediate. We first give the sufficiency proof 
for a one-dimensional array. Assume c is a G O E  configuration for ~-. For some fixed 
i ~ Z, let Ki be the unit set containing a triple (ala2a8) mapped by a to c(i), where a is 
the local transformation defining r. Suppose Ki+k, k ~ 0 is defined, then let Ki+~+ 1 
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be the set of all triples (blb2b~) such that for some d, (d bibs) is in Ki+k and a(blb2b3) = 
c(i + k + 1). Note that these sets have been defined "moving to the right from cell i." 
We would likewise define sets K~_I, Ki_ 2 ..... by "moving left." Since c is a G O E  
configuration, there is some j ,  which may be positive or negative, such that  Ki+ i z ;~. 
This  means that for any c' such that c'(i -- 1) = a l ,  c'(i) = a2, and c'(i + 1) = a~, 
then r(c') ~ c" where c" is any configuration agreeing with c on all cells between and 
including i and i + j .  Repeating the above argument for each triple mapped  by a to 
c(i) leads to the existence of integers m, n such that c restricted to {i: m ~ i ~ n} is a 
G O E  restriction. 

The  extension of this proof to the two-dimensional case should be clear. K i in this 
case would initially be some state of the neighborhood of cell i mapped by ~ to c(i). 
K~+, would be a set of states of a square " f rame"  of cells of width 2 surrounding the 
neighborhood of cell i. These states would be consistent with the contents of Ki  
analogous to the one-dimensional case above. Ki+2 would be a set of states of a still 
larger frame of cells again of width 2 surrounding the last square frame. The  reader 
should be able to fill in the necessary details to complete the proof. 

F rom the above results we have the analog of the Moore -Myhi l l  Theorem for 
G O E  configurations limited to universe C. 

PROPOSITION 3. For universe C, the existence of G O E  configurations is necessary 
and sufficient for the existence of mutually erasable restriction. 

PROPOSITION 4. For universe CF , parallel transformation r is not injective is necessary 
and sufficient for the existence of mutually erasable restrictions. 

Proof. Let , ( q )  = ,(c2) where Q :# c2, and let S C Z z include all cells containing 
nonquiescent symbols in either q or c 2 . Then  (q)s and (Q)s are mutually erasable. 

PROPOSITION 5. For universe Cr ,  the existence of G O E  restrictions is sufficient but 
not necessary for the existence of G O E  configurations. 

Proof. In  [3] the local transformation specified by 

000 0 
001 1 
010 1 
011 0 
100 1 
101 0 
110 1 
111 0 

defined a parallel transformation which was injective but  not surjective with respect 
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to Cp. That injectivity precludes the possibilities of GOE restrictions is established 
by Propositions 1 and 4. 

PROPOSITION 6. For universe C F , the existence of GOE configurations is necessary 
but not sufficient for the existence of mutually erasable restrictions. 

Proof. That the condition is not sufficient was shown in [3]. That the condition 
is necessary follows from Propositions 1 and 5. 

PROPOSITION 7. For universe C, parallel transformation r is not injective is necessary 
but not sufficient for the existence of mutually erasable restrictions. 

Proof. To prove the nonsufficiency, one must show the existence of a noninjective 
~- with no mutually erasable restrictions, or from Proposition 3, that is surjective. Such 
parallel transformations are easy to find. 

PROPOSITION 8. (Amoroso and Cooper [3]). For universe C~,  parallel transfor- 
mation .r is surjective is necessary and sufficient for r to be bijective. 

COROLLARY 8.1. (Amoroso and Cooper [3]). For universe CF, parallel transfor- 
mation r is bijective is necessary and sufficient for GOE configurations to exist. 

PROPOSITION 9. For universe CF , parallel transformation r is injective is necessary 
but not sufficient for r to be surjeetive. 

Proof. The nonsufficiency is established by the example from [3] cited above 
in the proof of Proposition 5. The necessity follows from Proposition 8. 

PROPOSITION 10. (Richardson [4]). For universe C, parallel transformation r is 
injective is sufficient but not necessary that ~- be surjective. 

The proof of this is found in [4]. 

PROPOSITION 11. The existence of a GOE configuration for r and universe C v is 
necessary but not sufficient for the existence of a GOE configuration for .r and C. 

Proof. The necessity follows easily from Proposition 2. The example from [3] 
used in the proof of Proposition 5 has GOE configuration for C F but not for C. 

PROPOSITION 12. With respect to some r, (C)s is a GOE restriction for universe 
C F is necessary and sufficient for (C)s to be a GOE restriction for C. 

Proof. The necessity is trivial. Let (C)s be a GOE restriction for C F but not for C, 
i.e., some extension c' of (C)s has an infinite configuration as preimage under r. But 
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some restriction of this preimage extended to a finite configuration would have as 
image under ~-, a finite configuration which is an extension of (C)s contradicting our 
premise. 

PROPOSITION 13 (Richardson). Le t  r be defined on C and let r'  be its restriction to 
C r . Then r '  is injective is necessary and suJficient f o r  to be surjective. 
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