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a b s t r a c t

In this work, a new generalized Jacobi elliptic function rational expansion method is based
upon twenty-four Jacobi elliptic functions and eight double periodic Weierstrass elliptic
functions, which solve the elliptic equation φ′2

= r + pφ2
+ qφ4, is described. As a

consequence abundant new Jacobi–Weierstrass double periodic elliptic functions solutions
for (3 + 1)-dimensional Kadmtsev–Petviashvili (KP) equation are obtained by using this
method. We show that the new method can be also used to solve other nonlinear partial
differential equations (NPDEs) in mathematical physics.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The investigation of the exact solutions of NPDEs plays an important role in the study of nonlinear physical phenomena.
In the past decades, there has been significant progress in the development of methods such as the inverse scattering
method [1], Hirota’s bilinear method [2], the similarity transformation method [3–6], the non-local symmetries method
[7,8], the homogeneous balance method [9], the exp-function method [10–12], the sine–cosine method [13], the tanh
functionmethod [14,15], themappingmethod [16,17], the F-expansionmethod [18], the Riccati equation rational expansion
method [19], the Jacobi and Weierstrass elliptic function method [20,21] and the new generalized Jacobi elliptic function
expansion method [22–27]. In [28–32] Wang and Chen et al. presented a new elliptic function rational expansion method
that is more powerful than the existing Jacobi elliptic function method to uniformly construct more new doubly-periodic
solutions in terms of a rational formal Jacobi elliptic function of nonlinear evolution equations.

The main objective in this work is to extend the Jacobi elliptic function expansion method by adding rational expansion
to the original form. This leads to obtain several new families of exact solutions for the (3 + 1)-dimensional KP equation.
The paper is arranged as follows: In Section 2, we briefly describe the generalized Jacobi elliptic function rational expansion
method. In Section 3, Several families of solutions to the elliptic equation φ′2

= r + pφ2
+ qφ4 are obtained. In Section 4,

taking to advantage of the solutions developed in Section 3, a great variety of exact solutions for (3 + 1)-dimensional KP
equation are obtained. The conclusion is then given in Section 5.

2. Method description

The main idea of our method is to take full advantage of the elliptic equation. This equation is

φ′2
= r + pφ2

+ qφ4, (2.1)
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where r, p, q are constants to be determined and φ′
=

dφ
dξ . For a given NPDE with u = u(x1, . . . , xs) in s independent

variables x1, . . . , xs

H(u, uxi , uxixj , . . .) = 0, i, j = 1, . . . , s, (2.2)

where H is polynomial function with respect to the indicated variables or function which can be reduced to polynomial
function by using some transformations. We introduce the traveling wave transformations

u(x1, . . . , xs) = u(ξ), ξ = k


x1 +

s−
i=2

αixi


(2.3)

where k and αi are arbitrary constants that can be determined. Under the transformations (2.3), Eq. (2.2) become ordinary
differential equations (ODEs) with constant coefficients

H(u, u′, u′′, u′′′, . . .) = 0. (2.4)

El-Sabbagh and Ali [25] introduced the solution of Eq. (2.4) in the form

u(ξ) = A0 +

n−
i=1

(Aiφ
i(ξ) + Biφ

−i(ξ)) +
φ′(ξ)

φ2(ξ)


a0 +

n−
i=1

(aiφi(ξ) + biφ−i(ξ))


(2.5)

where φ(ξ) is the solution of Eq. (2.1) and φ′(ξ) =
dφ(ξ)

dξ . In this work, we introduced the solution of Eq. (2.4) in the new
general form

u(ξ) =

n−
i=0

[Aiφ
i(ξ) + aiφ′(ξ)φi−1(ξ)] +

Γ
n∑

i=0
[Biφi(ξ) + biφ′(ξ)φi−1(ξ)]

. (2.6)

Balancing the highest derivative term with the nonlinear term in Eq. (2.4) will determine the positive integer number n.
Substituting the expansion (2.6) into the ODEs (2.4) with Eq. (2.1) and setting the coefficients of all powers of φ(ξ) and
φ′(ξ) to zero, we obtain a system of algebraic equations. By solving this system, the coefficients Ai, Bi, ai, bi and Γ can be
determined.

Remark 1. The new solutions form (2.6) is different from the solution form introduced in [28–32].

3. New solutions of elliptic equation

It is well known that [33], snξ = sn(ξ ,m), cnξ = cn(ξ ,m) and dnξ = dn(ξ ,m) are called the Jacobian elliptic sine
function, the Jacobian elliptic cosine function and the Jacobian elliptic function of third kind respectively, and 0 < m < 1
is the modulus of the Jacobian elliptic function. The Jacobian elliptic functions which are denoted by Glaisher’s symbols can
be divided into four groups after carefully studying properties of 12 Jacobi elliptic functions namely,

(1) : snξ, cnξ and dnξ

(2) : nsξ =
1

snξ
, ncξ =

1
cnξ

, and ndξ =
1

dnξ
,

(3) : scξ =
snξ

cnξ
, sdξ =

snξ

dnξ
, and cdξ =

cnξ

dnξ
,

(4) : csξ =
1
scξ

, dsξ =
1

sdξ
, and dcξ =

1
cdξ

.

Each group has the following closed relations and any two of four groups have no relation.

(1) : cn2ξ + sn2ξ = 1, dn2ξ + m2sn2ξ = 1, m2(cn2ξ − 1) = dn2ξ − 1;
(2) : ns2ξ − cs2ξ = 1, ns2ξ − ds2ξ = m2, ds2ξ − cs2ξ = 1 − m2

;

(3) : nc2ξ − sc2ξ = 1, dc2ξ − (1 − m2)sc2ξ = 1, dc2ξ − (1 − m2)nc2ξ = m2
;

(4) : cd2ξ + (1 − m2)sd2ξ = 1, nd2ξ − m2sd2ξ = 1, m2 cd2ξ + (1 − m2)nd2ξ = 1;

In addition, they satisfy

(1) : (snξ)′ = cnξdnξ, (cnξ)′ = −snξdnξ, (dnξ)′ = −m2snξcnξ,
(2) : (nsξ)′ = −csξdsξ, (csξ)′ = −nsξdsξ, (dsξ)′ = −nsξcsξ,

(3) : (scξ)′ = ncξdcξ, (ncξ)′ = scξdcξ, (dcξ)′ = (1 − m2)ncξscξ,

(4) : (sdξ)′ = ndξcdξ, (cdξ)′ = (m2
− 1)sdξndξ, (ndξ)′ = m2cdξsdξ .

From Eq. (2.1) and using symbolic calculations via Mathematica, we obtain new general Jacobi elliptic function solutions as
the following:
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φ1 =
ωm
√
q
cn[ωξ ], ω2

=
p

2m2 − 1
, r =

ω4m2(m2
− 1)

q
,

φ2 =
ıω
√
q
dn[ωξ ], ω2

=
p

2 − m2
, r =

ω4(1 − m2)

q
,

φ3 =
ωm
√
q
sn[ωξ ], ω2

=
−p

1 + m2
, r =

ω4m2

q
,

(3.1)



φ4 =
ω
√
q
cs[ωξ ], ω2

=
p

2 − m2
, r =

ω4(1 − m2)

q
,

φ5 =
ω
√
q
ds[ωξ ], ω2

=
p

2m2 − 1
, r =

ω4m2(m2
− 1)

q
,

φ6 =
ω
√
q
ns[ωξ ], ω2

=
−p

1 + m2
, r =

ω4m2

q
,

(3.2)



φ7 =
ω
√
q
dc[ωξ ], ω2

=
−p

1 + m2
, r =

ω4m2

q
,

φ8 =
ω

√
1 − m2

√
q

nc[ωξ ], ω2
=

p
2m2 − 1

, r =
ω4m2(m2

− 1)
q

,

φ9 =
ω

√
1 − m2

√
q

sc[ωξ ], ω2
=

p
2 − m2

, r =
ω4(1 − m2)

q
,

(3.3)



φ10 =
ωm
√
q
cd[ωξ ], ω2

=
−p

1 + m2
, r =

ω4m2

q
,

φ11 =
ω

√
m2 − 1
√
q

nd[ωξ ], ω2
=

p
2 − m2

, r =
ω4(1 − m2)

q
,

φ12 =
ωm

√
m2 − 1

√
q

sd[ωξ ], ω2
=

p
2m2 − 1

, r =
ω4m2(m2

− 1)
q

,

(3.4)



φ13 =
mω

2
√
q
(sn[ωξ ] ± ıcn[ωξ ]), ω2

=
2p

m2 − 2
, r =

ω4m4

16q
,

φ14 =
ıω

2
√
q
(dn[ωξ ] ± m cn[ωξ ]), ω2

=
2p

1 + m2
, r =

ω4(1 − m2)2

16q
,

φ15 =
ω

2
√
q
(msn[ωξ ] ± ı dn[ωξ ]), ω2

=
2p

1 − 2m2
, r =

ω4

16q
,

(3.5)



φ16 =
ω

2
√
q
(ds[ωξ ] ± cs[ωξ ]), ω2

=
2p

1 + m2
, r =

ω4(1 − m2)2

16q
,

φ17 =
ω

2
√
q
(ns[ωξ ] ± cs[ωξ ]), ω2

=
2p

1 − 2m2
, r =

ω4

16q
,

φ18 =
ω

2
√
q
(ns[ωξ ] ± ds[ωξ ]), ω2

=
2p

m2 − 2
, r =

ω4m4

16q
,

(3.6)



φ19 =
ω

2
√
q
(

1 − m2nc[ωξ ] ± dc[ωξ ]), ω2

=
2p

m2 − 2
, r =

ω4m4

16q
,

φ20 =
ω

2
√
q
(

m2 − 1sc[ωξ ] ± dc[ωξ ]), ω2

=
2p

1 − 2m2
, r =

ω4

16q
,

φ21 =
ω

√
1 − m2

2
√
q

(sc[ωξ ] ± nc[ωξ ]), ω2
=

2p
1 + m2

, r =
ω4(1 − m2)2

16q
,

(3.7)



φ22 =
ω

2
√
q
(

m2 − 1nd[ωξ ] ± mcd[ωξ ]), ω2

=
2p

1 − 2m2
, r =

ω4

16q
,

φ23 =
ωm
2
√
q
(

m2 − 1sd[ωξ ] ± cd[ωξ ]), ω2

=
2p

m2 − 2
, r =

ω4m4

16q

φ24 =
ω

√
m2 − 1
2
√
q

(m sd[ωξ ] ± nd[ωξ ]), ω2
=

2p
1 + m2

, r =
ω4(1 − m2)2

16q
.

(3.8)
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Also, we can obtain Weierstrass elliptic function solutions of Eq. (2.1) as the following:

φ25 =
3℘ ′(ξ ; g2, g3)

√
q[6℘(ξ ; g2, g3) + p]

, φ26 =

√
r[6℘(ξ ; g2, g3) + p]
3℘ ′(ξ ; g2, g3)

,

g2 = rq +
p2

12
, g3 =

p(36rq − p2)
216

,

φ27 =


3℘(ξ ; g2, g3) − p

3q
, φ28 =


3r

3℘(ξ ; g2, g3) − p
,

g2 =
4
3
(p2 − 3rq), g3 =

4
27

(9rpq − 2p3),

φ29 =


−15p3

2q

[
℘(ξ ; g2, g3)

3℘(ξ ; g2, g3) + p

]
, φ30 =


−2r
15p3

[
3℘(ξ ; g2, g3) + p

℘(ξ ; g2, g3)

]
,

r =
5p2

36q
, g2 =

2p2

9
, g3 =

p3

54
,

φ31 =
12℘(ξ ; g2, g3) + C

2q [6℘(ξ ; g2, g3) + 2p + C]
, φ32 =


2r[6℘(ξ ; g2, g3) + 2p + C]

12℘(ξ ; g2, g3) + C
,

C =
−5p ± 3


p2 − 4rq

2
, g2 =

p(5C + 4p + 33rq)
−12

,

g3 =
p2(21C + 20p) − rq(63C − 27p)

216
,

(3.9)

where ℘(ξ ; g2, g3) is called a Weierstrass elliptic function which satisfies

℘ ′
=

d℘
dξ

= ±


4℘3 − g2℘ − g3. (3.10)

Remark 2. The Jacobi elliptic solutions 1–6 and 13–18 are introduced in our papers [25,34] while the solutions 7–12 and
19–24 are new Jacobi elliptic function solutions for Eq. (2.1).

Remark 3. The Weierstrass elliptic solutions 25, 27, 29 and 31 are introduced in our papers [25,34] while the solutions 26,
28, 30 and 32 are new double periodic Weierstrass elliptic function solutions for Eq. (2.1).

Remark 4. In special cases of p and q the new solutions (3.1)–(3.6) of Eq. (2.1) admit the solutions introduced by Chen and
Wang [30]

φ = ±snξ, r = 1, p = −(1 + m2), q = m2,

φ = ±cnξ, r = 1 − m2, p = 2m2
− 1, q = −m2,

φ = ±dnξ, r = m2
− 1, p = 2 − m2, q = −1,

(3.11)


φ = ±scξ, r = 1, p = 2 − m2, q = 1 − m2,

φ = ±sdξ, r = 1, p = 2m2
− 1, q = m4

− m2,

φ = ±dcξ, r = m2, p = −(1 + m2), q = 1,

(3.12)

φ = ±dc[ωξ ], r = m2, p = −1 − m2 q = 1,
φ = ±nc[ωξ ], r = −m2, p = 2m2

− 1 q = 1 − m2,

φ = sc[ωξ ], r = 1, p = 2 − m2 q = 1 − m2,

(3.13)

φ = ±cd[ωξ ], r = 1, p = −1 − m2 q = m2,

φ = nd[ωξ ], r = −1, p = 2 − m2 q = m2
− 1,

φ = sd[ωξ ], r = 1, p = 2m2
− 1 q = m4

− m2,

(3.14)


φ = ±(snξ ± ıcnξ), r = q =

m2

4
, p =

m2
− 2
2

,

φ = ±(msnξ ± ıdnξ), r = q =
−1
4

, p =
1 − 2m2

2
,

φ = ±(mcnξ ± dnξ), r =
−(1 − m2)2

4
, p =

1 + m2

2
, q =

−1
4

,

(3.15)
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φ =

±snξ

1 ± dnξ
, r =

1
4
, p =

m2
− 2
2

, q =
m4

4
,

φ =
±snξ

1 ± cnξ
, r = q =

1
4
, p =

1 − 2m2

2
,

φ =
±dnξ

1 ± msnξ
, r = q =

m2
− 1
4

, p =
1 + m2

2
,

(3.16)



φ =
±dnξ

√
m2 − 1 ± mcnξ

, r = q =
1
4
, p =

1 − 2m2

2
,

φ =
±cnξ

1 ± snξ
, r = q =

1 − m2

4
, p =

1 + m2

2
,

φ =
±cnξ

√
1 − m2 ± dnξ

, r =
−1
4

, p =
2 − m2

2
, q =

−m4

4
,

(3.17)



φ =
±snξ

dnξ ± cnξ
, r =

1
4
, p =

1 + m2

2
, q =

(1 − m2)2

4
,

φ =
±cnξ

√
1 − m2snξ ± dnξ

, r = q =
1
4
, p =

1 − 2m2

2
,

φ =
±dnξ

√
m2 − 1snξ ± cnξ

, r = q =
m2

4
, p =

m2
− 2
2

.

(3.18)

Remark 5. Our proposed method may be called the new generalized Jacobi elliptic function rational expansion method. The
special solutions of this method are the general results of the Jacobi elliptic function method [28,30,25,34,21,31] and the
mapping method [16,17]. Furthermore, the proposed method is computerized in solving nonlinear equations by using
symbolic software likeMathematica or Maple.

4. New exact solution of (3 + 1)-dimensional KP equation

Let us now consider the (3 + 1)-dimensional KP equation [33,35]

uxt − 6u2
x − 6uuxx − uxxxx − uyy − uzz = 0. (4.1)

The KP equation is of considerable importance both in physics and Mathematics. The KP equation arises in many physical
applications including two-dimensional long waves in shallow [36,37]. Its mathematical significance is related to the fact
that it is an integrable soliton equation which was solved in [38,39]. According to Section 2, we first make the following
traveling wave transformation:

u(x, y, z, t) = u(ξ), ξ = k(x + αy + βz − γ t), (4.2)

where k, α, β and γ are constants to be determined. Substituting (4.2) into (4.1) we gives rise to

k2u′′′′
+ (α2

+ β2
+ γ )u′′

+ 6(uu′′
+ u′2) = 0. (4.3)

Balancing the highest derivative termwith the nonlinear term in ODE (4.3) we have n = 2. The solution (2.6) of KP equation
becomes

u(ξ) = A0 + A1φ + A2φ
2
+

φ′

φ2
[a0 + a1φ + a2φ2

] +
Γ

B0 + B1φ + B2φ2 +
φ′

φ2 [b0 + b1φ + b2φ2]
, (4.4)

whereφ satisfy the Jacobi elliptic equation (2.1). Substituting (4.4) into (4.3) alongwith (2.1) and usingMathematica program
yields a systemof equations of powers ofφ andφ′. Setting the coefficients of powers ofφ andφ′ in the systemof equations to
zero and solving the system of algebraic equations, with respect to the unknowns A0, A1, A2, B0, B1, B2, a0, a1, a2, b0, b1, b2
and Γ . This resulting algebraic system is difficult to solve in all unknowns, therefore we study two cases:

First when b0 = b1 = b2 = 0. In this case finding solutions becomes less than difficult.
Second when one of the three unknowns b0, b1 or b2 is nonzero, the calculations are very hard, so that to simplify, we

choose b0 ≠ 0 say b0 = 1, we do not arrive at any solutions. Similarly when b1 ≠ 0 we have no solutions, but when b2 ≠ 0
we arrive to two general families of solutions. The details of these two cases and families of solutions are the following:

Case 1. b0 = b1 = b2 = 0.
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Family 1.1. A1 = B0 = B1 = a0 = a1 = a2 = 0, B2 = 1.
1. A0 =

−1
6

(4pk2 + α2
+ β2

+ γ ), A2 = −2qk2, Γ = 0,

2. A0 =
−1
6

(4pk2 + α2
+ β2

+ γ ), Γ = −2rk2, A2 = 0,

3. A0 =
−1
6

(4pk2 + α2
+ β2

+ γ ), A2 = −2qk2, Γ = −2rk.

(4.5)

The solutions of the KP equation (4.1) in the general form can be taken as:

u1.1(x, y, z, t) = −
4pk2 + α2

+ β2
+ γ

6
− 2k2[εqφ2(ξ) + ηrφ−2(ξ)], (4.6)

where p, q, k, α, β, γ are arbitrary constants, ε, η are arbitrary elements of {0, 1} and ξ = k(x + αy + βz − γ t). Then the
set of solutions (3.1)–(3.9) of Eq. (2.1) yield 2-parameter families of Jacobi andWeierstrass double periodic elliptic functions
solutions of Eq. (4.1) which are introduced by El-Sabbagh and Ali [14]. Thus we shall not write them here.
Family 1.2. A1 = a1 = B0 = B1 = 0, B2 = 1.

4. A0 =
−1
6

(pk2 + α2
+ β2

+ γ ), A2 = −qk2, a2 = ±k2
√
q, Γ = a0 = 0,

5. A0 =
−1
6

(pk2 + α2
+ β2

+ γ ), Γ = −rk2, a0 = ±k2
√
q, A2 = a2 = 0,

6. A0 =
a0a2
k2

−
1
6
(pk2 + α2

+ β2
+ γ ),


A2 = −qk2, Γ = −rk2,
a2 = ±k2

√
q, a0 = ±k2

√
r.

(4.7)

The exact solution of KP equation (4.1) in the general form leads to the following solutions

u1.2(x, y, z, t) = −
pk2 + α2

+ β2
+ γ

6
+ εηε1η1k2

√
qr

− εk2[qφ2(ξ) −
√
qε1φ′(ξ)] − ηk2φ−2(ξ)[r − η1

√
rφ′(ξ)], (4.8)

where p, q, k, α, β, γ are arbitrary constants, ε, η are arbitrary elements of {0, 1}, ε1 = ±1, η1 = ±1, and ξ = k(x +

αy+βz −γ t). Then the set of solutions (3.1)–(3.9) of Eq. (2.1) yield 4-parameters families of Jacobi andWeierstrass double
periodic elliptic functions solutions of Eq. (4.1) which are introduced by El-Sabbagh and Ali [33]. Thus we shall not write
them here also.
Family 1.3. A1 = A2 = a0 = a1 = a2 = B1 = 0, B2 = 1.

(a) A0 = µ0 + k2θ, Γ = −
k2θ(p + θ)

q
, B0 =

p + θ

2q
,

(b) A0 = µ0 − k2θ, Γ =
k2θ(p − θ)

q
, B0 =

p − θ

2q
,

(4.9)

where µ0 =
2pk2−α2

−β2
−γ

6 and θ =

p2 − 4qr . The exact solution (4.4) can take the general form

u1.3(x, y, z, t) =
2pk2 − α2

− β2
− γ

6
+ η1k2


p2 − 4qr


2qφ2(ξ) − η1


p2 − 4qr − p

2qφ2(ξ) + η1

p2 − 4qr + p


, (4.10)

where a, b, c, d, k, α, γ are arbitrary constants, ε1 = ±1, η1 = ±1 and ξ = k(x + αy + βz − γ t). Then the set of solutions
(3.1)–(3.9) yield new Jacobi andWeierstrass double periodic elliptic function solutions for Eq. (4.1) which are the completely
new solutions. The exact solutions of the KP equation corresponding to φ1, φ16 and φ25, for example, are:

u1.3.1 =
2pk2 − α2

− β2
− γ

6
+ k2η1


p2 − 4m2ω4(m2 − 1)

×


2ω2 m2 cn2

[ωξ ] − η1

p2 − 4m2ω4(m2 − 1) − p

2ω2 m2 cn2[ωξ ] + η1

p2 − 4m2ω4(m2 − 1) + p


, (4.11)

u1.3.16 =
2pk2 − α2

− β2
− γ

6
−

k2η1

4p2 − (1 − m2)2ω4

4

×


4p + η1


4p2 − (1 − m2)2ω4 − 2ω2(ds[ωξ ] ± cs[ωξ ])2

4p + η1

4p2 − (1 − m2)2ω4 + 2ω2(ds[ωξ ] ± cs[ωξ ])2


, (4.12)
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u1.3.25 =
1
6
(2pk2 − α2

− β2
− γ ) −

3dk2η1

p2 − 4qr
c

×


9(p + η1


p2 − 4qr)℘ ′(ξ ; g2, g3) − 2qr(p + 6℘(ξ ; g2, g3))

9(p + η1

p2 − 4qr)℘ ′(ξ ; g2, g3) + 2qr(p + 6℘(ξ ; g2, g3))


, (4.13)

where g2 = rq +
p2

12 and g3 =
p(36rq−p2)

216 .
Family 1.4. A1 = A2 = a0 = a1 = a2 = B2 = 0, B1 = 1.

(a) A0 = µ0 +
k2θ
2

, Γ = k2θ


−θ − p

2q
, B0 = −


−θ − p

2q
,

(b) A0 = µ0 +
k2θ
2

, Γ = −k2θ


−θ − p

2q
, B0 =


−θ − p

2q
,

(c) A0 = µ0 −
k2θ
2

, Γ = k2θ


θ − p
2q

, B0 =


θ − p
2q

,

(d) A0 = µ0 −
k2θ
2

, Γ = −k2θ


θ − p
2q

, B0 = −


θ − p
2q

,

(4.14)

where µ0 =
2pk2−α2

−β2
−γ

6 and θ =

p2 − 4qr . The exact solution (4.4) takes the general form

u1.4(x, y, z, t) =
2pk2 − α2

− β2
− γ

6
+

η1 k2

p2 − 4qr
2




η1

p2 − 4qr − p + ε1

√
2qφ(ξ)

η1

p2 − 4qr − p − ε1

√
2qφ(ξ)

 , (4.15)

where a, b, c, d, k, α, γ are arbitrary constants, ε1 = ±1, η1 = ±1 and ξ = k(x + αy + βz − γ t). Then the set of solutions
(3.1)–(3.9) yield new Jacobi andWeierstrass double periodic elliptic function solutions for Eq. (4.1) which are new solutions.
The exact solutions of the KP equation corresponding to φ1, φ16 and φ25, for example, are:

u1.4.1 =
2pk2 − α2

− β2
− γ

6
+

k2η1

p2 − 4m2ω4(m2 − 1)

√
2

×




η1

p2 − 4m2ω4(m2 − 1) − p −

√
2ε1ωm cn[ωξ ]

η1

p2 − 4m2ω4(m2 − 1) − p +

√
2ε1ωm cn[ωξ ]

, (4.16)

u1.4.16 =
1
6
(2pk2 − α2

− β2
− γ ) +

k2η1

4p2 − (1 − m2)2ω4

2
√
2

×




η1

4p2 − (1 − m2)2ω4 − 2p + ε1ω (ds[ωξ ] ± cs[ωξ ])

η1

4p2 − (1 − m2)2ω4 − 2p − ε1ω (ds[ωξ ] ± cs[ωξ ])

, (4.17)

u1.4.25 =
2pk2 − α2

− β2
− γ

6
+

k2η1

p2 − 4qr
√
2

×




η1

p2 − 4qr − p(6℘(ξ ; g2, g3) + p) − 3

√
2ε1℘ ′(ξ ; g2, g3)

η1

p2 − 4qr − p(6℘(ξ ; g2, g3) + p) + 3

√
2ε1℘ ′(ξ ; g2, g3)

 , (4.18)

where g2 = rq +
p2

12 and g3 =
p(36rq−p2)

216 .
Case 2. b0 = b1 = 0 and b2 = 1.
Family 2.1. A1 = A2 = B1 = a0 = a1 = a2 = 0.

(a) A0 = µ0, Γ = −
k2(p2 − 4qr)

4
√
q

, B0 =
p

2
√
q
, B2 =

√
q,

(b) A0 = µ0, Γ =
k2(p2 − 4qr)

4
√
q

, B0 = −
p

2
√
q
, B2 = −

√
q,

(4.19)
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where µ0 =
2pk2−α2

−β2
−γ

6 . The exact solution (4.4) takes the general form

u2.1(x, y, z, t) =
2pk2 − α2

− β2
− γ

6
−

k2(p2 − 4qr)
2[p + 2qφ2(ξ) + 2η1

√
qφ′(ξ)]

, (4.20)

where a, b, c, d, k, α, γ are arbitrary constants, η1 = ±1 and ξ = k(x+αy+βz − γ t). Then the set of solutions (3.1)–(3.9)
yield new Jacobi and Weierstrass double periodic elliptic function solutions for Eq. (4.1) which are also new solutions. The
exact solutions of the KP equation corresponding to φ1, φ16 and φ25, for examples, are:

u2.1.1 =
2pk2 − α2

− β2
− γ

6
+

k2

2

[
p2 − 4m2ω4(m2

− 1)
p + 2ω2 m2 cn2[ωξ ] − 2η1 mω2sn[ωξ ]dn[ωξ ]

]
, (4.21)

u2.1.16 =
2pk2 − α2

− β2
− γ

6
−

k2

4

[
4p2 − (1 − m2)2ω4

2p + ω2 (ds[ωξ ] ± cs[ωξ ])2 − 2η1ω2ns[ωξ ](cs[ωξ ] ± ds[ωξ ])

]
, (4.22)

u2.1.25 =
2pk2 − α2

− β2
− γ

6
−

3dk2(p2 − 4qr)(p + 6℘(ξ ; g2, g3))
2c

×


p3 + 12p2℘(ξ ; g2, g3) − 36p(η1 − 1)℘2(ξ ; g2, g3) − 216η1 ℘3(ξ ; g2, g3)

+ 3η1 g2(p + 6℘(ξ ; g2, g3)) + 18(1 + 2η1)℘
′2(ξ ; g2, g3)

−1

, (4.23)

where g2 = rq +
p2

12 and g3 =
p(36rq−p2)

216 .
Family 2.2. A1 = A2 = B1 = a0 = a1 = a2 = 0.

(a) A0 = µ0 −
k2(p + 2

√
qr)

2
, Γ = −k2

√
r(p + 2

√
qr), B0 = −

√
r, B2 =

√
q,

(b) A0 = µ0 −
k2(p − 2

√
qr)

2
, Γ = k2

√
r(p − 2

√
qr), B0 =

√
r, B2 =

√
q,

(c) A0 = µ0 −
k2(p + 2

√
qr)

2
, Γ = k2

√
r(p + 2

√
qr), B0 =

√
r, B2 = −

√
q,

(d) A0 = µ0 −
k2(p − 2

√
qr)

2
, Γ = −k2

√
r(p − 2

√
qr), B0 = −

√
r, B2 = −

√
q,

(4.24)

where µ0 =
2pk2−α2

−β2
−γ

6 . The exact solution of Eq. (4.1) in general form takes the following form

u2.2(x, y, z, t) =
2pk2 − α2

− β2
− γ

6
−

k2(p + 2ε1
√
qr)

2
+

k2
√
r(p + ε1

√
qr)√

r − ε1
√
qφ2(ξ) + η1φ′(ξ)

 , (4.25)

where a, b, c, d, k, α, γ are arbitrary constants, ε1 = ±1, η1 = ±1 and ξ = k(x + αy + βz − γ t). Then the set of solutions
(3.1)–(3.9) yield new Jacobi and Weierstrass double periodic elliptic function solutions for Eq. (4.1). The exact solutions of
the KP equation corresponding to φ1, φ16 and φ25, for example, are:

u2.2.1 =
2pk2 − α2

− β2
− γ

6
−

k2

2
(p + 2ε1ω2 m


m2 − 1)

+
k2ω2 m

√
m2 − 1(p + ε1 mω2

√
m2 − 1)

mω2
√
m2 − 1 − ε1 m2ω2 cn2[ωξ ] − η1 mω2sn[ωξ ]dn[ωξ ]

, (4.26)

u2.2.16 =
2pk2 − α2

− β2
− γ

6
−

k2

4


2p − ε1 ω2(1 − m2)

+
6(m2

− 1)(2p + ε1 ω2(m2
− 1))

1 − m2 + ε1(cs[ωξ ] + ds[ωξ ])2 + 2η1 ns[ωξ ](cs[ωξ ] + ds[ωξ ])


, (4.27)

u2.2.25 =
1
6
(2pk2 − α2

− β2
− γ ) −

k2

2

[
H
G

]
,

H = p + 2ε1
√
qr + 24

√
qr(p + 2ε1

√
qr)(p + 6℘(ξ ; g2, g3))2

G = 4
√
qr(p + 6℘(ξ ; g2, g3))2 − 9ε1(g2 − 12℘(ξ ; g2, g3))2

+ 36η1(g2 + 4℘(ξ ; g2, g3)[p + 3℘(ξ ; g2, g3)])℘ ′(ξ ; g2, g3), (4.28)

where g2 = rq +
p2

12 and g3 =
p(36rq−p2)

216 .
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Fig. 1. Solutions corresponding to u1.3.1, u1.3.16 and u1.3.25 for α = β = 0.
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Fig. 2. Solutions corresponding to u1.4.1, u1.4.16 and u1.4.25 for α = β = 0.
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Fig. 3. Solutions corresponding to u2.1.1, u2.1.16 and u2.1.25 for α = β = 0.

Remark 6. Whenm → 0, then snξ → sin ξ , cnξ → cos ξ and dnξ → 1, we obtain new triangular periodic wave solutions
of the KP equation.

Remark 7. When m → 1, then snξ → tanh ξ , cnξ → sech ξ and dnξ → sech ξ , we can obtain new hyperbolic soliton
wave solutions of the KP equation.

Remark 8. The (3 + 1)-dimensional KP equation (4.1) can be written in the simple form:

(ut − 6uux − uxxx)x − uyy − uzz = 0. (4.29)

One can see immediately that every solution of the KdV equation

ut − 6uux − uxxx = 0, (4.30)

gives the solution to the KP equation by giving u trivial y and z-dependence. So that, when fixing the variables y and z by
putting α = β = 0 in the new solutions of the KP equations (4.10), (4.15), (4.20) and (4.25), we obtain a new solution of the
once-differentiated KdV equation (ut − 6uux − uxxx)x = 0. On other hand, by using Mathematica, the KdV equation (4.30)
is verified by the solutions (4.10), (4.15), (4.20) and (4.25) for α = β = 0.

Remark 9. It would be very nice if we had true figures which illustrate graphically some of the obtained new solutions of
the KP equation (4.1) as well as the KdV equation (4.30) corresponding to a Family 1.3 (Fig. 1), Family 1.4 (Fig. 2), Family 2.1
(Fig. 3) and Family 2.2 (Fig. 4) in a special cases of the constants when fixing the variables y and z.

5. Conclusion

We introduced a new generalized Jacobi elliptic function rational expansion method and used it for constructing many
new exact traveling wave solutions for nonlinear PDEs in a unified way. Also, we obtainedmany new Jacobi andWeierstrass
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Fig. 4. Solutions corresponding to u2.2.1, u2.2.16 and u2.2.25 for α = β = 0.

double periodic elliptic function solutions for the (3 + 1)-dimensional KP equation as an application of this method. This
generalizedmethod can be applied tomanyother equations such as: the generalizedKlein–Gordan equation [40], the (2+1)-
dimensional Burger’s equations [41], the Broer–Kaup–Kupershmidt equations [42], the foam drainage equation [43] and
etc. . . , in a similar systematic way.
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