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Every normal toric ideal of codimension two is minimally generated by a Gröbner basis
with squarefree initial monomials. A polynomial time algorithm is presented for checking
whether a toric ideal of fixed codimension is normal.
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1. Introduction

LetA be a nonnegative integer d×nmatrix of rank d, C(A) the cone inRd spanned by the columns ofA, and IA the toric
ideal associated toA as in [1]. The codimension of IA is n−d. If the columns ofA form a Hilbert basis, i.e. C(A)∩ZA = NA,
thenA and IA are said to be normal. Our main result is:

Theorem 1. Every normal toric ideal IA of codimension 2 has a squarefree initial ideal, and the corresponding reduced Gröbner
basis minimally generates IA.

In Section 2 we introduce the necessary tools and prove Theorem 1 in the case of complete intersections. In Section 3 we
complete the proof in the case of codimension two normal toric ideals which are not complete intersections. Section 4 deals
with detecting normality and we prove the following result.

Theorem 2. If codim(IA) = n − d is fixed, then there is an algorithm to decide whether A is normal whose running time is
polynomial in n and the bit size of A.

In other words, if n−d is fixed then one can decide in polynomial timewhether n vectors in Zd form a Hilbert basis of the
cone these vectors generate. This answers a question raised by Alexander Barvinok at Snowbird (June 2006). We recently
found out that Theorem 2 has been proved independently by F. Eisenbrand, A. Sebö, and G. Shmonin [2]. The authors had
announced the result at the 12th Combinatorial OptimizationWorkshop held in Aussois, France in January 2008. For recent
advances on related complexity questions concerning lattice points in polyhedra of fixed dimension or codimension we
refer to article [3].
This work is motivated both by questions that are intrinsic to combinatorial commutative algebra and by applications to

statistics and optimization. In the former domain, a longstanding conjecture states that every Cohen–Macaulay toric ideal IA
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has a monomial initial ideal that is also Cohen–Macaulay. This holds for toric ideals up to dimension 3 (see [4]), and O’Shea
and Thomas proved it for ∆-normal configurations [5]. Theorem 1 offers supporting evidence because normal toric ideals
and their squarefree initial ideals are both Cohen–Macaulay.
In algebraic statistics, our result ensures that the sequential importance sampling scheme of Chen, Dinwoodie and

Sullivant [6] is applicable to exponential familieswith few states. In integer programming, it ensures that, for suitably chosen
cost functions, everymatrix of corank 2 specifies a Gomory family [4]. Finally, in algebraic geometry, where the definition of
toric varieties [7] requires them to be normal, Theorem 1 states that every toric variety of codimension 2 admits a Gröbner
degeneration to a reduced union of coordinate subspaces.

2. Complete intersections

The aim of this section is to prove Theorem 1 in the case when IA is a complete intersection. Before we approach this
proof we will prove an alternative characterization of normality due to Sebö [8]. We include a proof of this result.

Proposition 3. An integer matrix A = [a1, . . . , an] is normal if and only if for each x ∈ ker(A) there exists an integer vector
y ∈ ker(A) such that y ≤ dxe.

Proof. (H⇒) SupposeA is normal, and x ∈ kerA. We have x1a1+ · · ·+ xnan = 0. The vector z = dx1e · a1+ · · ·+ dxne · an
lies in the lattice ZA, and as z = (dx1e − x1) · a1 + · · · + (dxne − xn) · an, it also lies in the cone C(A). SinceA is normal, we
conclude that z is in the semigroup NA. We can write z = m1a1 + · · · + mnan with m1, . . . ,mn nonnegative integers. The
vector ywith coordinates yi = dxie −mi lies in ker(A) and satisfies y ≤ dxe.
(⇐H) Now suppose that for each x ∈ ker(A) there is an integral y ∈ ker(A)with y ≤ dxe. Let z ∈ C(A)∩Zd. This means

that z = r1a1 + · · · + rnan with ri ∈ R≥0 and z = m1a1 + · · · +mnan withmi ∈ Z. Combining these we obtain:

(m1 − r1) · a1 + · · · + (mn − rn) · an = 0.

By hypothesis we may pick an integral y ∈ ker(A)with yi ≤ dmi − rie Then

z = (m1 − y1) · a1 + · · · + (mn − yn) · an

gives a nonnegative integral representation of z in terms of columns of A, since mi − yi ≥ 0 for all i. We conclude that
z ∈ NA, and henceA is normal. �

Ourmain tool inwhat follows is the Gale diagram of a vector configuration. LetA be a integer d×nmatrix whose column
vectors span Rd. We choose a matrix B whose rows form a lattice basis of ker(A) ∩ Zn. The set of column vectors of B is
said to be a Gale diagram [9] ofA. Normality of IA is encoded in bothA and in ker(A) = im(B), by Proposition 3, and hence
also inB.
Hochster [10] proved that a normal toric ideal is Cohen–Macaulay. Thus a codimension two normal toric ideal has a

minimal free resolution of length two. Peeva and Sturmfels [11] characterized Cohen–Macaulay codimension two lattice
ideals. In this paper we consider saturated lattices whose lattice ideal is a toric ideal. For the remainder of this paper we
assume that IA is normal, or equivalently that A is a Hilbert basis of the cone C(A). We assume that the cone C(A) is
pointed and hence IA is homogeneous in some positive grading.
The following result gives a supply of squarefree monomial terms of the binomial generators of IA. This result has been

proven in [12, Proposition 4.1] and [13, Lemma 6.1], and we have also learned it fromWinfried Bruns [14].

Proposition 4. SupposeA is normal. Then each minimal binomial generator of the toric ideal IA has at least one squarefree term.

This implies that the conclusion of Theorem 1 holds when codim(IA) = 1. In that case, IA is a principal ideal and the
unique binomial generator of IA is a Gröbner basis with its squarefree term being the leading monomial.
In view of Proposition 4 our approach is to show the existence of a term order selecting the squarefree terms as initial

terms. The Gale diagram gives information toward this goal. The following result is [11, Proposition 4.1].

Proposition 5. If codim(IA) = 2 then the following are equivalent:
(i) The toric ideal IA is not Cohen–Macaulay.
(ii) The toric ideal IA has at least four minimal generators.
(iii) The matrixA has a Gale diagramB which intersects each of the four open quadrants in R2. Here the matrixB is identified

with its set of columns.

We now assume that IA is normal of codimension 2 and B is any Gale diagram. Then B =
{
(B1j,B2j) : j = 1, . . . , n

}
intersects at most three open quadrants, and that anyminimal generating set of IA has two or three elements. In this section
we examine the first case, where IA = 〈xp − xq, xr − xs〉 is a complete intersection, andB is the 2× nmatrix whose rows
are p− q and r − s. The Gale diagramB is said to be imbalanced if eitherB1j = 0 orB2j ≥ 0 for all j.

Lemma 6 ([11, Lemma 3.1]). A codimension 2 toric ideal IA is a complete intersection if and only if there exists an imbalanced
Gale diagramB .
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Fig. 1. The imbalanced Gale diagram of a complete intersection.

In the light of this lemma, we can represent a complete intersection by an imbalanced Gale diagram as depicted in Fig. 1.
The arrows represent a sign class of columns ofB and not just an individual vector. For instance the class labeled D in Fig. 1
consists of all column vectors withB1j < 0 andB2j > 0.
Proof of Theorem 1 for complete intersections: By Proposition 4 both generators g1 = xp − xq and g2 = xr − xs have a
squarefree term. The class of vectors F must exist in the Gale diagram since otherwise C(A)would not be pointed.
If the term xs corresponding to F is squarefree then we can use any term order so that xs is the initial term of g2 and the

squarefree term of g1 is its initial term. Then g1 and g2 forms the Gröbner basis of IA because their initial terms are relatively
prime. This Gröbner basis is or can be made reduced.
Suppose that xs is not squarefree. Then −B2j = f ≥ 2 for some j ∈ F , and B2j = 1 for j ∈ B ∪ C ∪ D. Without loss of

generality we assume that xp is the squarefree term of g1, so thatB1j = 1 for j ∈ A∪ B. We choose representatives from the
D and E classes, labeling them−d and−ewhere d, e ≥ 1:

A B C D E F
p− q = 1 . . . 1 . . . 0 . . . −d . . . −e . . . 0
r − s = 0 . . . 1 . . . 1 . . . 1 . . . 0 . . . −f

Now we consider u = − 12 (p− q)+
1
2 (r − s) ∈ ker(A) and we round it up to get

A B C D E F

due = 0 . . . 0 . . . 1 . . .

⌈
d+ 1
2

⌉
. . .

⌈ e
2

⌉
. . .

⌈
−
f
2

⌉
Note that −f /2 ≤ −1. By Proposition 3 there exists an integral v ∈ ker(A) with v ≤ due. This vector is an integral
combination v = α(p− q)+ β(r − s).
If v1 = 0 then α = 0 and v must be a positivemultiple of (r − s) to ensure that vF = −βf ≤ d−f /2e ≤ −1. This implies

the contradiction vB = β > 0.
Next suppose that v1 ≤ −1. Then α ≤ −1 (considering the A component) and β ≥ 1 (considering the F component).

The D representative requires that d + 1 ≤ −αd + β ≤
⌈ d+1
2

⌉
. But this implies that d = 0, a contradiction. We conclude

that the D class is not present in the Gale diagram. By rotating the diagram by 90 degrees counterclockwise we can assume
that we have an imbalanced Gale diagram where the B class is missing. For the two new minimal generators xp − xq and
xr − xs we are either in the first case analyzed above (i.e. xs and xp are squarefree and relatively prime) or in the second case
where xp and xr are squarefree and relatively prime, as these do not contain any B variable. In both cases the two generators
form a squarefree Gröbner basis. �

3. Normal but not complete intersection

We now assume that the toric ideal IA is not a complete intersection, but it is normal and hence Cohen–Macaulay. This
time we can assume that the Gale diagram is of the form as in Fig. 2. As in Section 2, the vectors in the diagram represent a
sign class of vectors. The class B1 represents vectors (x, y)where x ≥ y > 0 and B2 represents vectors (x, y)where y > x > 0.
Similarly, F1 represents those with x ≤ y < 0, and F2 with y < x < 0. The minimal free resolution of IA has the form

0→ R2 → R3 → R→ R/IA → 0
where R = K[x1, . . . , xn]. A matrix representing the map R2 → R3 in the resolution can be determined using Construction
5.1 and Remark 5.8 in [11]. More precisely, using the two syzygy triangles in Figs. 3 and 4 we find that this matrix equals[ AB1 D∗E∗F∗1

B2CD F∗2 G
∗

F1F2 B∗1B
∗

2

]
.
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Fig. 2. Gale diagram of a CM but not complete intersection configuration.

Fig. 3. A syzygy triangle as in [11].

Fig. 4. Another syzygy triangle as in [11].

Let us briefly explain how this matrix is constructed. Each syzygy triangle is the convex hull of three lattice points. These
lattice points correspond to threemonomialswhich have the samemultidegree as the syzygy they collectively represent. For
each syzygy triangle thesemonomials are obtained as follows: recall thatB is a Gale diagram and let P = {y ∈ R2 : yB ≤ u}
be the polytope that minimally contains the three lattice points. For each lattice point z ∈ P the exponent vector of the
corresponding monomial is u − zB. To illustrate this let IA be the defining ideal of the Segre embedding of P1 × P2. This
toric ideal of codimension two is normal but not a complete intersection. One can take

B =

[
1 −1 0 −1 1 0
1 0 −1 −1 0 1

]
as a Gale diagram. We denote the columns of B as well as the corresponding indeterminates by B1, E,G, F1, A and C ,
respectively. The three monomials corresponding to (0, 0), (1, 0) and (0, 1) in the first syzygy triangle (Fig. 3) are AB1C ,
CEF1 and AF1G. The ones corresponding to (1, 0), (0, 1) and (1, 1) in the second syzygy triangle (Fig. 4) are B1CE, AB1G and
EF1G. Now letM = {m1,m2,m3} be themonomials coming from one of these syzygies. Then the column of the abovematrix
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corresponding to this syzygy has entries gcd(M \mi) for i = 1, 2, 3. In our example, this matrix is[A E
C G
F1 B1

]
.

In the earlier more general matrix the letters represent classes of variables corresponding to the classes of vectors in
the Gale diagram. Products of letters correspond to monomials in these classes of variables. The letters with an asterisk
correspond to the same class as those without an asterisk, but they might have different exponent vectors (since they come
fromdifferent syzygy triangles). The first column of thematrix corresponds to the first triangle and the second column to the
second triangle. Moreover, by the Hilbert–Burch Theorem, the three 2× 2-minors of this matrix are precisely the minimal
generators of IA:

AB1F∗2 G
∗
− B2CDD∗E∗F∗1 (1)

AB1B∗1B
∗

2 − D
∗E∗F1F∗1 F2 (2)

B∗1B2B
∗

2CD− F1F2F
∗

2 G
∗. (3)

The next result completes the proof of Theorem 1.

Lemma 7. There exists a term order such that the binomial generators (1), (2), (3) of the toric ideal IA form a Gröbner basis with
squarefree initial monomials.

Proof. We have a few cases to consider. First, either the D class exists or it does not. If it exists then themonomial DD∗ is not
squarefree and hence the squarefree term of (1) is the first term. Note that the first terms of (2) and (3) cannot be squarefree
simultaneously: if they were, the B1 and B2 vectors cannot be present in the Gale diagram, and this would be an imbalanced
Gale diagram. Similarly, the second terms of these binomials cannot be squarefree simultaneously. This gives two cases to
consider. In the first case we have

AG∗ − B2CDD∗E∗F∗1 , AB∗2 − D
∗E∗F1F∗1 , B2B∗2CD− F1G

∗. (4)

Here B1 and F2 are absent because otherwise B1B∗1 and F2F
∗

2 are not squarefree. If we choose a lexicographic term order
where A > G > {B2, C,D, E, F1} then the underlined terms are the leading terms in (4). The S-pair S(1, 2) = D∗E∗F1F∗1 G

∗
−

B2B∗2CDD
∗E∗F∗1 is reduced to zero by the third binomial, and the S-pair S(1, 3) = AB2B

∗

2CD − B2CDD
∗E∗F1F∗1 is reduced to

zero by the second binomial. The S-pair S(2, 3) reduces to zero since the leading terms AB∗2 and F1G
∗ are relatively prime,

and hence (4) is a squarefree Gröbner basis.
In the second case, the minimal generators and their squarefree terms are

AB1F∗2 G
∗
− CDD∗E∗, AB1B∗1 − D

∗E∗F2, B∗1CD− F2F
∗

2 G
∗. (5)

The product of the three underlined terms is equal to the product of the three non-underlined terms. Hence no term order
selects the underlined terms as leading terms. However, the squarefreeness of these three monomials implies

A =
[
1
0

]
, B1 =

[
1
1

]
, C =

[
0
1

]
, D =

[
−1
1

]
,

E =
[
−1
0

]
, F2 =

[
−1
−1

]
, G =

[
0
−1

]
.

From the diagonal edge in the two syzygy triangles we see that B1 = F∗2 = 1. This means that the non-underlined terms of
the second and third binomials in (5) are actually squarefree, and we are back in the previous case (4).
Now suppose that the D vectors are not present in the Gale diagram depicted in Fig. 2. Then the binomial generators

(1)–(3) have the form

AB1F∗2 G
∗
− B2CE∗F∗1 , AB1B∗1B

∗

2 − E
∗F1F∗1 F2, B∗1B2B

∗

2C − F1F2F
∗

2 G
∗.

If in the first binomial the first term is squarefree we are back to (4) or (5). If the second term is squarefree, then we rotate
the Gale diagram 180 degrees. This leads to the same binomials but nowwith the first term of the first binomial squarefree.
Once again we are back to (4) or (5). This concludes the proof. �

4. Checking normality

In this section we assume that the codimensionm = n− d of IA is fixed. First we reformulate Proposition 3. Let z be an
integral vector in ker(A). We define

Pz =
{
x ∈ ker(A) : dxie ≥ zi for i = 1, . . . , n

}
.

Since Pz = {x ∈ ker(A) : xi > zi − 1 i = 1, . . . , n} and since we assume that the cone C(A) is pointed, Pz is a relatively
open polytope in ker(A) ' Rm.
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Remark 8. If u and z are lattice vectors in ker(A) then Pu+z = z + Pu.

Now let B be an n × m matrix whose columns form a lattice basis of ker(A), and let bi be the rows of B. Then Pz
is affinely isomorphic to Qv = {y ∈ Rm : bi · y > bi · v − 1, i = 1, . . . , n} where v is the unique lattice point in
Zm such that Bv = z. Remark 8 implies that for two lattice points v and w in Zm we have Qv+w = w + Qv . Note that
Q0 = {y ∈ Rm : bi · y > −1, i = 1, . . . , n}. We now see that the following is equivalent to Proposition 3.

Theorem 9. The toric ideal IA is normal if and only if Q0 + Zm = Rm.

Given any polytope Q = {y ∈ Rm : Cy ≥ d} of dimensionm the smallest positive real number t such that tQ +Zm = Rm
is called the covering radius of Q . If Q is a rational polytope it is known that the covering radius of Q is a rational number
with a bit-size that is a polynomial in the bit-size of C and d.

Corollary 10. The toric ideal IA is normal if and only if the covering radius of Q̄0, the closure of the polytope Q0, is less than 1.

Proof of Theorem 2. Ravi Kannan [15, Section 5] has shown that, for fixedm, and given a rationalm-dimensional polytope
Q = {y ∈ Rm : Cy ≥ d}where C ∈ Zn×m and d ∈ Zn, there exists an algorithm to find the covering radius of Q with runtime
a polynomial in n and the bit-size of C and the vector d. Since one can compute a B whose bit-size is a polynomial in the
bit-size ofA in polynomial time, the above corollary implies the result. �
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