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We study semi-inclusive DIS with a transversely polarized target in the approach of collinear factoriza-
tion. The effects related to the transverse polarization are at twist-3. We derive the complete result of 
twist-3 contributions to the relevant hadronic tensor at leading order of αs , and construct correspond-
ingly experimental observables. Measuring these observables will help to extract the twist-2 transver-
sity distribution, twist-3 distributions and twist-3 fragmentation functions of the produced unpolarized 
hadron. A detailed comparison with the approach of transverse-momentum-dependent factorization is 
made.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Experiments of lepton–hadron collisions with large momentum 
transfers have played an important role in exploring the inner 
structure of hadrons. Typical examples are DIS and Semi-Inclusive 
DIS (SIDIS) processes. Based on collinear factorizations of QCD, the 
differential cross sections of DIS and SIDIS at the leading power 
are predicted with parton distributions of the initial hadron and 
fragmentation function of the produced hadron. These distribu-
tions and fragmentation functions are defined as matrix elements
of QCD twist-2 operators. In this letter we study the contributions 
involving twist-3 operators in SIDIS.

We will assume that the polarization of the produced hadron 
is not observed. The twist-3 contributions in SIDIS appear only in 
the case that the initial hadron is transversely polarized. The con-
tributions contain not only twist-3 matrix elements of the initial 
hadron introduced in [1,2], but also the twist-2 transversity dis-
tribution introduced in [3], combined with chirality-odd twist-3 
fragmentation functions. Therefore, they contain rich information 
about the inner structure of hadrons. Experimentally, the twist-3 
contributions can be measured through asymmetries caused by the 
transverse spin. Hence, those twist-3 distributions and fragmenta-
tion functions can be extracted from the asymmetries. The relevant 
studies in experiments planned in the future can be found in [4–6]
and references therein.
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SIDIS with transversely polarized target has been studied in 
[7–9]. In these works one assumes that the initial lepton is un-
polarized and the hadron in the final state has large transverse 
momentum. The obtained Single transverse-Spin Asymmetry (SSA)
starts at order of αs . We will derive the complete result of the 
twist-3 hadronic tensor of SIDIS at order of α0

s . With the complete 
results we construct spin-dependent observables at α0

s . Through 
measuring these observables one can extract relevant parton dis-
tributions and fragmentation functions. It is interesting to note that 
the obtained twist-3 hadronic tensor at tree-level can be expressed 
completely with the parton distributions and fragmentation func-
tions defined with two-parton correlations.

With the employed approach of collinear factorization one can 
only derive the twist-3 hadronic tensor as a distribution tensor of 
the transverse momentum. From the tensor one can only obtain 
physical predictions in which the transverse momentum is inte-
grated. At tree-level the produced hadron has a small transverse-
momentum at order of �QCD . In this kinematical region one can 
employ the approach of Transverse-Momentum-Dependent (TMD)
factorization studied in [10–12]. The complete angular distribu-
tion of SIDIS at tree-level has been derived with the approach in 
[13–15] and in [16]. We will discuss the difference between the 
two approaches in detail after giving our results.

We consider the SIDIS process:

e(k, λe) + h(P , s) → e(k′) + h′(Ph) + X (1)
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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where the initial hadron is of spin-1/2 with the spin vector s. The 
initial electron can be polarized with the helicity λe . The polariza-
tion of the hadron in the final state is not observed. At leading 
order of QED, there is an exchange of one virtual photon with the 
momentum q = k − k′ between the electron and the initial hadron. 
The relevant hadronic tensor is:

W μν =
∑

X

∫
d4x

(2π)4
eiq·x〈P , s| Jμ(x)|Ph, X〉〈X, Ph| Jν(0)|P , s〉.

(2)

The standard variables for SIDIS are:

xB = Q 2

2P · q
, y = P · q

P · k
, zh = P · Ph

P · q
. (3)

We will neglect the masses of hadrons and leptons.
It is convenient to use the light-cone coordinate system, in 

which a vector aμ is expressed as aμ = (a+, a−, �a⊥) = ((a0 +
a3)/

√
2, (a0 − a3)/

√
2, a1, a2). Two light-cone vectors are intro-

duced as lμ = (1, 0, 0, 0) and nμ = (0, 1, 0, 0). With these two 
vectors one can define two transverse tensors: gμν

⊥ = gμν −nμlν −
nν lμ and εμν

⊥ = εαβμν lαnβ . With these notations we introduce the 
relevant parton distributions and fragmentation functions. In this 
work we will use Feynman gauge.

Assuming that the initial hadron moves in the z-direction with 
the momentum Pμ = (P+, 0, 0, 0) and it is transversely polarized 
with sμ = (0, 0, s1⊥, s2⊥), the transversity distribution is defined 
as [3]:

h1(x)sμ⊥ =
∫

dλ

4π
e−ixλP+

× 〈P , s⊥|ψ̄(λn)L†
n(λn)γ +γ

μ
⊥ γ5Ln(0)ψ(0)|P , s⊥〉 (4)

where Ln(ξ) is the gauge link starting from ξ to ∞ in space–time. 
The transversity distribution is of twist-2. At twist-3 one can define 
the three twist-3 distributions from two-parton correlations:

qT (x)sμ⊥ = P+
∫

dλ

4π
e−ixλP+

× 〈P , s⊥|ψ̄(λn)L†
n(λn)γ

μ
⊥ γ5Ln(0)ψ(0)|P , s⊥〉,

−iq∂ (x)sμ⊥ =
∫

dλ

4π
e−ixλP+

× 〈P , s⊥|ψ̄(λn)L†
n(λn)γ +γ5∂

μ
⊥ (Lnψ) (0)|P , s⊥〉,

−iq′
∂ (x)s̃μ⊥ =

∫
dλ

4π
e−ixλP+

× 〈P , s⊥|ψ̄(λn)L†
n(λn)γ +∂

μ
⊥ (Lnψ) (0)|P , s⊥〉. (5)

One may replace in the second line of Eq. (5) γ5 with I to define 
another twist-3 distribution. But one can show that it is zero [17].
The three distributions are real. From three-parton correlations one 
can define two twist-3 distributions:

T F (x1, x2)s̃μ⊥

= gs

∫
dλ1dλ2

4π
e−iλ2(x2−x1)P+−iλ1x1 P+

× 〈P ,�s⊥|ψ̄(λ1n)γ +G+μ(λ2n)ψ(0)|P ,�s⊥〉,
T(x1, x2)sμ⊥

= −igs

∫
dλ1dλ2

4π
e−iλ2(x2−x1)P+−iλ1x1 P+

× 〈P ,�s⊥|ψ̄(λ1n)γ +γ5G+μ(λ2n)ψ(0)|P ,�s⊥〉, (6)
where we have suppressed the gauge links for short notations and 
s̃μ = ε

μν
⊥ s⊥ν . Corresponding to the two distributions in Eq. (6)

one can define additionally two twist-3 distributions by replacing 
the field strength tensor gsG+μ(x) with P+Dμ

⊥(x), where Dμ(x)
is given by Dμ(x) = ∂μ + igsGμ(x). These two functions will not 
appear in our calculation. In fact they can be expressed with the 
distributions given in Eqs. (5), (6) as shown in [7]. Among the in-
troduced five twist-3 distributions one can show:

1

2π

∫
dx1 P

1

x1 − x2

[
T F (x1, x2) − T(x1, x2)

]
= −x2qT (x2) + q∂ (x2), T F (x, x) = −2q′

∂ (x), (7)

where P stands for the principle-value prescription. The first re-
lation has been derived in [18]. The second relation is obtained 
by examining the relation between T F and that obtained from T F

by the mentioned replacement. It should be emphasized that the 
second relation is for SIDIS. We note here that the distribution 
q′
∂ (x) is defined with the gauge links in Eq. (5) pointing to the 

future to factorize the effects of final-state interactions in SIDIS. In 
Drell–Yan processes there are no final-state interactions. But there 
are initial-state interactions. Hence, the distribution q′

∂ (x) in Drell–
Yan processes is defined with gauge links pointing to the past. 
With the symmetries of time-reversal and parity one can show 
that there is a sign-difference between the two distributions. For 
Drell–Yan processes, the −-sign in the relation should be replaced 
with +. We notice here that the two distributions with different 
gauge links have been studied in [19], where it has been shown 
that the difference between the two distributions is proportional 
to T F (x, x). The twist-3 distribution q′

∂ (x) can also be defined as a 
transverse-momentum-moment of Sivers function. Such moments 
are in general related to parton distributions at high twists, as dis-
cussed in [20].

To define fragmentation functions, we assume that the pro-
duced hadron moves in the −z-direction with the momentum 
Pμ = (0, P−, 0, 0). From two-parton correlations we define:

zP−
∫

dξ

2π
e−iξ P−/z

∑
X

×
[
〈0|L†

l (0)ψ(0)|P X〉i〈X P |ψ̄(ξ l)Ll(ξ l)|0〉 j

]

=
(
γ · Pd̂(z) + ê(z) + i

2
σαβγ5ε

αβ
⊥ ê I (z)

)
i j

+ · · · , (8)

where i j stand for Dirac indices and color indices. Ll(ξ) is the 
gauge link along the direction lμ starting from −∞ to ξ in space–
time. d̂(z) is the standard twist-2 fragmentation function [21].
ê and ê I are twist-3 fragmentation functions introduced in [22]. 
Besides these two twist-3 fragmentation functions, there are an-
other two twist-3 fragmentation functions defined as:

Ê F (z1, z2)

= − z2 gs

4Nc

∫
dλ1dλ2

(2π)2
e−λ1 P−/z1−iλ2 P−(1/z2−1/z1)ε⊥μν

×
∑

X

Tr〈0|γ −γ νγ5ψ(0)|h X〉i〈h X |ψ̄(λ1l)G−μ(λ2l)|0〉,

ê∂ (z) = −i
z

4Nc

∫
dλ

2π
e−λP+/z

∑
X

Tr〈0|γ −γ νγ5L†
l (0)ψi(0)|h X〉

× ∂
μ
⊥〈h X |ψ̄(λl)Ll(λl)|0〉ε⊥μν. (9)

Similarly one can define an additional fragmentation function Ê D

by replacing gsG−μ(λ2l) with P−Dμ
(λ2l). But this function is 
⊥
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Fig. 1. Diagrams for contributions in SIDIS.

completely determined by Ê F and ê∂ [23]. All introduced twist-3 
fragmentation functions are chirality-odd. The functions ê, ê I and 
ê∂ are real, while Ê F is complex in general. It is shown in [23]
that there are relations among these four twist-3 fragmentation 
functions. In our notations they are:

z2
2

∫
dz1

z1
P

1

z2 − z1
Im Ê F (z1, z2) = z2ê∂ (z2) − ê I (z2),

ê(z2) = z2
2

∫
dz1

z1
P

1

z2 − z1
Re Ê F (z1, z2). (10)

In [24] it is shown that Ê F (z, z) = 0. This implies that there will 
be no soft-gluon pole contributions represented by Ê F (z, z).

For deriving the twist-3 contribution to W μν for the process 
in Eq. (1), it is convenient to take the frame, in which the initial 
hadron moves in the z-direction with Pμ = (P+, 0, 0, 0) and the 
final hadron moves in the −z-direction with Pμ

h = (0, P−
h , 0, 0). 

Then the virtual photon has the momentum qμ = (q+, q−, q1⊥, q2⊥). 
We call this frame as C0-frame. The obtained result is covariant. It 
can be conveniently transformed into the frame called C1-frame, in 
which the virtual photon moves in the −z-direction and the initial 
hadron moves in the z-direction. The produced hadron in C1-frame 
can then have nonzero transverse momentum.

The twist-3 W μν can be divided into two parts: One con-
sists of contributions with nonperturbative quantities defined with 
chirality-odd operators, another one consists of contributions with 
nonperturbative quantities defined with chirality-even operators. 
The chirality-even part can only contain the twist-2 fragmentation 
function and twist-3 parton distributions. At tree-level, it receives 
contributions from diagrams given in Fig. 1. It is rather standard to 
calculate contributions at different twists from Fig. 1 by collinear 
expansion. We take Fig. 1a as an example to illustrate this.

Within the power accuracy considered here, one can already 
neglect the +-components and the transverse components of mo-
menta carried by the parton lines entering into the upper bubble 
in Fig. 1. One can also neglect the −-components of momenta car-
ried by the parton lines entering into the lower bubble. Projecting 
out the twist-2 part related to the final hadron, the contribution 
from Fig. 1a can be written as:

W μν

∣∣∣∣
1a

=
∫

dk−
B dk3

A

[
δ4(q + kA − kB)

1

z
d̂(z)

(
γ μγ +γ ν

)
i j

]

·
∫

d3ξ

(2π)3
eikA ·ξ 〈h(P )|q̄i(0)q j(ξ)|h(P )〉,

ξμ = (0, ξ−, �ξ⊥), kμ
A = (k+

A ,0, �kA⊥),

kμ
B = (0,k−

B ,0,0) = (0, P−
h /z,0,0), (11)

where i j stand for Dirac indices and color indices. kA is the mo-
mentum carried by the quark line leaving the lower bubble in the 
left of Fig. 1a, kB is the momentum carried by the quark line en-
tering into the upper bubble. If we neglect kA⊥ in [· · ·] in Eq. (11), 
we obtain the twist-2 contribution. One needs to expand the [· · ·]
in Eq. (11) in kA⊥ and to make corresponding projections of the 
quark density matrix to obtain the twist-3 contribution. After the 
expansion and projections we have:
W μν

∣∣∣∣
1a

= −iδ2(q⊥)
1

zh
d̂(zh)ε

μναβnα

×
∫

dξ−

2π
eiξ−xP+〈h(P )|q̄(0)γ⊥βγ5q(ξ−n)|h(P )〉

− ∂

∂qρ
⊥

δ2(q⊥)
1

zh
d̂(zh)ε

μν
⊥

×
∫

dξ−

2π
eiξ−xP+〈h(P )|q̄(0)γ +γ5∂

ρ
⊥q(ξ−n)|h(P )〉

− ∂

∂qρ
⊥

δ2(q⊥)
1

zh
d(zh)gμν

⊥ i

×
∫

dξ−

2π
eiξ−xP+〈h|q̄(0)γ +∂

ρ
⊥q(ξ−n)|h〉 + · · · , (12)

where · · · stand for contributions at twist-2 or beyond twist-3. The 
three correlation functions of quark fields in Eq. (12) look like the 
three distributions qT , q∂ and q′

∂ defined in Eq. (5) without the 
gauge links. If one considers the contributions from Fig. 1b and 1c
and those with exchanges of more than one gluon, one can real-
izes that parts of contributions from exchanges of gluons can be 
summed into gauge links. Adding these parts to the contributions 
in the above, the results are simply obtained by replacing the three 
correlation functions in Eq. (12) with qT , q∂ and q′

∂ , respectively.
It is straightforward to calculate the contributions from Fig. 1b 

and Fig. 1c. Parts of the contributions will be added to the contri-
bution of Fig. 1a as discussed in the above. The remaining contri-
butions can be easily found as:

W μν

∣∣∣∣
1b+1c

= − 1

zh
d̂(zh)δ

2(q⊥)
i

π P · q

(
Pμ s̃ν⊥ − Pν s̃μ⊥

)

×
∫

dx1 P
1

x1 − xB

[
T F (x1, xB) − T(x1, xB)

]

+ 1

zh
d(zh)δ

2(q⊥)
1

k−
B

(
lμ s̃ν⊥ + lν s̃μ⊥

)
T F (xB , xB)

+ · · · , (13)

where · · · stand for contributions beyond twist-3. The symmetric 
part is obtained by the absorptive part of the quark propagator 
between the photon and gluon vertex in Fig. 1b and Fig. 1c. This 
gives the so-called soft-gluon pole contribution. We note here that 
the results in Eqs. (12), (13) can be simplified with the relation in 
Eq. (7). Adding every contribution we have the total chirality-even 
part of W μν :

W μν

∣∣∣∣
even

= 2

zh
d̂(zh)δ

2(q⊥)
i

P · q

(
Pμ s̃ν⊥ − Pν s̃μ⊥

)

×
(

xBqT (xB) − q∂ (xB)

)

− iδ2(q⊥)
2

zh P · Ph
d̂(zh)ε

μναβ Phαs⊥βqT (xB)

+ i
2

zh
d̂(zh)ε

μν
⊥ q∂ (xB)sρ⊥

∂

∂qρ
⊥

δ2(q⊥)

+ 1

z
d̂(z)T F (xB , xB)

[
δ2(q⊥)

1

P · q
(Pμ s̃ν⊥ + Pν s̃μ⊥)

+ gμν
⊥ s̃ρ⊥

∂

∂qρ
⊥

δ2(q⊥)

]
. (14)

The symmetric part was first derived in [17]. Before we turn to 
the chirality-odd part, we discuss the U (1)-gauge invariance of our 
result. From the invariance one always has qμW μν = 0. But our 
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Fig. 2. Diagrams for contributions in SIDIS.

W μν is singular in q⊥ . It can only be taken as a distribution tensor. 
Then the U (1)-gauge invariance implies that for any test function 
T (q⊥) one has:∫

d2q⊥T (q⊥)qμW μν = 0. (15)

It is easy to check that our result in Eq. (14) is U (1)-gauge invari-
ant.

The chirality-odd contribution involves the transversity distri-
bution and twist-3 fragmentation functions. It receives the contri-
butions from diagrams given in Fig. 2. The calculation of Fig. 2 is 
similar to that of Fig. 1. Here we omit the details of derivation and 
give the results directly:

W μν

∣∣∣∣
2a

=
[

iεμναβ Pαs⊥β ê(zh) − (Pμ s̃ν⊥ + Pν s̃μ⊥)ê I (zh)

]

× δ2(q⊥)
2

zh P · Ph
h1(xB)

+
[

gμν
⊥ s̃ρ⊥ − gμρ

⊥ s̃ν⊥ − gνρ
⊥ s̃μ⊥

]
h1(xB)ê∂ (zh)

× 1

zh

∂

∂qρ
⊥

δ2(q⊥),

W μν

∣∣∣∣
2b+2c

= − 2

xB P · Ph

(
Pν

h s̃μ⊥ + Pμ
h s̃ν⊥

)
δ2(q⊥)h1(xB)

×
∫

dz1

z1
P

1

z1 − zh
Im Ê F (z1, zh)

+ 2i

xB P · Ph

(
Pν

h s̃μ⊥ − Pμ
h s̃ν⊥

)
δ2(q⊥)h1(xB)

×
∫

dz1

z1
P

1

z1 − zh
Re Ê F (z1, zh). (16)

In the above only twist-3 contributions are given explicitly. Parts of 
contributions from Fig. 2b and 2c are added into the contributions 
to Fig. 2a as we have done for Fig. 1. The contribution from Fig. 2b 
and 2c can be simplified with the relation in Eq. (10). With the 
relation we obtain the chiral-odd contribution:

W μν

∣∣∣∣
odd

= 2i

zh P · Ph
h1(xB)ê(zh)δ

2(q⊥)

×
[
εμναβ Pαs⊥β − 1

xB zh

(
Pν

h s̃μ⊥ − Pμ
h s̃ν⊥

)]

− 2

zh P · Ph
δ2(q⊥)h1(xB)

[
(Pμ s̃ν⊥ + Pν s̃μ⊥)ê I (zh)

− 1

xB zh

(
Pν

h s̃μ⊥ + Pμ
h s̃ν⊥

)(
zhê∂ (zh) − ê I (zh)

)]

+
[

gμν
⊥ s̃ρ⊥ − gμρ

⊥ s̃ν⊥ − gνρ
⊥ s̃μ⊥

]

× h1(xB)ê∂ (zh)
1

z

∂

∂qρ δ2(q⊥). (17)

h ⊥
It is easy to find with Eq. (15) that the above result is U (1)-gauge 
invariant. The total twist-3 contribution of W μν is then the sum 
of the chirality-even part in Eq. (14) and the chirality-odd part in 
Eq. (17).

To study how to construct experimental observables it is con-
venient to express our W μν in the introduced C1-frame where the 
produced hadron has nonzero transverse momentum. The trans-
verse momentum Ph⊥ in the C1-frame is related to the transverse 
momentum q⊥ in the C0-frame as:

qμ
⊥

∣∣∣∣
C0

= − 1

zh
Pμ

h⊥

∣∣∣∣
C1

. (18)

It should be noted that the two tensors gμν
⊥ and εμν

⊥ are covariant. 
But they are defined differently in different frames. In the follow-
ing we will use the same notations for momenta and spin without 
confusion. The two tensors in the C1-frame are defined as:

gμν
⊥ = gμν − 1

P · P̄

(
Pμ P̄ν + Pν P̄μ

)
,

ε
μν
⊥ = 1

P · P̄
εαβμν Pα P̄β, P̄ = xB P + q. (19)

With these notations our twist-3 contribution of W μν in the 
C1-frame is given by:

W μν = 2

xB P · q
δ2(Ph⊥)

×
[
−iεμναβqαs⊥β

(
xB zhqT (xB)d̂(zh) + h1(xB)ê(zh)

)

+
(

(2xB P + q)μ s̃ν⊥ + (2xB P + q)ν s̃μ⊥
)

× h1(xB)

(
zhê∂ (zh) − ê I (zh)

)]

+ z2
h

(
∂

∂ Pρ
h⊥

δ2(Ph⊥)

)[
−2iq∂ (xB)d̂(zh)ε

μν
⊥ sρ⊥

− T F (xB , xB)d̂(zh)gμν
⊥ s̃ρ⊥

−
(

gμν
⊥ s̃ρ⊥ − gμρ

⊥ s̃ν⊥ − gνρ
⊥ s̃μ⊥

)
h1(xB)ê∂ (zh)

]
. (20)

This expression is explicitly U (1)-gauge invariant because in the 
C1-frame qμ is given by qμ = (q+, q−, 0, 0). This result is our main 
result. The obtained W μν in Eq. (20) is in fact a tensor distribu-
tion of Ph⊥ , physical predictions can only be obtained if Ph⊥ is 
integrated out. We notice that in our main result all nonperturba-
tive quantities are defined with two-parton correlations with the 
relation between T F (xB , xB) and q′

∂ (xB) in Eq. (7). However, this 
is only true at tree-level. Beyond tree-level it is not the case as 
discussed in detail in [18].

We consider the experimental situation in which the initial 
hadron is transversely polarized with the spin vector sμ⊥ . This vec-
tor is transverse to the lepton beam direction. In fact, this vector 
is not exactly the transverse spin vector in the C1-frame. But in 
the kinematical region of large Q 2, the two vectors are approxi-
mately the same [25]. We will neglect the difference between the 
two spin vectors. The incoming and outgoing leptons span the so-
called lepton plane. In the C1-frame the azimuthal angle between 
the spin vector and the lepton plane is denoted φs . Similarly, one 
defines the azimuthal angle φh for the produced hadron. The az-
imuthal angle of the outgoing lepton around the lepton beam with 
respect to the spin vector is denoted ψ . In the kinematical region 
of SIDIS, one has ψ ≈ φs [25]. With this specification the differen-
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tial cross section is given by [16,25]:

dσ

dxBdydzhdψd2 Ph⊥
= α2 y

4zh Q 4
Lμν W μν. (21)

As discussed before, from our result we cannot predict the differ-
ential cross section as a function of φh and P 2

h⊥ . The predictions 
can only be made by integrating out Ph⊥ . Using the result in 
Eq. (20) and integrating Ph⊥ out, we obtain the twist-3 contribu-
tion to the differential cross section:

dσ

dxBdydzhdψ

= 4α2

zh Q 3
|s⊥|√1 − y

×
[
−λexB

(
xB zhqT (xB)d̂(zh) + h1(xB)ê(zh)

)
cosψ

+ 2 − y

y
h1(xB)

(
zhê∂ (zh) − ê I (zh)

)
sinψ

]
. (22)

In this angular distribution the terms in Eq. (20) with the deriva-
tive of δ2(Ph⊥) do not contribute. To extract information of these 
terms, one can construct weighted angular distributions defined 
as:

dσ 〈F〉
dxBdydzhdψ

= α2 y

4zh Q 4

∫
d2 Ph⊥Lμν W μνF(Ph,k′, s⊥) (23)

with F as the weight function. For F = 1 one obtains the differ-
ential cross section given in Eq. (22). One can obtain the following 
weighted angular distribution for these derivative terms:

dσ 〈Ph⊥ · k′⊥〉
dxBdydzhdψ

= α2zh

2Q y2
|s⊥|√1 − y

[
−2λe y(2 − y)q∂ (xB)d̂(zh) cosψ

−
(

(1 + (1 − y)2)T F (xB , xB)d̂(zh)

− 2(1 − y)h1(xB)ê∂ (zh)

)
sinψ

]
. (24)

One can construct more spin-dependent observables by integrating 
over the azimuthal angle with different weight functions. Our W μν

in Eq. (20) have five tensor structures. Correspondingly one can 
have five observables. We can obtain the five weighted differential 
cross sections:

dσ 〈Ph⊥ · s̃⊥〉
dxBdydzh

= πα2

Q 2

1 + (1 − y)2

y
|s⊥|2zh T F (xB , xB)d̂(zh),

dσ 〈Ph⊥ · s⊥〉
dxBdydzh

= −λe
2πα2(2 − y)

Q 2
|s⊥|2zhq∂ (xB)d̂(zh),

dσ 〈Ph⊥ · k′⊥k′⊥ · s̃⊥〉
dxBdydzh

= πα2|s⊥|2zh
(1 − y)2

y3

×
[

h1(xB)ê∂ (zh) − 1 + (1 − y)2

2(1 − y)
d̂(zh)T F (xB , xB)

]
,

dσ 〈k′⊥ · s⊥〉
dxBdydzh

= λe
4πα2

2

1 − y |s⊥|2
(

xB zhqT (xB)d̂(zh) + h1(xB)ê(zh)

)
,

zh Q y
dσ 〈k′⊥ · s̃⊥〉
dxBdydzh

= 4πα2

zh Q 2

1 − y

y2
(2 − y)|s⊥|2h1(xB)

(
zhê∂ (zh) − ê I (zh)

)
. (25)

There are corrections to our hadronic tensor given in Eq. (20). They 
are from higher orders of αs and from power corrections sup-
pressed by 1/Q or 1/Q 2. Therefore, our results of observables 
in Eqs. (22), (24), (25) are subjects of these corrections. Parts of 
one-loop corrections to the weighted differential cross section with 
Ph⊥ · s̃⊥ in Eq. (25) have been given in [28,29].

Now we are in position to discuss the difference in our case 
between TMD and collinear factorizations. In general, TMD factor-
ization can be used in the kinematical region of Ph⊥ � Q . If one 
has Q  Ph⊥  �QCD , one can show that the TMD factorization 
and the collinear factorization are equivalent in this kinematical 
region [26,27]. At first look, one can use these two factorization 
approaches to calculate observables like those in Eq. (25), in which 
Ph⊥ is integrated out. However, this is not trivial in fact. We will 
take the contribution containing Sivers function as an example to 
show this.

The relevant contribution in TMD factorization is [16]:

dσ

dxBdydzhdψd2 Ph⊥

= α2(1 + (1 − y)2)

xB y Q 2
|s⊥| sin(φh − φs)F sin(φh−φs)

U T ,T (xB , zh, Ph⊥)

·
[

1 +O(P 2
h⊥/Q 2)

]
+ · · · ,

F sin(φh−φs)
U T ,T (xB , zh, Ph⊥)

= xB

|Ph⊥|
∫

d2kA⊥d2kB⊥ Ph⊥ · kA⊥ f ⊥
1T (xB ,kA⊥)D1(zh,kB⊥)

· δ2(kA⊥ − kB⊥ − Ph⊥/zh), (26)

where · · · denote irrelevant contributions. The contribution given 
explicitly is relevant to the weighted differential cross section with 
Ph⊥ · s̃⊥ in Eq. (25). We take the same notations here as those 
in [16]. f ⊥

1T (x, k⊥) is the Sivers function of the initial hadron and 
D1(z, k⊥) is the TMD fragmentation function. Their definitions can 
be found in [16]. Formally, one can derive the relations:

d̂(z) = z2
∫

d2k⊥D1(z,k⊥),∫
d2k⊥|k⊥|2 f ⊥

1T (x,k⊥) = −T F (x, x). (27)

The second equation is derived in [19]. With TMD factorization 
one is able to predict the distribution in φh . But the contribution 
given in Eq. (26) can only be used in the kinematical region for 
Ph⊥ � Q . It has power corrections. If we neglect the power cor-
rections, from Eq. (26) we have for the weighted differential cross 
section:

dσ 〈Ph⊥ · s̃⊥〉
dxBdydzh

= −πα2

Q 2

1 + (1 − y)2

y
|s⊥|2zh

×
∫

d2 Ph⊥d2kA⊥d2kB⊥|kA⊥|2 f ⊥
1T (xB ,kA⊥)D1(zh,kB⊥)

· δ2(kA⊥ − kB⊥ − Ph⊥/zh). (28)
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If we use the δ-function to perform the integration of Ph⊥ , and 
then take the integration of kA⊥ and that of kB⊥ as two indepen-
dent integrals, one can obtain the same result as that in Eq. (25)
by using the relation in Eq. (27). However, in principle one can-
not derive it in this way with TMD factorization. In fact the in-
tegration of kA⊥ and that of kB⊥ are not independent. They are 
correlated. Kinematically Ph⊥ is always finite. It cannot be in-
finitely large. Therefore kA⊥ − kB⊥ is always finite. Since Ph⊥ here 
with TMD factorization is constrained at the order of �QCD with 
�QCD � Q , one always has the constraint kA⊥ − kB⊥ ∼ �QCD . The 
only way to derive the same result is to assume that one can 
neglect kA⊥ and kB⊥ in the δ-function. But with this assump-
tion it implies that one actually uses collinear factorization at 
the beginning. It is interesting to note that at tree-level neglect-
ing kA⊥ and kB⊥ in the δ-function is equivalent to relaxing the 
constraint kA⊥ − kB⊥ ∼ �QCD . Keeping these in mind, our results 
of observables can also be derived from TMD factorization. It is 
also worth to point out here that the formally derived relations 
in Eq. (27) are not exactly correct, as discussed in [30]. The rea-
son is that in the integrations over transverse momenta there will 
be U.V. divergences and an U.V. subtraction needs to be imple-
mented. This can be shown with the explicit calculation of f ⊥

1T
and T F (x, x) at the leading order of αs with a multi-parton state 
in [31].

Before summarizing our work, we point out that from the 
derivation of our hadronic tensor in Eq. (20) one can realize that 
the virtual corrections to the terms with the derivative of δ2(Ph⊥)

are determined completely by the quark form factor with certain 
subtractions of collinear divergences. This fact has been first no-
ticed in the study of Drell–Yan processes in [17].

To summarize, we have derived the twist-3 part of the hadronic 
tensor in SIDIS at tree-level. This part depends on the transverse 
spin of the initial hadron. At tree-level, the obtained twist-3 part 
is completely expressed with nonperturbative quantities defined 
with two-parton correlations. Spin-dependent observables are con-
structed based on the obtained hadron tensor. A comparison of 
collinear factorization with TMD factorization is given in the stud-
ied case. Measurements of the various spin-dependent observables 
in SIDIS will be helpful to extract information about the transver-
sity distribution at twist-2 and twist-3 parton distributions and 
fragmentation functions.
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