Existence of solutions of boundary value problems for differential equations in which deviated arguments depend on the unknown solution

Tadeusz Jankowski
Gdansk University of Technology, Department of Differential Equations, 11/12 G.Narutowicz Str., 80-952 Gdańsk, Poland

Received 14 December 2006; accepted 22 January 2007

Abstract

This paper concerns differential equations with boundary conditions. Given are sufficient conditions under which such problems with deviated arguments have a unique solution in a corresponding sector. To obtain existence results we apply a monotone iterative method.

© 2007 Elsevier Ltd. All rights reserved.
Keywords: Monotone iterative technique; Equations with deviated arguments; Monotone sequences; Convergence; Existence of solutions

1. Introduction

In this paper, we deal with the following problem

$$
\left\{\begin{array}{l}
x^{\prime}(t)=f(t, x(\beta(t, x(t)))) \equiv F(x, x)(t), \quad t \in J, \tag{1}\\
x(0)=\lambda x(T)+k,
\end{array}\right.
$$

where

$$
\begin{equation*}
F(x, y)(t)=f(t, x(\beta(t, y(t)))) \tag{2}
\end{equation*}
$$

and $J=[0, T], f \in C(J \times \mathbb{R}, \mathbb{R}), \beta \in C(J \times \mathbb{R}, \mathbb{R}), \lambda, k \in \mathbb{R}$.
If $\lambda=1$ and $k=0$, then we have the periodic boundary condition, if $\lambda=-1$ and $k=0$, then we have the antiperiodic boundary condition, and if $\lambda=0$, we have an initial condition as special cases of the boundary condition in (1).

To obtain existence results for differential problems someone may use the monotone iterative method, for details see for example [1]. There is a vast literature devoted to the applications of this method to differential equations with initial and boundary conditions. It can be applied to differential problems with deviated arguments, see for example the papers [2-8]. We also apply this technique to problem (1). It is important to indicate that (1) is different from

[^0]corresponding problems investigated in the papers published earlier. Note that in problem (1) a deviated argument β depends on the unknown solution x. It is the first paper when the monotone iterative method is applied to problems of type (1).

The plan of this paper is as follows. Section 2 concerns the case when a parameter $\lambda \geq 0$, while in Section 3 we discuss problem (1) when $\lambda<0$. In both sections, we formulate sufficient conditions when problem (1) has a unique solution in a corresponding sector. In Section 2, an example is added to illustrate imposed assumptions. A problem more general then (1) is discussed in Section 4.

2. Case $\lambda \geq 0$

Take $y_{0}, z_{0} \in C^{1}(J, \mathbb{R})$ such that $y_{0}(t) \leq z_{0}(t), t \in J$. Let

$$
\Omega=\left\{(t, u): y_{0}(t) \leq u \leq z_{0}(t), t \in J\right\} .
$$

A pair $u, v \in C^{1}(J, \mathbb{R})$ is called a lower-upper solution of problem (1) for $\lambda \geq 0$ if

$$
\left\{\begin{array}{rll}
u^{\prime}(t) \leq F(v, v)(t), & t \in J, & u(0) \leq \lambda u(T)+k \\
v^{\prime}(t) \geq F(u, u)(t), & t \in J, & v(0) \geq \lambda v(T)+k
\end{array}\right.
$$

Let us define two sequences $\left\{y_{n}, z_{n}\right\}$ by relations:

$$
\left\{\begin{array}{lll}
y_{n+1}^{\prime}(t)=F\left(z_{n}, z_{n}\right)(t), & t \in J, & y_{n+1}(0)=\lambda y_{n}(T)+k \tag{3}\\
z_{n+1}^{\prime}(t)=F\left(y_{n}, y_{n}\right)(t), & t \in J, & z_{n+1}(0)=\lambda z_{n}(T)+k
\end{array}\right.
$$

for $n=0,1, \ldots$. Functions y_{0}, z_{0} will be defined later.
A pair $X, Y \in C^{1}(J, \mathbb{R})$ is called a quasi-solution of (1) if

$$
\left\{\begin{array}{lll}
X^{\prime}(t)=F(Y, Y)(t), & t \in J, & X(0)=\lambda X(T)+k \\
Y^{\prime}(t)=F(X, X)(t), & t \in J, & Y(0)=\lambda Y(T)+k
\end{array}\right.
$$

A pair $\rho, \gamma \in C^{1}(J, \mathbb{R})$ is called the minimal and maximal quasi-solution of problem (1) if for any $U, V \in$ $C^{1}(J, \mathbb{R})$ quasi-solution of (1) we have $\rho(t) \leq U(t), V(t) \leq \gamma(t)$ on J.

Theorem 1. Assume that

$\left(\mathrm{H}_{1}\right) f \in C(J \times \mathbb{R}, \mathbb{R}), \beta \in C(J \times \mathbb{R}, \mathbb{R})$, and f is nonincreasing with respect to the last variable,
$\left(\mathrm{H}_{2}\right)$ a pair $y_{0}, z_{0} \in C^{1}(J, \mathbb{R})$ is a lower-upper solution of problem (1) for $\lambda \geq 0$, and $y_{0}(t) \leq z_{0}(t)$ on J.
$\left(\mathrm{H}_{3}\right) \beta: \Omega \rightarrow J, \beta(t, u)$ is nondecreasing with respect to u for $y_{0}(t) \leq u \leq z_{0}(t), t \in J$,
$\left(\mathrm{H}_{4}\right) \quad y_{0}, z_{0}$ are nondecreasing on J and $f(t, u) \geq 0$ for $t \in J, y_{0} \leq u \leq z_{0}$.
Then problem (1) has the minimal and maximal quasi-solution in the sector

$$
\left[y_{0}, z_{0}\right]_{*}=\left\{u \in C^{1}(J, \mathbb{R}): y_{0}(t) \leq u(t) \leq z_{0}(t), t \in J\right\}
$$

Proof. Note that $y_{0}(t) \leq y_{1}(t), z_{1}(t) \leq z_{0}(t)$ on J. Put $p=y_{1}-z_{1}$. Then $p(0) \leq 0$, and $p^{\prime}(t)=F\left(z_{0}, z_{0}\right)(t)-$ $F\left(y_{0}, y_{0}\right)(t) \leq 0$ because

$$
y_{0}\left(\beta\left(t, y_{0}(t)\right)\right) \leq y_{0}\left(\beta\left(t, z_{0}(t)\right)\right) \leq z_{0}\left(\beta\left(t, z_{0}(t)\right)\right)
$$

It shows that

$$
y_{0}(t) \leq y_{1}(t) \leq z_{1}(t) \leq z_{0}(t), \quad t \in J .
$$

Moreover, in view of assumptions $\left(\mathrm{H}_{3}\right)$, $\left(\mathrm{H}_{4}\right)$, we have

$$
\begin{aligned}
& y_{1}^{\prime}(t)=F\left(z_{0}, z_{0}\right)(t)-F\left(z_{1}, z_{1}\right)(t)+F\left(z_{1}, z_{1}\right)(t) \leq F\left(z_{1}, z_{1}\right)(t), \\
& z_{1}^{\prime}(t)=F\left(y_{0}, y_{0}\right)(t)-F\left(y_{1}, y_{1}\right)(t)+F\left(y_{1}, y_{1}\right)(t) \geq F\left(y_{1}, y_{1}\right)(t)
\end{aligned}
$$

because y_{0}, z_{0} are nondecreasing and

$$
z_{0}\left(\beta\left(t, z_{0}(t)\right)\right) \geq z_{1}\left(\beta\left(t, z_{1}(t)\right)\right), \quad y_{0}\left(\beta\left(t, y_{0}(t)\right)\right) \leq y_{1}\left(\beta\left(t, y_{1}(t)\right)\right)
$$

By induction, we can show that

$$
y_{0}(t) \leq y_{1}(t) \leq \cdots \leq y_{n}(t) \leq z_{n}(t) \leq \cdots \leq z_{1}(t) \leq z_{0}(t)
$$

for $t \in J$ and $n=0,1, \ldots$
By the Arzeli theorem, $y_{n} \rightarrow y, z_{n} \rightarrow z$, where the pair $y, z \in C^{1}(J, \mathbb{R})$ is a quasi-solution of problem (1) and $y_{0}(t) \leq y(t) \leq z(t) \leq z_{0}(t), t \in J$. Now, we need to show that the pair y, z is the minimal and maximal quasi-solution of (1) in the sector $\left[y, z_{0}\right]_{*}$. Let $u, v \in\left[y_{0}, z_{0}\right]_{*}$ be any quasi-solution of problem (1). Put $p=y_{1}-u, q=v-z_{1}$. Then $p(0) \leq 0, q(0) \leq 0$, and

$$
\begin{aligned}
& p^{\prime}(t)=F\left(z_{0}, z_{0}\right)(t)-F(u, u)(t) \leq 0, \\
& q^{\prime}(t)=F(v, v)(t)-F\left(y_{0}, y_{0}\right)(t) \leq 0
\end{aligned}
$$

because

$$
\begin{aligned}
& z_{0}\left(\beta\left(t, z_{0}(t)\right)\right) \geq z_{0}(\beta(t, u(t))) \geq u(\beta(t, u(t))) \\
& y_{0}\left(\beta\left(t, y_{0}(t)\right)\right) \leq y_{0}(\beta(t, v(t))) \leq v(\beta(t, v(t)))
\end{aligned}
$$

Hence $y_{1}(t) \leq u(t), v(t) \leq z_{1}(t), t \in J$. By induction, we can prove that $y_{n}(t) \leq u(t)$ and $v(t) \leq z_{n}(t), t \in J, n=$ $0,1, \ldots$ If $n \rightarrow \infty$, then we have the assertion of Theorem 1 .

It is easy to show the following.
Remark 1. Let all assumptions of Theorem 1 hold. If u is any solution of (1) such that $y_{0}(t) \leq u(t) \leq z_{0}(t), t \in J$, then

$$
y_{n}(t) \leq u(t) \leq z_{n}(t), \quad t \in J, n=0,1, \ldots
$$

and $y(t) \leq u(t) \leq z(t), t \in J$, where y, z are from Theorem 1 .
Now, we want to formulate sufficient conditions under which problem (1) has a unique solution. First we give the following.

Lemma 1. Assume that $\beta \in C(\Omega, J), K, L \in C\left(J, \mathbb{R}_{+}\right), R_{+}=[0, \infty), p \in C^{1}(J, \mathbb{R})$ and

$$
\begin{equation*}
p^{\prime}(t) \leq K(t) p(t)+L(t) p(\beta(t, w(t))), \quad t \in J, \quad p(0)=\lambda p(T), \quad \lambda \in[0,1) \tag{4}
\end{equation*}
$$

for $y_{0}(t) \leq w(t) \leq z_{0}(t), t \in J$. In addition assume that for $L^{*}(t)=K(t)+L(t)$ we have

$$
\begin{equation*}
\lambda+\int_{0}^{T} L^{*}(t) \mathrm{d} t<1 \tag{5}
\end{equation*}
$$

Then $p(t) \leq 0, t \in J$.
Proof. Suppose that the assertion $p(t) \leq 0, t \in J$ is not true. Then, we can find $t_{0} \in J$ such that $p\left(t_{0}\right)>0$. Put

$$
p\left(t_{1}\right)=\max _{t \in J} p(t)>0 .
$$

Integrating the differential inequality in (4) we obtain

$$
\begin{equation*}
p(t) \leq p(0)+p\left(t_{1}\right) \int_{0}^{T} L^{*}(s) \mathrm{d} s, \quad t \in J \tag{6}
\end{equation*}
$$

Then

$$
p(0)=\lambda p(T) \leq \lambda\left[p(0)+p\left(t_{1}\right) \int_{0}^{T} L^{*}(s) \mathrm{d} s\right]
$$

This gives

$$
p(0) \leq \frac{\lambda}{1-\lambda} p\left(t_{1}\right) \int_{0}^{T} L^{*}(s) \mathrm{d} s
$$

This and (6) for $t=t_{1}$ yield

$$
p\left(t_{1}\right)\left[1-\frac{1}{1-\lambda} \int_{0}^{T} L^{*}(s) \mathrm{d} s\right] \leq 0 .
$$

It contradicts the assumption that $p\left(t_{1}\right)>0$. This shows that $p(t) \leq 0$ on J and the proof is complete.
Theorem 2. Let all assumptions of Theorem 1 hold. In addition assume that
$\left(\mathrm{H}_{5}\right)$ there exists functions $L, M \in C\left(J, R_{+}\right)$, such that

$$
\begin{aligned}
& f(t, u)-f(t, \bar{u}) \leq L(t)(\bar{u}-u) \\
& \beta(t, \bar{v})-\beta(t, v) \leq M(t)(\bar{v}-v)
\end{aligned}
$$

$$
\text { if } y_{0}(t) \leq u \leq \bar{u} \leq z_{0}(t), y_{0}(t) \leq v \leq \bar{v} \leq z_{0}(t), t \in J,
$$

$\left(\mathrm{H}_{6}\right)$ condition (5) holds for $L^{*}(t)=L(t) M(t) N(t)+L(t)$, where $f(t, w)$ is bounded by $N(t)$ for $t \in J, y_{0} \leq w \leq$ $z 0$.

Then problem (1) has, in the sector $\left[y_{0}, z_{0}\right]_{*}$, a unique solution.
Proof. From Theorem 1 we know that $y, z \in\left[y_{0}, z_{0}\right]_{*}$, and $y(t) \leq z(t), t \in J$. We need to show that $y=z$. Put $q=z-y$, so $p(0)=\lambda p(T)$ and

$$
\begin{aligned}
p^{\prime}(t) & =F(y, y)(t)-F(z, z)(t) \leq L(t)[z(\beta(t, z(t)))-y(\beta(t, y(t)))] \\
& =L(t)[p(\beta(t, z(t)))+y(\beta(t, z(t)))-y(\beta(t, y(t)))] \\
& \leq K(t) p(t)+L(t) p(\beta(t, z(t))) \quad \text { for } K(t)=L(t) M(t) N(t) .
\end{aligned}
$$

This and Lemma 1 show that $z(t) \leq y(t), t \in J$. It means that $y=z$.
Example. We consider the following boundary value problem

$$
\left\{\begin{array}{l}
x^{\prime}(t)=\gamma_{1} \mathrm{e}^{-\gamma_{2} x(\delta t x(t))}, \quad t \in J=[0,1], \tag{7}\\
x(0)=\lambda x(1)+k, \quad \lambda \geq 0,
\end{array}\right.
$$

where $0<\delta \leq \frac{1}{2}, 0<\gamma_{1} \leq 1, \gamma_{2}>0$. Here $\beta(t, u)=\delta t u$.
Take $y_{0}(t)=0, z_{0}(t)=t+1, t \in J$ and $0 \leq k \leq 2 \lambda+k \leq 1$. We see that $0 \leq \beta(t, u) \leq t$ for $y_{0}(t) \leq u \leq z_{0}(t), t \in J$. Note that

$$
\begin{aligned}
& F\left(z_{0}, z_{0}\right)(t)=\gamma_{1} \mathrm{e}^{-\gamma_{2}(1+\delta t(1+t))}>0=y_{0}^{\prime}(t), \quad \lambda y_{0}(1)+k=k \geq 0=y_{0}(0), \\
& F\left(y_{0}, y_{0}\right)(t)=\gamma_{1} \leq 1=z_{0}^{\prime}(t), \quad \lambda z_{0}(1)+k=2 \lambda+k \leq 1=z_{0}(0)
\end{aligned}
$$

It proves that the pair $\left(y_{0}, z_{0}\right)$ is a lower-upper solution of problem (7).
Moreover, $L(t)=\gamma_{1} \gamma_{2}, M(t)=\delta t, N(t)=\gamma_{1}$. In addition assume that

$$
\begin{equation*}
\lambda+\gamma_{1} \gamma_{2}\left(1+\frac{1}{2} \gamma_{1} \delta\right)<1 . \tag{8}
\end{equation*}
$$

Then problem (7) has, in the sector $\left[y_{0}, z_{0}\right]_{*}$, a unique solution, by Theorem 2. For example, if we take $\gamma_{1}=\delta=$ $\frac{1}{2}, \gamma_{2}=1$, the condition (8) holds for $\lambda<\frac{7}{16}$.

Now we consider the case when function β is nonincreasing with respect to the second variable. We have
Theorem 3. Assume that assumptions $\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}^{\prime}\right),\left(\mathrm{H}_{3}^{\prime}\right),\left(\mathrm{H}_{4}^{\prime}\right),\left(\mathrm{H}_{5}^{\prime}\right),\left(\mathrm{H}_{6}\right)$ are satisfied where
$\left(\mathrm{H}_{2}^{\prime}\right) \lambda \geq 0, u_{0}, w_{0} \in C^{1}(J, \mathbb{R}), u_{0}(t) \leq w_{0}(t), t \in J$ and

$$
\left\{\begin{array}{lll}
u_{0}^{\prime}(t) \leq F\left(w_{0}, u_{0}\right)(t), & t \in J, & u_{0}(0) \leq \lambda u_{0}(T)+k \\
w_{0}^{\prime}(t) \geq F\left(u_{0}, w_{0}\right)(t), & t \in J, & w_{0}(0) \geq \lambda w_{0}(T)+k,
\end{array}\right.
$$

$\left(\mathrm{H}_{3}^{\prime}\right) \beta: \bar{\Omega} \rightarrow J, \beta(t, u)$ is nonincreasing with respect to u for $t \in J, u_{0} \leq u \leq w_{0}, t \in J$, where $\bar{\Omega}=\left\{(t, u): u_{0}(t) \leq u \leq w_{0}(t), t \in J\right\}$,
$\left(\mathrm{H}_{4}^{\prime}\right) u_{0}, w_{0}$ are nondecreasing on J and $f(t, u) \geq 0$ for $t \in J, u_{0} \leq u \leq w_{0}$,
$\left(\mathrm{H}_{5}^{\prime}\right)$ there exist functions $L, M \in C\left(J, R_{+}\right)$, such that

$$
\begin{gathered}
f(t, u)-f(t, \bar{u}) \leq L(t)(\bar{u}-u) \\
\beta(t, v)-\beta(t, \bar{v}) \leq M(t)(\bar{v}-v) \\
\text { if } u_{0}(t) \leq u \leq \bar{u} \leq w_{0}(t), u_{0}(t) \leq v \leq \bar{v} \leq w_{0}(t), t \in J
\end{gathered}
$$

Then, problem (1) has, in the sector $\left[u_{0}, w_{0}\right]_{*}$, a unique solution.
Proof. Let us define the sequences $\left\{u_{n}, w_{n}\right\}$ be relations

$$
\left\{\begin{array}{lll}
u_{n+1}^{\prime}(t)=F\left(w_{n}, u_{n}\right)(t), & t \in J, & u_{n+1}(0)=\lambda u_{n}(T)+k \\
w_{n+1}^{\prime}(t)=F\left(u_{n}, w_{n}\right)(t), & t \in J, & w_{n+1}(0)=\lambda w_{n}(T)+k
\end{array}\right.
$$

for $n=0,1, \ldots$ The proof of this theorem is similar to the proof of Theorems 1 and 2 , and therefore it is omitted.

3. Case $\lambda<0$

A pair $u, v \in C^{1}(J, \mathbb{R})$ is called a lower-upper solution of problem (1) for $\lambda<0$ if

$$
\left\{\begin{array}{lll}
u^{\prime}(t) \leq F(v, v)(t), & t \in J, & u(0) \leq \lambda v(T)+k \\
v^{\prime}(t) \geq F(u, u)(t), & t \in J, & v(0) \geq \lambda u(T)+k
\end{array}\right.
$$

Theorem 4. Let all assumptions of Theorems 1 and 2 be satisfied with $\left(\mathrm{H}_{2}^{\prime \prime}\right)$ instead of $\left(\mathrm{H}_{2}\right)$, where
$\left(\mathrm{H}_{2}^{\prime \prime}\right)$ a pair $y_{0}, z_{0} \in C^{1}(J, \mathbb{R})$ is a lower-upper solution of problem (1) for $\lambda<0$, and $y_{0}(t) \leq z_{0}(t)$ on J.
Then the assertion of Theorem 2 holds.
Proof. For $n=0,1, \ldots$, let us define the sequences $\left\{y_{n}, z_{n}\right\}$ by relations

$$
\left\{\begin{array}{lll}
y_{n+1}^{\prime}(t)=F\left(z_{n}, z_{n}\right)(t), & t \in J, & y_{n+1}(0)=\lambda z_{n}(T)+k \\
z_{n+1}^{\prime}(t)=F\left(y_{n}, y_{n}\right)(t), & t \in J, & z_{n+1}(0)=\lambda y_{n}(T)+k
\end{array}\right.
$$

Repeating the proof of Theorems 1 and 2, we have the assertion of Theorem 4.
Theorem 5. Let all assumptions of Theorem 3 be satisfied with $\left(\mathrm{H}^{\prime \prime \prime}{ }_{2}\right)$ instead of $\left(\mathrm{H}_{2}^{\prime}\right)$,
$\left(\mathrm{H}_{2}^{\prime \prime \prime}\right) \quad \lambda<0, u_{0}, w_{0} \in C^{1}(J, \mathbb{R}), u_{0}(t) \leq w_{0}(t), t \in J$, and

Then the assertion of Theorem 3 hold.
In the proof use the sequences $\left\{u_{n}, w_{n}\right\}$ defined by relations.

$$
\left\{\begin{array}{lll}
u_{n+1}^{\prime}(t)=F\left(w_{n}, u_{n}\right)(t), & t \in J, & u_{n+1}(0)=\lambda w_{n}(T)+k \\
w_{n+1}^{\prime}(t)=F\left(u_{n}, w_{n}\right)(t), & t \in J, & w_{n+1}(0)=\lambda u_{n}(T)+k
\end{array}\right.
$$

for $n=0,1, \ldots$.

4. General case

Now we consider the problem

$$
\left\{\begin{array}{l}
x^{\prime}(t)=f(t, x(\beta(t, x(t))), x(\gamma(t, x(t)))) \equiv \mathcal{F}(x, x, x, x)(t), \quad t \in J \tag{9}\\
x(0)=\lambda x(T)+k
\end{array}\right.
$$

where

$$
\begin{equation*}
\mathcal{F}(x, y, u, w)(t)=f(t, x(\beta(t, y(t))), u(\gamma(t, w(t)))) \tag{10}
\end{equation*}
$$

and $J=[0, T], f \in C(J \times \mathbb{R} \times \mathbb{R}, \mathbb{R}), \beta, \gamma \in C(J \times \mathbb{R}, \mathbb{R}), \lambda, k \in \mathbb{R}$.

Theorem 6. Assume that

$\left(\mathrm{A}_{1}\right) f \in C(J \times \mathbb{R} \times \mathbb{R}, \mathbb{R}), \beta, \gamma \in C(J \times \mathbb{R}, \mathbb{R})$, and f is nonincreasing with respect to the last two variables,
$\left(\mathrm{A}_{2}\right) \lambda \geq 0$, and $y_{0}, z_{0} \in C^{1}(J, \mathbb{R})$ satisfy the system

$$
\left\{\begin{array}{lll}
y_{0}^{\prime}(t) \leq \mathcal{F}\left(z_{0}, z_{0}, z_{0}, y_{0}\right)(t), & t \in J, & y_{0}(0) \leq \lambda y_{0}(T)+k, \\
z_{0}^{\prime}(t) \geq \mathcal{F}\left(y_{0}, y_{0}, y_{0}, z_{0}\right)(t), & t \in J, & z_{0}(0) \geq \lambda z_{0}(T)+k
\end{array}\right.
$$

and $y_{0}(t) \leq z_{0}(t), t \in J$,
$\left(\mathrm{A}_{3}\right) \beta, \gamma: \Omega \rightarrow J, \beta(t, u)$ is nondecreasing, and $\gamma(t, u)$ is nonincreasing, with respect to u for $y_{0}(t) \leq u \leq$ $z_{0}(t), t \in J$,
(A4) y_{0}, z_{0} are nondecreasing on $J, f(t, u, v) \geq 0$ for $t \in J, y_{0} \leq u \leq z_{0}, y_{0} \leq v \leq z_{0}, t \in J$.
(A5) There exist functions $L_{1}, L_{2}, M_{1}, M_{2} \in C\left(J, R_{+}\right)$, such that

$$
\begin{aligned}
& \quad f(t, u, v)-f(t, \bar{u}, \bar{v}) \leq L_{1}(t)(\bar{u}-u)+L_{2}(t)(\bar{v}-v), \\
& \beta(t, \bar{v})-\beta(t, v) \leq M_{1}(t)(\bar{v}-v) \\
& \quad \gamma(t, w)-\gamma(t, \bar{w}) \leq M_{2}(t)(\bar{w}-w) \\
& \text { if } y_{0}(t) \leq u \leq \bar{u} \leq z_{0}(t), y_{0}(t) \leq v \leq \bar{v} \leq z_{0}(t), y_{0}(t) \leq w \leq \bar{w} \leq z_{0}(t), t \in J .
\end{aligned}
$$

(A A_{6} Condition (5) holds for $L^{*}(t)=N(t)\left[L_{1}(t) M_{1}(t)+L_{2}(t) M_{2}(t)\right]+L_{1}(t)+L_{2}(t)$, where $f(t, u . w)$ is bounded by $N(t)$ for $t \in J, y_{0} \leq u \leq z_{0}, y_{0} \leq v \leq z_{0}$.

Then problem $\left(\mathrm{H}_{9}\right)$ has, in the sector $\left[y_{0}, z_{0}\right]_{*}$, a unique solution.
In the proof, use the sequences $\left\{y_{n}, z_{n}\right\}$ defined by:

$$
\left\{\begin{array}{lll}
y_{n+1}^{\prime}(t)=\mathcal{F}\left(z_{n}, z_{n}, z_{n}, y_{n}\right)(t), & t \in J, & y_{n+1}(0)=\lambda y_{n}(T)+k, \\
z_{n+1}^{\prime}(t)=\mathcal{F}\left(y_{n}, y_{n}, y_{n}, z_{n}\right)(t), & t \in J, & z_{n+1}(0)=\lambda z_{n}(T)+k
\end{array}\right.
$$

for $n=0,1, \ldots$.
Theorem 7. Let all assumptions of Theorem 6 be satisfied with assumption $\left(\mathrm{A}_{2}^{\prime}\right)$ instead of $\left(\mathrm{A}_{2}\right)$, where
(A_{2}^{\prime}) $\lambda<0$, and $y_{0}, z_{0} \in C^{1}(J, \mathbb{R})$ satisfy the system

$$
\left\{\begin{array}{lll}
y_{0}^{\prime}(t) \leq \mathcal{F}\left(z_{0}, z_{0}, z_{0}, y_{0}\right)(t), & t \in J, & y_{0}(0) \leq \lambda z_{0}(T)+k \\
z_{0}^{\prime}(t) \geq \mathcal{F}\left(y_{0}, y_{0}, y_{0}, z_{0}\right)(t), & t \in J, & z_{0}(0) \geq \lambda y_{0}(T)+k
\end{array}\right.
$$

and $y_{0}(t) \leq z_{0}(t), t \in J$.
Then the assertion of Theorem 6 holds.
Now, the sequences $\left\{y_{n}, z_{n}\right\}$ are defined by:

$$
\left\{\begin{array}{lll}
y_{n+1}^{\prime}(t)=\mathcal{F}\left(z_{n}, z_{n}, z_{n}, y_{n}\right)(t), & t \in J, & y_{n+1}(0)=\lambda z_{n}(T)+k, \\
z_{n+1}^{\prime}(t)=\mathcal{F}\left(y_{n}, y_{n}, y_{n}, z_{n}\right)(t), & t \in J, & z_{n+1}(0)=\lambda y_{n}(T)+k
\end{array}\right.
$$

for $n=0,1, \ldots$.
Remark 2. There is no problem to formulate corresponding existence results for problems having more arguments of type β and γ.

References

[1] G.S. Ladde, V. Lakshmikantham, A.S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman, Boston, 1985.
[2] T. Jankowski, Monotone iterative technique for differential equations with nonlinear boundary conditions, Nonlinear Stud. 8 (2001) $381-388$.
[3] T. Jankowski, Existence of solutions of boundary value problems for differential equations with delayed arguments, J. Comput. Appl. Math. 156 (2003) 239-252.
[4] T. Jankowski, On delay differential equations with nonlinear boundary conditions, Bound. Value Probl. 2005 (2) (2005) $201-214$.
[5] T. Jankowski, Advanced differential equations with nonlinear boundary conditions, J. Math. Anal. Appl. 304 (2005) $490-503$.
[6] D. Jiang, J. Wei, Monotone method for first- and second-order periodic boundary value problems and periodic solutions of functional differential equations, Nonlinear Anal. 50 (2002) 885-898.
[7] J.J. Nieto, R. Rodríguez-López, Existence and approximation of solutions for nonlinear functional differential equations with periodic boundary value conditions, Comput. Math. Appl. 40 (2000) 433-442.
[8] J.J. Nieto, R. Rodríguez-López, Remarks on periodic boundary value problems for functional differential equations, J. Comput. Appl. Math. 158 (2003) 339-353.

[^0]: E-mail address: tjank@mifgate.pg.gda.pl.

