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Abstract.-Chordaf graphtheoryhasrecentlyfoundapplicationby statisticiansintheanalysisof
contingencytables.Specifically,whatarecalled“decomposableloglinearmodels”correspondexsctly
to chordafgraphs.We surveytheaeresults,translatingthe statisticalapplicationintoconventional
graphtheory.
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1. INTRODUCTION AND PRELIMINARIES

Beginningwith the 1980 paper [1] by Darroch, LauritzenandSpeed,chordalgraphshaveemerged
as an important type of model for the statisticalanalysisof contingencytables. We provide a
“map of the terrain” for the graphtheoristwho is interestedin exploringthe burgeoninglitera-
ture on these chordal graph models (a literaturethat seemsimpenetrablefor nonstatisticians).
We present a limited survey of this literature, concentratingon reformulatingthe statistical
applicationsinto traditionalgraphtheoreticalterminology.

A recentpaperby LauritzenandSpiegelhalter[2]promisesto be equallystimulatingin termsof
usingrelatedideasto study the propagationof probabilisticevidencein expert systems;see also,
Pearl’s text [3, Chapter3]. In a differentdirection,recentwork by the presentauthors [4]shows
how multigraphsoffera separateapproachto thesesametypesof applications—anapproachthat
has certaingraph-theoreticaladvantages.

1.1. Contingency Tables

Suppose X = {VI,..., Vd} is a set of variablesthat representclassificationcriteria (perhaps
political affiliation,race, occupation,gender,etc.) that takevaluesfromsets11,.. ., Id of discrete
values. We use lowercase lettersvl,..., V&respectively,for specificvaluesfrom 11,..., Id of the
upper case variablesVI,. .., Vi

A d-dimensionalContingencetableis obtained from a set X and a randomsampleof objects
from some population. The table is then formedfrom the Cartesianproduct 11x ..” x 1dof sets
of values,with each particularchoice vl, ..., Vdof valuescalled a cell of the table. To each cell
is assigneda cell j%equency,recordingthe numberof objects from the particularrandomsample
representedby the table for which each variableVi takesthe correspondingvaluevi. Each cell
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also correspondsto a cell probabitit~,the probabilitythat an object chosen randomly from the
entire population falls into that cell. If S C A!, then the Cartesianproduct of the sets Ii for
which Vi G S is called a marginaltable. A cell frequencyin the marginaltable is the sum of the
correspondingcell frequenciesfrom the full table over all valuesof the sets 1j with Vj # S.

As an example, Table 1 showsa three-dimensionalcontingencytable based on data reported
by Bartlett [5] in his pioneering1935 article. These data are from an experimentgiving the
Response (alive or dead) of 240 plantsfor each combinationof two variables:Time of Planting
(early or late) and Lengthof Cutting (high or low).

Table1.

Table2.

The marginal table shown as Table 2 expresseswhat is called the “contingency” between
Lengthof Cutting and the Response.It is obtainedby summing(or “collapsing”)over the Time
of Plantingvariable,

The primary objective in the analysisof contingencytables is to determinethe structureof
associations among the variablesin A’. The most popular technique for doing this is called
“loglinearmodel analysis”, as definedby Birch [6]. For our purposes,we need only note that
loglinearmodels involve a family P of subsetsof X, with the membersof P correspondingto
what are called the permissible interactionsof the model. In particular,singletonsubsetsin P
are said to correspondto main effects, doubletonsubsetsin P to j%st-orderzntemctions,etc.

1.2. HierarchicalModels

Our attentionwill be confinedto the most importantmodels in practical applicationscalled
“hierarchicalmodels”. Hierarchicalmodels are loglinearmodels such that S c S’ c P implies
S c P. Each hierarchicalmodel can be characterizedby a genemtingclass C consistingof the
family of inclusion-maximalsets in P. Thus, S c P if and only if there exists S’ ● C such that
S G S’. For simplicity,we assume,as in [1],that X = IJ{C : C’ G C}; i.e., that all main effects
are in P.

In the examplein Table 1, let VI, V2, and V3 representthe Time of Planting,Length of Cut-
ting, and Response variables, respectively. There are nine possible hierarchicalmodels that
contain all three main effects; they have generatingclasses {{VI}, {V2}, {V3}}, three of the
form {{Vi, if}, {Vk}}, three of the form {{K, Vj}, {Vj, vk}}, and {{V’, V2}, {VI, V3}, {V2, V3}}

and {{VI, V2,V3}}. Observe that the generatingclass C = {{Vl, V3}, {V.}} representsthe hi-
erarchicalmodel with P = {0, {Vl}, {V2}, {WJ}, {VI, V3}}; i.e., there are three main effects, one
first-orderinteraction,and no second-orderinteractionamongthe variables,

A result from loglinearmodel theory (see [1]) assertsthat for any hierarchicalmodel with
generatingclassC, if you knewthe cell probabilitiesfor the marginaltableswith indicesgivenby
the membersof C then you would knowthe cell probabilitiesfor the full table; in short, the cell
probabilitiesare uniquely determined by C. However,there is a sensein which it is not possible
in generalto determinethe cell probabilitiesfrom the maiginalprobabilitiescorrespondingto C
in a “nice” manner (see [7, Section5,2.5; 8, Proposition6 (iv)]). This is where chordal graphs
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will come in later; our Theorem 2 (takenfrom [1])will show how this “nice” determinationcan
be done (and will illustratethe technicalmeaningof “nice”).

1.3. Interaction Graphs

Define the intemction gmph of a hierarchicalmodel to be the undirectedgraph having the
vertexset X = {VI,.. ., Vd} with edgescorrespondingto the first-orderinteractionsin the model.
For instance, the interactiongraph of the model with X = {Vl, V2,V3} and generatingclass
C = {{V3, VA}, {Vj,, V3,V5}, {V2, V4,V5}} is shownin Figure 1. One naturaluse of interaction
graphs is to determinethe “conditiomdindependencies”amongthe variablesin the contingency
table.

V3—V4

/\/ \
VI — V5 — V2

Figure1.

With respect to choosing an object randomly from the entire population, let Prob (v) ab-
breviate Prob (V = v), Prob ({vi : Vi c S}) abbreviate Prob ({Vi = vi : ~ E S}), and
Prob (v I {vi : w G S }) be the conditionalprobabilitythat V = v, given that Vi = vi for each
Vi G S. The relationshipbetweenadjacencyin the graphand conditionalindependenceis devel-
oped in [1]usingso-called“Markovrandomfields”. The resultis that, if G is an interactiongraph
of a hierarchicalmodel (and so, remember,the verticesof G are preciselythe variablesof X),
then variablesV and W are nonadjacentin G if and only if they are conditionallyindependent
relativeto all the other variables;in symbols, if and only if

Prob (v I {VI,.,., Vd}\{v}) = Prob (v I {vi,. .., Vd}\{v, w}).

Informally,this meansthat knowingthe valueof W providesno additionalinformationabout
the probabilitydistributionof V when all the other valuesare known. Such a conditionalinde-
pendence is called a zero partialassociation(or ZP.4) in [8], and when variablesV and W are
adjacentin G they aresaidto be partiallyassociatedrelativeto X\{V, W}. If a set S of variables
separatesV from W in the graph, then V and W are conditionallyindependentrelativeto S.
Unconditionallyindependentvariableslie in differentconnectedcomponentsof G.

1.4. CollapsibilityConditions

Oneof the importantusesof aninteractiongraphis in characterizing“collapsibilityconditions”
for hierarchicalIoglinearmodels of multidimensionalcontingency tables. Some models have
the property that the structuralrelationshipsamong a set of classifyingfactors (variables),as
determinedby the hierarchicalmodel, are unchangedupon collapsing(i.e., summing) over the
remainingvariables.Collapsibilityis, therefore,usefulfor datareductionand for simplifyingdata
analysisand model interpretation. (The content of this subsectionwill not be requiredin the
later sections.)

Formally,let C be the generatingclass for a hierarchicalmodel of a contingencytable with
x = {Vi,..., vd}. Let S C X and considerthe marginaltable obtainedby collapsingover X\S.
The restrictionCs of C to the marginaltable is definedby deletingall occurrencesof variables
in X\S from C and then removingmembersthat arecontainedin other members. For example,
if C = {{Vi, %}, {VZ,V3,VJ, {Vi, VJ} and S = {VI, V3,V3}, then Cs = {{ Vi, VZ},{VZ,V3}}. We
say that the hierarchicalmodel havinggeneratingclassC is p-collapsibleonto S if the marginal
probabilitiesProb ({vt : W c S}) coincidewith the probabilitiesdeterminedby C,s.

It is importantto notethat thepcollapsibilitydiscussedhereis definedin termsof probabilities
andtheir invarianceundercollapsing.This is in contrastto a well-knownconcept of collapsibility
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definedby Bishop, Fienbergand Holland [9] and by Whittemore [10]in terms of invarianceof
loglinearmodel parameters(typically A’s); we would call this A-collapsibility.The concept of
p-collapsibilityis particularlynaturalin the context of our presentsurvey.

Assmuseenand Edwards[11]providenecessaryand sufficientconditionsfor ~collapsibility in
terms of the interactiongraph, includingTheorem 1 below. Definethe boundaryof S’ c # to
be the set of variables(vertices)not in S’ that are adjacentto some variablein S’.

THEOREM 1. (See (11].) A hierarchicalmodel having generating classC is pcollapsible onto S
if and only if the boundaxy of each connected component of the subgraph induced by X\S is
containedin a memberof C (i.e., in a generatorof the model).

The simplestexample of non-pcollapsibilityhae S = {Vi, V3} and C = {{VI, V2}, {V2, V3}}.
The boundary of X\S = {V2} is {Vl, V3} and, sincethis is not containedin a generator,the hi-
erarchicalmodel with generatingCISSSC is not pcollapsible onto S. On the other hand, consider
the five-dimensionalmodel with S = {V3,V4,V5} and C = {{V3, V4}, {VI, V3,V5}, {V2, V4,V5}}.
The interactiongraph is shown in Figure 1. Then X\S = {V’, V2} and the connected compo-
nents {Vl} and {V2} of the induced subgraph (Vi, V2) have boundaries{V3,V5} and {VA,V5},
respectively. Since each of these is contained in a member of C, the correspondingmodel is
pcollapsible onto S.

1.5. Graphical Models

A hierarchicalmodel iscalleda graphicalmodel(a notionintroducedby Darroch,Lauritzenand
Speed [1]) wheneverthe inclusion-maximalcliques (whichwe call mazcizques)of its interaction
graphcorrespondexactlyto the membersof the generatingclassof the hierarchicalmodel. There
are statisticaltechniques(see, for instance, [12, Section 5]) for selectingappropriategraphical
models for a givenobservedcontingencytable.

The simplestexampleof a hierarchicalmodel that is not graphicalhas X = {VI, V2,V3} and
generatingclassC = {{Vi, V2}, {Vi, V3}, {V2, V3}}. The interactiongraphwouldbe a triangle,but
it is not a graphicalmodelsincethetriangle(maxclique){Vi, V2,V3} isnot inC. Likewise,the five-
dimensionalmodelwith generatingclass{{V3, V4}, {Vi, V3, V5}, {V2, V4, V5}} with the interaction
graph shownin Figure 1 is not graphical.But takingC = {{VI, V3,V5}, {V3, V4,V5}, {V2, V4,V5}}
gives a graphicalmodel havingthat samegraph.

(We mentionin passingthat,just asgraphicalmodelsarespecialkindsof interactiongraphs,hi-
erarchicalmodelscan be interpretedas “interactionhypergraphs”.The (hyper)graph-theoretical
foundationsof [1] appear in [13], along with connectionsto game theory, a measure-theoretic
problem, and Markovfields.)

Becausegraphicalmodelsarehierarchical,the maxcliquesof the graph (sincethey correspond
to elementsof the generatingclass) identifymarginaltablesthat containall the neceesaryinfor-
mation neededto estimatethe cell probabilitiesfor the full table; see the discuaaionfollowing
Theorem 2. This can resultin valuabledata reduction,as illustratedin [12,p. 563]. In fact, the
msxcliquesaredirectlyrelatedto whatarecalled “minimalsufficientstatistics”in the “maximum
likelihoodestimation”of the cell probabilitiesas in [6].

An important advantageof graphical models is that, unlike most hierarchicalmodels, the
structuralassociationsamongtheirvariables(includingall second-andhigher-orderinteractions)
are immediatefrom the graph; in particular,graphicalmodelscan be interpretedexclusivelyin
termsof conditionalindependenceandthis can be readdirectlyfrom the graphas in Section1.3.
(In the context of Section 1.4, Theorem 1 impliesthat a graphicalmodel is pcollapsible onto a
vertex set S if and only if the boundaryof eachconnectedcomponentof (X\S) is complete.)

Section2 willdiscussthecentraltopic of thispaper: a particularlyusefulaortof graphicalmodel
called a “decomposablemodel”, and its equivalenceto the interactiongraph being chordal.
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2. DECOMPOSABLE MODELS

AND CHORDAL GRAPHS

Decomposablemodelswereintroducedas a specialsort of hierarchicalmodel by Goodman [14]
under the name “models of Markov-type”, and they were furtherdevelopedby Haberman[15]
and Andersen[16]. In [1],decomposablemodelsaredefinedasgraphicalmodelsthat have chordal
graphs(i.e., graphsin whicheverycycle of lengthfour or more has a chord). That thesenotions
of “decomposable”areequivalentis the contentof [13,Theorem2] (whereindecomposablegmphs
are definedas yet anothernamefor chordalgraphs,whichare also frequentlycalled triangulated
or rigid-cimuit gmphs).

Much of the early literatureof decomposablegraphs involvedrediscoveringversionaof the
variouscharacterizationsof chordalgraphsasaresurveyedin [17,Chapter4]. Thesenewversiona
are always a bit differentfrom the standardgraph-theoreticformulations(e.g., they typically
emphasizethe mmccliquesdeterminedby simplicialvertices instead of the simplicialvertices
themselves).

For example,Dirac’s 1961vertexseparatorcharacterization[17,Theorem4.1], correspondsto
the definitionof decomposableon [1, p. 524]. (The word “decomposable”needsto be inserted
in front of “generating”in the sixth line from the bottom of [1, p. 524].) Similarly,the “perfect
vertex eliminationscheme” characterization,see [17,Theorem 4.1], due to Fulkersonand Gross
in 1965and Rose in 1970,correspondsto what is calledthe “Markovinterpretation”on [1,p. 528]
and is essentiallythe approachusedby GoodmanandHaberman.The characterizationof chordal
graphs as intersectiongraphsof subtreesof a tree, see [17,Theorem 4.8], occurs in more recent
work-see “junction trees” in [18] and “join trees“ in [3]—butprimarilyas a data structure.
One seeminglynew characterizationof chordal is also given, which we discuss as Theorem 3
below. If the dimensionof the contingencytable wereto be very large,the existenceof efficient
algorithms(see [17,Algorithm4.3]) for findingallthe maxcliquesof a chordalgraph,andthereby
the generatingclassof a decomposablemodel, wouldbe important.

One major advantageof usingdecomposablemodels (i.e., chordalgraphs) is that it becomes
possible to “factor” a cell probabilityinto probabilitiesfrom the marginaltables corresponding
to the generatingclass C. We make this precise in Theorem 2 below, which we express in
terms of graph neighborhoodsand eliminationschemes. The smallestnondecomposablemodel
is the graphicalmodel havinggeneratingclass C = {{VI, V2}, {V2, V3}, {V3, V4}, {V4, Vi}}; its
interactiongraph is the cycle C4,a nonchordalgraph. Its cell probabilitiescannot be expressed
by an explicit multiplicativeformulain termsof the two-dimensionalmarginalprobabilitieswith
indicescorrespondingto elementsin C.

Recallthat a vertexV is szmplicialin a graphG if it is in a uniquemaxclique,or equivalentlyif
its openneighborhoodN(V) (i.e., the set of aIlneighborsof V) inducesa completesubgraph.An
eliminationscheme is anordering(Vi,. .., Vd)of theverticesof G suchthateachVi issimplicialin
the inducedsubgraph(Vi,..., VJ. Let Ni(Vi) denotethe open neighborhoodof Vi in (Vi,..., Vd),
and N4[V~]be the correspondingclosedneighborhoodNi(Vi) U {Vi}. The definingpropertyof an
eliminationscheme becomes that each Ni(Vi) is complete in (Vi,. .., Vd). The Perfect Vertex
EliminationSchemeTheorem [17,Theorem4.1] assertsthat a gmph is chordalif and only if d
has an eliminationscheme.

Theorem 2 below translatesthe top part of [1, p. 529; 3, Theorem 8 of Chapter 3] and sim-
plifiesthe intricatemethod on [19, p. 342]. (In [1],bt shouldbe replacedby ct in the displayed
fraction.) The givenformuladeterminesthe probabilityProb ({vi,... ,Vd}) of an object beingin
any cell (VI,. .., ~d) in termsof the probabilitiesfor the marginaltablescorrespondingto Ni(Vi)
and Ni[Vj].

THEOREM2. (See [1].) A graphical model G is decomposable (Le., chordal), if and only if the
followingg“vesan explicitformulafor the cell probabilitiesfor the full table, where (VI,... ,Vd)
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is an arbitrary eliminationscheme:

In fact, the parameterd in the quotient in Theorem 2 can be replacedby 4 + 1, where .4is
the minimumnumbersuch that IVf+lIVg+l]= (Vt+l,. .., Vd) (i.e., such that (Vl+l,.. ., Vd) first

becomes complete).
For instance, recall the five-dimensionalcontingency table having hierarchicalmodel C =

{{ V1,K,%}, {k, w, U}, {V2, U,V5}} and the interactiongraph shown in Figure 1. (See [12,
Section 6] for an actual five-dimensionalcontingencytable with a loglinearmodel having this
graph.) The graphis chordaland Vl, V2,V3, V4, V5 is an eliminationscheme. By Theorem2 (with
4 = 2 since (V3, V4, V5) is a maxclique),we get

Prob ({vl,..., V5}) =
Prob ({vi, v3, v5}) , Prob ({~z,~A,~G}). Prob ({v3, v4, v5})

Prob ({v3, v5}) . Prob ({v4, v5})

(Taking factors past t =2, would merelyput identicalfactorsinto both numeratorand denomi-
nator.) Denotinga cell probabilityin a marginaltable by a subscriptedgo,this can be written

@f+h+j@+g+ij@++hij
@fgitaj=

@++h+j@+++ij ‘

where ~ G 11,g = 12,..., j e 15 and each “+” denotes a dimensioncollapsedover in the full
table to form the marginaltable.

A relatedadvantageof usingdecomposablemodels (i.e., chordalgraphs) is that we can obtain
closed-formexpressionsfor what are called “maximumlikelihoodestimators”of the cell proba-
bilities. (In general,iterativetechniquesareneededto obtain suchestimators.) Goodman [14,19]
provides an involvedmethod for obtaining the explicit maximumlikelihoodestimators for de-
composablemodels; see also, [15]. Correspondingto the estimationformulain [1],the maximum
likelihoodestimator@fghij OfPfghij is

@f+h+j@+g+ij@++haj = ‘f+h+jn+g+ijn++hij
@fghij =

@++h+j6+++ij n++h+jn+++ijn+++++

wherethe subscriptedn’s representmarginalcell frequencies.This followsfrom each msximum
likelihoodestimatorsuch ss @f+h+j (of a cell of a marginaltable correspondingto a mSXcliqlle)
beingequalto the marginalcell frequencynf+g+j dividedby the tot~ numbern+++++ of objects
in the table; see [6].

Section5 of [1]andTheorem2 of [13]givewhatappearsto be a newcharacterizationof chordal
graphs in terms of a function that associatesto each complete subgraph C of G an “index”
v(C) s 1 as follows. (For simplicity,we supposethat G is connected.) If C’ is a maxclique,put
v(C’) = 1. If C is an articulationctique (i.e., C is a minimalcompletesubgraphsuchthat G – C
becomes disconnected), put v(C) = 1 –6, where 6 is the numberof componentsH of G – C
such that C is not a maxcliqueof the subgraphinducedby H U C. If C is any other complete
subgraph,put v(C) = O.

THEOREM 3. (See [131.) A graph G is chordalif and only if~ u(C) = 1, where the sum is taken
over all complete subgraphs C of G.

(In [13], it is also shownthat this sum is at least 1 for all graphs.) Theorem 3 correspondsto
the fact that, along an eliminationscheme,each msxcliquearisesone time se a N~[VJ and each
articulationcliqueC arises –v(C) timesasa N~(V~).The valuesv(C) appearasexponentsin the
maximumlikelihoodestimatorof Prob (VI,. .., Vd)ason [1,p. 531];the specificvaluesof v(C) put
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appropriatefactors into the numeratorand denominator(as in Theorem 2) the proper number
of times.

As an example,considerthe five-dimensionalexamplediscussedabove. If C is one of the three
maxcliques, then v(C) = 1; if C is one of the two articulationcliques {Vg, V5} and {Vd,V5},
then v(c) = 1 – 6 = 1 – 2 = –1; if C is any other complete subgraph,then v[C) = O. Thus,
~v(c) = 1.

.,

3. CAUSAL INTERPRETATIONS AND DIGRAPH MODELS

Section2 showshow decomposablemodelsadmitan explicitfactorizationof the joint distribu-
tion and of the maximumlikelihoodestimators.Althoughthis is of theoreticalvalue,the practi-
cal value is eclipsedby the widespreaduse of iterativealgorithmssuch as the Newton-Raphson
method (see [20]). An importantpracticaladvantageof decomposablemodelsis that they arethe
hierarchicalmodels that are both graphicaland “recursive”(definedbelow); roughly,the edges
of the correspondingchordalgraphcan be orientedso asto correspondto a causalinterpretation.

Recall that in a graphical model, no variableis consideredas being “posterior” to another
and the edges are undirected. In many applications,however,it is desirableto consider how
certain variablesare influencedby other variables,resultingin a directedgraph model called a
“recursivemodel”, which was introducedin [8]. Recursivemodelsare a specialkind of so-called
“path analysismodel” introducedby Goodman [21],and eachof thesecan be characterizedby a
nontrivialfactorizationof the joint distributionin termsof the “responsevariables”. (Section3.3
of [3]discussesgeneralcausaldigraphmodelswith a resultanalogousto Theorem 4 below, and
recursivemodels are introducedin an exerciseon pp. 137,138;see also, [11,p 576].)

While graphicalmodels are based on conditionalindependencerestrictionsfor vaziablepairs
with respect to all other variables,recursivemodels are definedby conditional independence
restrictions for vaziablepairs involving a variablewith respect to those variablesthat might
influenceit. Specifically,a recursive modelhasvertexset {Vi, ..., Vd} anda specifiedvaluek e d,
where the vertices are ordered such that each Vi having 1 5 i 5 k is a wsponse variablewith
respectto only variablesamongVi+l, ..., Vd. Fori < j S d andi < k, thereis a one-headedarrow
Vi + Vj wheneverVi and Vj are not conditionally independent relative to {Vi+l,.. ., vd)\{vj}.

(This conditional independencerestrictionis called a zem partialdependency, or ZPD, in [8].)
The arrow Vi + Vj correspondsto Vi being partiallydependent on Vj. Finally,there is a two-
headedarrow ~ ~ Vj wheneveri,j ~ k +1.

Wermuth [22]provedthat a graphicalmodel is decomposableif and only if its verticescan be
ordered as follows: if h < k < j and if vh is adjacentto both Vi and Vj, then Vi is adjacent
to Vj. (Such an orderingis called a reduciblezero-patternin [8]. The definitionof “reducible”
on [8, p. 539] is the contrapositiveof the above statement;see also parts (i) and (ii) of their
Proposition 6.) This equivalencecorrespondsto yet another formulationof the perfect vertex
eliminationschemetheorem. Proposition5 of [8]then interrelatesthe recursivedigraphmodels
(and ZPDS) with reducible zero-patternsin graphicalmodels (and ZPAS). This is stated as
Theorem 4 below, showing that decomposablemodels are the graphical models that can be
oriented so as to have a causal interpretation. This is sometimescolloquially expressed as:
the decomposablemodels are pmcisel~ those that am bothgmphical and recursive. (Recall the
introductionof the number4< d immediatelyfollowingthe statementof Theorem 2.)

THEOREM LL (See [8].) Given a decomposablemodel (i.e., a chordd graph G), each choice of
eliminationscheme for G and each choice of k such that 1 S k < d determine a recuru”vemodel
with underlyinggraph G.

Namely,given an eliminationscheme(VI,..., Vd) and a valuek suchthat .4S k < d, consider
the first k variablesas responsevariables. Direct an edge U t Vj, wheneveri S k and i < j.
Direct an edge Vi * Vj, wheneveri, j > k+l (notingthat (V~+l,..., Vd) is completesinceI S k).
Interpretthe one-headedarrowsas partialdependencies.Note that the requirementthat 4s k is
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consistentwith the requirementin [8]that the ZPDSin a recursivemodel involvevariablepaira
(i,j) with i < j and i S k (i.e., that only one-headedarrowsmaybe removedfrom the complete
graph of a recursivesystem). This also showsthat there must be at least / responsevariables,
providinga practical interpretationfor 1.

Figure2.

For instance,the five-dimensionalmodel discussedfollowingTheorem 2 havingthe graph and
eliminationschemeshownin Figure1 has1 = 2 and could be giventhe threeorientationashown
in Figure 2 (taking k = 2,3,4, respectively). By associatingincomingone-headedarrowswith
conditional probabilitiesand the clique of two-headedarrowswith a joint probability,we can
againderivean explicit formulafor the cell probabilitiesfor the full table (see [8, Formula5.1]):

Prob ({vI,...,
(

Vd}) = fi Prob (vi I {v : V ~ iV~(V~)})
)

. Prob ({~k+l, ..., ~d}) .
a=l

Whenever t S k < d, the formula in Theorem 2 follows from the above by the definitionof
conditional probability: Prob (vi I {v : V c Ni(V~)}) equalsProb ({TJ: V c N~[V~]})divided by
Prob ({v: V c N~(ll)}).

4. SUMMARY AND DIRECTIONS FOR FUTURE WORK

This surveyattemptsto consolidaterecentapplicationsof graphtheory to the analysis,inter-
pretation,and underlyingtheory of loglinearmodelsof multidimensionalcontingencytables.

Any hierarchicalloglinearmodel can be uniquelyrepresentedby a generatingclassand ssaoci-
ated with an interactiongraphthat determinesall first-orderinteractions(and so all conditional
independencies).If the maxcliquesof the interactiongraphcorrespondexactly to the generators,
then the model is graphicaland the higher-orderinteractionsarealso determinedby the interac-
tion graph. Consequently,graphicalmodelscar’be interpretedexclusivelyin termsof conditional
independence. In addition to identifyingconditionalindependencies,the interactiongraph can
be usedto determinep-collapsibilityconditions(Theorem 1).

For graphicalmodels,being chordalis equivalentto decomposability,i.e., the ability to factor
each cell probability with respect to certain marginalcell probabilities. This can be stated in
terms of open and closedneighborhoodsin a simplicialeliminationorderingof the vertices (The-
orem 2). Decomposablemodelsarealso importantbecausethey arethe hierarchicalmodels that
are simultaneouslygraphicaland recursive.Hence,such modelsallow for causalinterpretationa
of the structuralrelationshipsbetweenresponseand explanatory(i.e., nonresponsive)variables
throughthe use of a directedgraph. The parameter1, a by-product of the simplicialelimination
ordering,servesas a lowerbound for the numberof responsevariablespermissiblein the recursive
scheme (Theorem 4).

In [4], the presentauthorsconsiderthe intersectionMultigraphof the generatingclass. Such
“generatormultigraphs”are naturalfor recognizingdecomposablemodels and obtaining maxi-
mum likelihoodestimators(as in the presentpaper), and also for findingconditional indepen-
dencies. The graph theory in [4] focuseson maximumspanningtrees and edge cutsets (rather
than on chordalgraphsand minimalvertexseparatorsas is appropriatefor interactiongrapha).

Severalpossibledirectionsfor futureresearcharesuggestedby the resultssurveyedabove. We
mentionfour possibilities.

(i) The concept of p-collapsibilitydiffers substantivelyfrom the well-studiedconcept of
A-collapsibility.For instance,a given hierarchicalloglinearmodel is always,pcollapsible



(ii)

(iii)

(iv)
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onto a subset of a generator,but the sameis not true for J-collapsibility,The differences
and relationshipsbetweenthesetwo notionsof collapsibility(and their manifestationsin
the interactiongraph) shouldbe investigatedfurther.
Becauseof the fundamentalimportanceof chordalgraphsbeing the intersectiongraphs
of subtreesof trees, the potentialsignificanceof permissibleloglinearinteractionshaving
underlying,tree-liketopologiesshouldbe investigated.
Other path analysismodelsbesidesthe recursivemodelsshouldbe investigated,including
variousdegreesand types of recursiveness.
Recent, strongerresultsfrom chordalgraphtheoryshouldbe investigatedin this context.
An attempt shouldbe madeto identifynewgraph-theoreticconceptsor resultssuggested
by these applications.

In conclusion,the applicationof graphtheoryto loglinearmodelsof contingencytablesprovides
a rich, unexpected connection betweentwo rather diversearees. Increasedawarenessof this
connection can be expectedto leadto mutualbenefitsfor both areas.
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