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Abstract—Chordal graph theory has recently found application by statisticians in the analysis of
contingency tables. Specifically, what are called “decomposable loglinear models” correspond exactly
to chordal graphs. We survey these results, translating the statistical application into conventional
graph theory.
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1. INTRODUCTION AND PRELIMINARIES

Beginning with the 1980 paper [1] by Darroch, Lauritzen and Speed, chordal graphs have emerged
as an important type of model for the statistical analysis of contingency tables. We provide a
“map of the terrain” for the graph theorist who is interested in exploring the burgeoning litera-
ture on these chordal graph models (a literature that seems impenetrable for nonstatisticians).
We present a limited survey of this literature, concentrating on reformulating the statistical
applications into traditional graph theoretical terminology.

A recent paper by Lauritzen and Spiegelhalter [2] promises to be equally stimulating in terms of
using related ideas to study the propagation of probabilistic evidence in expert systems; see also,
Pearl’s text [3, Chapter 3]. In a different direction, recent work by the present authors [4] shows
how multigraphs offer a separate approach to these same types of applications—an approach that
has certain graph-theoretical advantages.

1.1. Contingency Tables

Suppose X = {Vi,...,V4} is a set of variables that represent classification criteria (perhaps
political affiliation, race, occupation, gender, etc.) that take values from sets I1,...,Iq of discrete
values. We use lower case letters v1, ..., vq, respectively, for specific values from I,...,Is of the
upper case variables V;,...,V;.

A d-dimensional contingency table is obtained from a set X and a random sample of objects
from some population. The table is then formed from the Cartesian product Iy x - -- x I; of sets
of values, with each particular choice vy, ...,v4 of values called a cell of the table. To each cell
is assigned a cell frequency, recording the number of objects from the particular random sample
represented by the table for which each variable V; takes the corresponding value v;. Each cell
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also corresponds to a cell probability, the probability that an object chosen randomly from the
entire population falls into that cell. If § C X, then the Cartesian product of the sets I; for
which V; € S is called a marginal table. A cell frequency in the marginal table is the sum of the
corresponding cell frequencies from the full table over all values of the sets I; with V;éS.

As an example, Table 1 shows a three-dimensional contingency table based on data reported
by Bartlett [5] in his pioneering 1935 article. These data are from an experiment giving the
Response (alive or dead) of 240 plants for each combination of two variables: Time of Planting
(early or late) and Length of Cutting (high or low).

Table 1.

Time of Planting Early Late
Length of cutting high low high low
alive 156 107 84 31
dead 84 133 156 209

Response:

Table 2.

Length of Cutting High Low
alive 240 138
dead 240 342

Response:

The marginal table shown as Table 2 expresses what is called the “contingency” between
Length of Cutting and the Response. It is obtained by summing (or “collapsing”) over the Time
of Planting variable.

The primary objective in the analysis of contingency tables is to determine the structure of
associations among the variables in A. The most popular technique for doing this is called
“loglinear model analysis”, as defined by Birch [6]. For our purposes, we need only note that
loglinear models involve a family P of subsets of &, with the members of P corresponding to
what are called the permissible interactions of the model. In particular, singleton subsets in P
are said to correspond to main effects, doubleton subsets in P to first-order interactions, etc.

1.2. Hierarchical Models

Our attention will be confined to the most important models in practical applications called
“hierarchical models”. Hierarchical models are loglinear models such that S C S’ € P implies
S € P. Each hierarchical model can be characterized by a generating class C consisting of the
family of inclusion-maximal sets in P. Thus, § € P if and only if there exists $’ € C such that
S C §'. For simplicity, we assume, as in [1], that X = [J{C : C € C}; i.e., that all main effects
are in P.

In the example in Table 1, let V4, Va, and V; represent the Time of Planting, Length of Cut-
ting, and Response variables, respectively. There are nine possible hierarchical models that
contain all three main effects; they have generating classes {{V1}, {V2},{V3}}, three of the
form {{Vi,Vj},{Vk}}, three of the form {{V;,V;},{V;,Vi}}, and {{V1,V2},{W1,V3}, {V2, V3}}
and {{V1,V2,Vs}}. Observe that the generating class C = {{Vi, Va},{V2}} represents the hi-
erarchical model with P = {0, {1}, {V2}, {V3},{V1, V3}}; i.e., there are three main effects, one
first-order interaction, and no second-order interaction among the variables.

A result from loglinear model theory (see [1]) asserts that for any hierarchical model with
generating class C, if you knew the cell probabilities for the marginal tables with indices given by
the members of C then you would know the cell probabilities for the full table; in short, the cell
probabilities are uniquely determined by C. However, there is a sense in which it is not possible
in general to determine the cell probabilities from the marginal probabilities corresponding to C
in a “nice” manner (see {7, Section 5.2.5; 8, Proposition 6 (iv)]). This is where chordal graphs
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will come in later; our Theorem 2 (taken from [1]) will show how this “nice” determination can
be done (and will illustrate the technical meaning of “nice”).

1.3. Interaction Graphs

Define the interaction graph of a hierarchical model to be the undirected graph having the
vertex set X = {V1,..., V;} with edges corresponding to the first-order interactions in the model.
For instance, the interaction graph of the model with & = {V1,V,,V3} and generating class
C = {{Va,Va}, {V1, V5, V5}, {V2, V4, V5}} is shown in Figure 1. One natural use of interaction
graphs is to determine the “conditional independencies” among the variables in the contingency
table.

Vi— Vg — V2
Figure 1.

With respect to choosing an object randomly from the entire population, let Prob (v) ab-
breviate Prob(V = v), Prob({v; : V; € S}) abbreviate Prob({V; = v; : V; € §}), and
Prob (v | {vi : V; € S }) be the conditional probability that V = v, given that V; = v; for each
Vi € S. The relationship between adjacency in the graph and conditional independence is devel-
oped in [1] using so-called “Markov random fields”. The result is that, if G is an interaction graph
of a hierarchical model (and so, remember, the vertices of G are precisely the variables of X),
then variables V and W are nonadjacent in G if and only if they are conditionally independent
relative to all the other variables; in symbols, if and only if

Prob (v | {v1,...,v4} \{v}) = Prob (v | {v1,...,va} \{v,w}).

Informally, this means that knowing the value of W provides no additional information about
the probability distribution of V when all the other values are known. Such a conditional inde-
pendence is called a zero partial association (or ZPA) in [8], and when variables V and W are
adjacent in G they are said to be partially associated relative to X\{V, W}. If a set S of variables
separates V from W in the graph, then V and W are conditionally independent relative to S.
Unconditionally independent variables lie in different connected components of G.

1.4. Collapsibility Conditions

One of the important uses of an interaction graph is in characterizing “collapsibility conditions”
for hierarchical loglinear models of multidimensional contingency tables. Some models have
the property that the structural relationships among a set of classifying factors (variables), as
determined by the hierarchical model, are unchanged upon collapsing (i.e., summing) over the
remaining variables. Collapsibility is, therefore, useful for data reduction and for simplifying data
analysis and model interpretation. (The content of this subsection will not be required in the
later sections.)

Formally, let C be the generating class for a hierarchical model of a contingency table with
X ={W,...,Vs}. Let § C X and consider the marginal table obtained by collapsing over X\S.
The restriction Cg of C to the marginal table is defined by deleting all occurrences of variables
in X\ S from C and then removing members that are contained in other members. For example,
ifC= {{Vl’ VZ}’ {1/27 Vs, V4}) {Vlo V4}} and § = {1,1, Va, V3}$ then Cs = {{Vl, V2}’ {V2, VS}}- We
say that the hierarchical model having generating class C is p-collapsible onto S if the marginal
probabilities Prob ({v; : V; € S}) coincide with the probabilities determined by Cg.

It is important to note that the p-collapsibility discussed here is defined in terms of probabilities
and their invariance under collapsing. This is in contrast to a well-known concept of collapsibility
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defined by Bishop, Fienberg and Holland [9] and by Whittemore [10] in terms of invariance of
loglinear model parameters (typically A’s); we would call this A-collapsibility. The concept of
p-collapsibility is particularly natural in the context of our present survey.

Assmussen and Edwards [11] provide necessary and sufficient conditions for p-collapsibility in
terms of the interaction graph, including Theorem 1 below. Define the boundary of S’ C X to
be the set of variables (vertices) not in S’ that are adjacent to some variable in S’.

THEOREM 1. (See [11].) A hierarchical model having generating class C is p-collapsible onto S
if and only if the boundary of each connected component of the subgraph induced by X\S is
contained in a member of C (i.e., in a generator of the model).

The simplest example of non-p-collapsibility has § = {V},Va} and C = {{V;, 2}, {V2, V3}}.
The boundary of X\S = {V2} is {V1, V3} and, since this is not contained in a generator, the hi-
erarchical model with generating class C is not p-collapsible onto S. On the other hand, consider
the five-dimensional model with § = {V3,Vy,Vs} and C = {{V3,V4}, {V1, V3, Vs}, {V2, V4, V5 }}-
The interaction graph is shown in Figure 1. Then X\S = {V4,V,} and the connected compo-
nents {V1} and {V2} of the induced subgraph (V1,V2) have boundaries {V3,Vs} and {Vj4, Vs},
respectively. Since each of these is contained in a member of C, the corresponding model is
p-collapsible onto S.

1.5. Graphical Models

A hierarchical model is called a graphical model (a notion introduced by Darroch, Lauritzen and
Speed [1]) whenever the inclusion-maximal cliques (which we call mazcliques) of its interaction
graph correspond exactly to the members of the generating class of the hierarchical model. There
are statistical techniques (see, for instance, [12, Section 5]) for selecting appropriaté graphical
models for a given observed contingency table.

The simplest example of a hierarchical model that is not graphical has X = {V;, V,,V3} and
generating class C = {{V1, V2}, {V4, V3},{V2, Va}}. The interaction graph would be a triangle, but
it is not a graphical model since the triangle (maxclique) {V1, V3, V3} is not in C. Likewise, the five-
dimensional model with generating class {{V3, V4}, {V1, V3, Vs}, {V2, Va4, V5}} with the interaction
graph shown in Figure 1 is not graphical. But taking C = {{V1, V5, V5}, {Va, V4, Vs }, {V2, Vi, Vs }}
gives a graphical model having that same graph.

(We mention in passing that, just as graphical models are special kinds of interaction graphs, hi-
erarchical models can be interpreted as “interaction hypergraphs”. The (hyper)graph-theoretical
foundations of [1] appear in [13], along with connections to game theory, a measure-theoretic
problem, and Markov fields.)

Because graphical models are hierarchical, the maxcliques of the graph (since they correspond
to elements of the generating class) identify marginal tables that contain all the necessary infor-
mation needed to estimate the cell probabilities for the full table; see the discussion following
Theorem 2. This can result in valuable data reduction, as illustrated in [12, p. 563]. In fact, the
maxcliques are directly related to what are called “minimal sufficient statistics” in the “maximum
likelihood estimation” of the cell probabilities as in [6].

An important advantage of graphical models is that, unlike most hierarchical models, the
structural associations among their variables (including all second- and higher-order interactions)
are immediate from the graph; in particular, graphical models can be interpreted exclusively in
terms of conditional independence and this can be read directly from the graph as in Section 1.3.
(In the context of Section 1.4, Theorem 1 implies that a graphical model is p-collapsible onto a
vertex set S if and only if the boundary of each connected component of (X'\S) is complete.)

Section 2 will discuss the central topic of this paper: a particularly useful sort of graphical model
called a “decomposable model”, and its equivalence to the interaction graph being chordal.
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2. DECOMPOSABLE MODELS
AND CHORDAL GRAPHS

Decomposable models were introduced as a special sort of hierarchical model by Goodman [14]
under the name “models of Markov-type”, and they were further developed by Haberman [15]
and Andersen (16]. In (1}, decomposable models are defined as graphical models that have chordal
graphs (i.e., graphs in which every cycle of length four or more has a chord). That these notions
of “decomposable” are equivalent is the content of [13, Theorem 2] (wherein decomposable graphs
are defined as yet another name for chordal graphs, which are also frequently called triangulated
or rigid-circuit graphs).

Much of the early literature of decomposable graphs involved rediscovering versions of the
various characterizations of chordal graphs as are surveyed in {17, Chapter 4]. These new versions
are always a bit different from the standard graph-theoretic formulations (e.g., they typically
emphasize the maxcliques determined by simplicial vertices instead of the simplicial vertices
themselves).

For example, Dirac’s 1961 vertex separator characterization [17, Theorem 4.1, corresponds to
the definition of decomposable on [1, p. 524]. (The word “decomposable” needs to be inserted
in front of “generating” in the sixth line from the bottom of [1, p. 524].} Similarly, the “perfect
vertex elimination scheme” characterization, see [17, Theorem 4.1], due to Fulkerson and Gross
in 1965 and Rose in 1970, corresponds to what is called the “Markov interpretation” on [1, p. 528]
and is essentially the approach used by Goodman and Haberman. The characterization of chordal
graphs as intersection graphs of subtrees of a tree, see [17, Theorem 4.8, occurs in more recent
work—see “junction trees” in [18] and “join trees” in [3]|—but primarily as a data structure.
One seemingly new characterization of chordal is also given, which we discuss as Theorem 3
below. If the dimension of the contingency table were to be very large, the existence of efficient
algorithms (see {17, Algorithm 4.3]) for finding all the maxcliques of a chordal graph, and thereby
the generating class of a decomposable model, would be important.

One major advantage of using decomposable models (i.e., chordal graphs) is that it becomes
possible to “factor” a cell probability into probabilities from the marginal tables corresponding
to the generating class C. We make this precise in Theorem 2 below, which we express in
terms of graph neighborhoods and elimination schemes. The smallest nondecomposable model
is the graphical model having generating class C = {{V1,Va}, {V2,V3}, {Vs,V4}, {Va, V1}}; its
interaction graph is the cycle Cy4, a nonchordal graph. Its cell probabilities cannot be expressed
by an explicit multiplicative formula in terms of the two-dimensional marginal probabilities with
indices corresponding to elements in C.

Recall that a vertex V' is simplicial in a graph G if it is in a unique maxclique, or equivalently if
its open neighborhood N(V) (i.e., the set of all neighbors of V') induces a complete subgraph. An
elimination scheme is an ordering (V3,. .., V) of the vertices of G such that each V; is simplicial in
the induced subgraph (V;, ..., Vq). Let N;(V;) denote the open neighborhood of V; in (V,..., V4),
and N;[V;] be the corresponding closed neighborhood N;(Vi) U {V;}. The defining property of an
elimination scheme becomes that each N;(V;) is complete in (V;,...,Vy). The Perfect Vertex
Elimination Scheme Theorem [17, Theorem 4.1] asserts that a graph is chordal if and only if it
has an elimination scheme.

Theorem 2 below translates the top part of [1, p. 529; 3, Theorem 8 of Chapter 3] and sim-
plifies the intricate method on [19, p. 342]. (In [1], b; should be replaced by c; in the displayed
fraction.) The given formula determines the probability Prob ({v1,...,v4}) of an object being in
any cell (vy,...,v4) in terms of the probabilities for the marginal tables corresponding to N;(V;)
and Ng [Vi]

THEOREM 2. (See [1].) A graphical model G is decomposable (i.e., chordal), if and only if the
following gives an explicit formula for the cell probabilities for the full table, where (V1,...,Va)



94 H. J. KHAMIS AND T. A. MCKEE

is an arbitrary elimination scheme:

[1&., Prob ({v: V € N;[Vj]})

Prob ({vy,...,v4}) = 1% Prob ({v: V € Ny(V))})’

In fact, the parameter d in the quotient in Theorem 2 can be replaced by £ + 1, where £ is
the minimum number such that Neyy [Vey1] = (Vega,. .., Va) (ie., such that (Vpyq,...,Vy) first
becomes complete).

For instance, recall the five-dimensional contingency table having hierarchical model C =
{{"1, V3, V5},{V3, V4, Vs5}, {V2, V4, V5}} and the interaction graph shown in Figure 1. (See [12,
Section 6] for an actual five-dimensional contingency table with a loglinear model having this
graph.) The graph is chordal and V1, V2, V3, V4, Vj is an elimination scheme. By Theorem 2 (with
£ = 2 since (V3, V4, V) is a maxclique), we get

Prob ({v1,vs,vs}) - Prob ({vz,v4,vs5}) - Prob ({vs,vs,vs})

Prob ({vi,...,vs}) = Prob ({vs,vs}) - Prob ({vs,vs})

(Taking factors past £ = 2, would merely put identical factors into both numerator and denomi-
nator.) Denoting a cell probability in a marginal table by a subscripted g, this can be written

_ Pf+ht+iP+g+iiP++hij
- ]

Prghij
E++hti P+ ++ij

where f € I1,g € I5,...,j € I5 and each “+” denotes a dimension collapsed over in the full
table to form the marginal table.

A related advantage of using decomposable models (i.e., chordal graphs) is that we can obtain
closed-form expressions for what are called “maximum likelihood estimators” of the cell proba-
bilities. (In general, iterative techniques are needed to obtain such estimators.) Goodman [14,19]
provides an involved method for obtaining the explicit maximum likelihood estimators for de-
composable models; see also, [15]. Corresponding to the estimation formula in [1], the maximum
likelihood estimator $gnij of ©rgnij is

PrhtiProtig@r+his _ _Nf+htiNgtijNtthij
A A - y
P++h+jPO+++i5 N+t j R+ +i U+ ++

Prghij =

where the subscripted n’s represent marginal cell frequencies. This follows from each maximum
likelihood estimator such as G¢yn4; (of a cell of a marginal table corresponding to a maxclique)
being equal to the marginal cell frequency n¢ 4 ; divided by the total number n, 1 414 of objects
in the table; see [6].

Section 5 of [1] and Theorem 2 of [13] give what appears to be a new characterization of chordal
graphs in terms of a function that associates to each complete subgraph C' of G an “index”
v(C) £ 1 as follows. (For simplicity, we suppose that G is connected.) If C is a maxclique, put
v(C) = 1. If C is an articulation clique (i.e., C is a minimal complete subgraph such that G — C
becomes disconnected), put ¥(C) = 1 — &, where § is the number of components H of G - C
such that C is not a maxclique of the subgraph induced by H U C. If C is any other complete
subgraph, put v(C) =0.

THEOREM 3. (See [13].) A graph G is chordal if and only if 3, v(C) = 1, where the sum is taken
over all complete subgraphs C of G.

(In [13], it is also shown that this sum is at least 1 for all graphs.) Theorem 3 corresponds to
the fact that, along an elimination scheme, each maxclique arises one time as a N;[Vi] and each
articulation clique C arises —v(C) times as a N;(V;). The values v(C) appear as exponents in the
maximum likelihood estimator of Prob (v1,. .., v4) as on [1, p. 531]; the specific values of »(C) put
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appropriate factors into the numerator and denominator (as in Theorem 2) the proper number
of times.

As an example, consider the five-dimensional example discussed above. If C is one of the three
maxcliques, then ¥(C) = 1; if C is one of the two articulation cliques {V3,V5} and {V},Vs},
then ¥(C) =1~6 =1 -2 = -1, if C is any other complete subgraph, then v(C) = 0. Thus,
Yv(C)=1

3. CAUSAL INTERPRETATIONS AND DIGRAPH MODELS

Section 2 shows how decomposable models admit an explicit factorization of the joint distribu-
tion and of the maximum likelihood estimators. Although this is of theoretical value, the practi-
cal value is eclipsed by the widespread use of iterative algorithms such as the Newton-Raphson
method (see [20]). An important practical advantage of decomposable models is that they are the
hierarchical models that are both graphical and “recursive” (defined below); roughly, the edges
of the corresponding chordal graph can be oriented so as to correspond to a causal interpretation.

Recall that in a graphical model, no variable is considered as being “posterior” to another
and the edges are undirected. In many applications, however, it is desirable to consider how
certain variables are influenced by other variables, resulting in a directed graph model called a
“recursive model”, which was introduced in [8]. Recursive models are a special kind of so-called
“path analysis model” introduced by Goodman [21], and each of these can be characterized by a
nontrivial factorization of the joint distribution in terms of the “response variables”. (Section 3.3
of [3] discusses general causal digraph models with a result analogous to Theorem 4 below, and
recursive models are introduced in an exercise on pp. 137,138; see also, [11, p 576].)

While graphical models are based on conditional independence restrictions for variable pairs
with respect to all other variables, recursive models are defined by conditional independence
restrictions for variable pairs involving a variable with respect to those variables that might
influence it. Specifically, a recursive model has vertex set {V1,...,V;} and a specified value k < d,
where the vertices are ordered such that each V; having 1 < i < k is a response variable with
respect to only variables among V;41,...,Vy. Fori < j < d and ¢ < k, there is a one-headed arrow
Vi « V; whenever V; and V; are not conditionally independent relative to {Vi41,..., Va}\{V;}.
(This conditional independence restriction is called a zero partial dependency, or ZPD, in [8].)
The arrow V; «— V; corresponds to V; being partially dependent on V;. Finally, there is a two-
headed arrow V; « V; whenever i,5 > k + 1.

Wermuth [22] proved that a graphical model is decomposable if and only if its vertices can be
ordered as follows: if h < k < j and if V}, is adjacent to both V; and Vj, then V; is adjacent
to Vj. (Such an ordering is called a reducible zero-pattern in [8]. The definition of “reducible”
on [8, p. 539] is the contrapositive of the above statement; see also parts (i) and (ii) of their
Proposition 6.) This equivalence corresponds to yet another formulation of the perfect vertex
elimination scheme theorem. Proposition 5 of [8] then interrelates the recursive digraph models
(and ZPDs) with reducible zero-patterns in graphical models (and ZPAs). This is stated as
Theorem 4 below, showing that decomposable models are the graphical models that can be
oriented so as to have a causal interpretation. This is sometimes colloquially expressed as:
the decomposable models are precisely those that are both graphical and recursive. (Recall the
introduction of the number £ < d immediately following the statement of Theorem 2.)

THEOREM 4. (See [8].) Given a decomposable model (i.e., a chordal graph G), each choice of
elimination scheme for G and each choice of k such that £ < k < d determine a recursive model
with underlying graph G. '

Namely, given an elimination scheme (V3,...,V;) and a value k such that £ < k < d, consider
the first k variables as response variables. Direct an edge V; «— V;, whenever i < k and ¢ < j.
Direct an edge V; « V;, whenever i, j > k+1 (noting that (Vi41,..., Vy) is complete since £ < k).
Interpret the one-headed arrows as partial dependencies. Note that the requirement that £ < k is
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consistent with the requirement in [8] that the ZPDs in a recursive model involve variable pairs
(3,7) with ¢ < j and ¢ < k (i.e., that only one-headed arrows may be removed from the complete
graph of a recursive system). This also shows that there must be at least £ response variables,
providing a practical interpretation for £.

V3 <—-7 Va V:;\é-—/ Va /Vss—/ Va
Vi<— Vg —>Va Vi< V5 —2>Vp Vi<e— V5 —>V>
Figure 2.

For instance, the five-dimensional model discussed following Theorem 2 having the graph and
elimination scheme shown in Figure 1 has £ = 2 and could be given the three orientations shown
in Figure 2 (taking k = 2, 3,4, respectively). By associating incoming one-headed arrows with
conditional probabilities and the clique of two-headed arrows with a joint probability, we can
again derive an explicit formula for the cell probabilities for the full table (see [8, Formula 5.1}):

k
Prob ({v1,...,v4}) = (H Prob (v; |{v:V € N,(V,-)})) - Prob ({vk+1,---,v4})-
i=1

Whenever ¢ < k < d, the formula in Theorem 2 follows from the above by the definition of
conditional probability: Prob (v; | {v: V € N;(V;)}) equals Prob ({v : V € N;[V;]}) divided by
Prob ({v:V € N;(V;)}).

4. SUMMARY AND DIRECTIONS FOR FUTURE WORK

This survey attempts to consolidate recent applications of graph theory to the analysis, inter-
pretation, and underlying theory of loglinear models of multidimensional contingency tables.

Any hierarchical loglinear model can be uniquely represented by a generating class and associ-
ated with an interaction graph that determines all first-order interactions (and so all conditional
independencies). If the maxcliques of the interaction graph correspond exactly to the generators,
then the model is graphical and the higher-order interactions are also determined by the interac-
tion graph. Consequently, graphical models can be interpreted exclusively in terms of conditional
independence. In addition to identifying conditional independencies, the interaction graph can
be used to determine p-collapsibility conditions (Theorem 1).

For graphical models, being chordal is equivalent to decomposability, i.e., the ability to factor
each cell probability with respect to certain marginal cell probabilities. This can be stated in
terms of open and closed neighborhoods in a simplicial elimination ordering of the vertices (The-
orem 2). Decomposable models are also important because they are the hierarchical models that
are simultaneously graphical and recursive. Hence, such models allow for causal interpretations
of the structural relationships between response and explanatory (i.e., nonresponsive) variables
through the use of a directed graph. The parameter £, a by-product of the simplicial elimination
ordering, serves as a lower bound for the number of response variables permissible in the recursive
scheme (Theorem 4).

In [4], the present authors consider the intersection multigraph of the generating class. Such
“generator multigraphs” are natural for recognizing decomposable models and obtaining maxi-
mum likelihood estimators (as in the present paper), and also for finding conditional indepen-
dencies. The graph theory in [4] focuses on maximum spanning trees and edge cutsets (rather
than on chordal graphs and minimal vertex separators as is appropriate for interaction graphs).

Several possible directions for future research are suggested by the results surveyed above. We
mention four possibilities.

(i) The concept of p-collapsibility differs substantively from the well-studied concept of
A-collapsibility. For instance, a given hierarchical loglinear model is always. p-collapsible
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onto a subset of a generator, but the same is not true for A-collapsibility. The differences
and relationships between these two notions of collapsibility (and their manifestations in
the interaction graph) should be investigated further.

(ii) Because of the fundamental importance of chordal graphs being the intersection graphs
of subtrees of trees, the potential significance of permissible loglinear interactions having
underlying, tree-like topologies should be investigated.

(iif) Other path analysis models besides the recursive models should be investigated, including

various degrees and types of recursiveness.

(iv) Recent, stronger results from chordal graph theory should be investigated in this context.

An attempt should be made to identify new graph-theoretic concepts or results suggested
by these applications.

In conclusion, the application of graph theory to loglinear models of contingency tables provides
a rich, unexpected connection between two rather diverse areas. Increased awareness of this
connection can be expected to lead to mutual benefits for both areas.

»

® N o

©

10.
11.
12,
13.
14.
15.
16.
17.
18.
19.
20.
21.

22.

REFERENCES

. J.N. Darroch, S.L. Lauritzen and T.P. Speed, Markov fields and log-linear interaction models for contingency

tables, Annals of Statistics 8, 522-539, (1980).

. S.L. Lauritzen and D.J. Spiegelhalter, Local computations with probabilities on graphical structures and

their applications to expert systems, J. R. Statist. Soc. B50, 157-224, (1988).

. J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufman,

San Mateo, CA, (1988).

T.A. McKee and H.J. Khamis, Multigraph representations of hierarchical loglinear models, J. Statist. Plann
Inference 58, 63-74, (1996).

M.S. Barlett, Contingency table interactions, J. R. Statist. Soc. B2, 248-252, (1935).

M.W. Birch, Maximum likelihood in three-way contingency tables, J. R. Statist. Soc. B25, 220-233, (1963).
A. Agresti, Categorical Data Analysis, Wiley, New York, (1990).

N. Wermuth and S.L. Lauritzen, Graphical and recursive models for contingency tables, Biometrika 70,
537-552, (1983).

Y.M.M. Bishop, S.E. Fienberg and P.W. Holland, Discrete Multivariate Analysis: Theory and Practice, MIT
Press, Cambridge, MA, (1980).

A.S. Whittemore, Collapsibility of multidimensional contingency tables, J. R. Statist. Soc. B40, 328-340,
(1978).

S. Asmussen and D. Edwards, Collapsibility and response variables in contingency tables, Biometrika 70,
567-578, (1983).

D. Edwards and S. Kreiner, The analysis of contingency tables by graphical models, Biometrika 70, 553—-565,
(1983). .

S.L. Lauritzen, T.P. Speed and K. Vijayan, Decomposable graphs and hypergraphs, J. Austral. Math. Soc.
AS36, 12-29, (1984).

L.A. Goodman, The multivariate analysis of qualitative data: Interaction among multiple classifications,
J. Amer. Statist. Assoc. 65, 226-256, (1970).

S.J. Haberman, The Analysis of FPrequency Data, (IMS Monographs) University Chicago Press, Chicago, IL,
(1974).

A_H. Andersen, Multidimensional contingency tables, Scand. J. Statist. 1, 115-127, (1974).

M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, San Diego, CA, (1980).
F.V. Jensen, S.L. Lauritzen and K.G. Olesen, Bayesian updating in causal probabilistic networks by local
computations, Computational Statistics Quarterly 4, 269-282, (1990).

L.A. Goodman, Partitioning of chi-square, analysis of marginal contingency tables, and estimation of expected
frequencies in multidimensional contingency tables, J. Amer. Statist. Assoc. 66, 339-344, (1971).

S. Kotz and N.L. Johnson, (Editors-in-Chief), Encyclopedia of Statistical Sciences, Volume 6, Wiley, New
York, (1985).

L.A. Goodman, The analysis of contingency tables when some variables are posterior to others: A modified
path analysis approach, Biometrika 60, 179-192, (1973).

N. Wermuth, Linear recursive equations, covariance selection, and path analysis, J. Amer. Statist. Assoc.
75, 963-972, (1980).



