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Crop biomass is increasingly being measured with surface reflectance data derived from multispectral
broadband (MSBB) and hyperspectral narrowband (HNB) space-borne remotely sensed data to increase
the accuracy and efficiency of crop yield models used in a wide array of agricultural applications.
However, few studies compare the ability of MSBBs versus HNBs to capture crop biomass variability.
Therefore, we used standard data mining techniques to identify a set of MSBB data from the IKONOS,
GeoEye-1, Landsat ETM+, MODIS, WorldView-2 sensors and compared their performance with HNB data
from the EO-1 Hyperion sensor in explaining crop biomass variability of four important field crops
(rice, alfalfa, cotton, maize). The analysis employed two-band (ratio) vegetation indices (TBVIs) and
multiband (additive) vegetation indices (MBVIs) derived from Singular Value Decomposition (SVD) and
stepwise regression. Results demonstrated that HNB-derived TBVIs and MBVIs performed better than
MSBB-derived TBVIs and MBVIs on a per crop basis and for the pooled data: overall, HNB TBVIs explained
5–31% greater variability when compared with various MSBB TBVIs; and HNB MBVIs explained 3–33%
greater variability when compared with various MSBB MBVIs. The performance of MSBB MBVIs and
TBVIs improved mildly, by combining spectral information across multiple sensors involving IKONOS,
GeoEye-1, Landsat ETM+, MODIS, and WorldView-2. A number of HNBs that advance crop biomass
modeling were determined. Based on the highest factor loadings on the first component of the SVD,
the ‘‘red-edge” spectral range (700–740 nm) centered at 722 nm (bandwidth = 10 nm) stood out promi-
nently, while five additional and distinct portions of the recorded spectral range (400–2500 nm) centered
at 539 nm, 758 nm, 914 nm, 1130 nm, 1320 nm (bandwidth = 10 nm) were also important. The best HNB
vegetation indices for crop biomass estimation involved 549 and 752 nm for rice (R2 = 0.91); 925 and
1104 nm for alfalfa (R2 = 0.81); 722 and 732 nm for cotton (R2 = 0.97); and 529 and 895 nm for maize
(R2 = 0.94). The higher spectral resolution of the EO-1 Hyperion hyperspectral sensor and the ability of
users to choose distinct HNBs for improved crop biomass estimation outweigh the benefits that come
with higher spatial resolution of MSBBs.
� 2015 The Authors. Published by Elsevier B.V. on behalf of International Society for Photogrammetry and
Remote Sensing, Inc. (ISPRS). This is an open access article under the CC BY-NC-ND license (http://creati-

vecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Changes in biomass density vary proportionally to the quantity
of carbon that is gained or lost by vegetation via photosynthesis,
respiration, growth, and decay, making it an important indicator
of natural and anthropogenic greenhouse (GHG) forcing on the
atmosphere and climate change (Houghton et al., 2009).
Agriculture accounts for approximately 25% of the global GHG bud-
get (Stocker et al., 2013). Carbon emissions from agriculture are
second to emissions from fossil fuel consumption and result pri-
marily from the conversion of natural forests and grasslands to
croplands and pastures, respectively (Vermeulen et al., 2013).
Direct or in situ estimates of carbon stocks in these transition
zones, though important for estimating the global carbon balance,
remain highly uncertain, due to temporal variations (disturbance/
recovery) and spatial heterogeneity of the landscape (Houghton,
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2010). Agro-ecosystem models, typically calibrated with in situ
biophysical and/or biochemical data, are used to model biomass
consistently over large areas at various spatio-temporal scales.
Many agro-ecosystem models are parameterized with remote
sensing spectral information, because it facilitates the frequent
and rapid retrieval of biophysical and biochemical properties over
multiple spatial scales and often in inaccessible areas (Lu, 2006).
Given the large number of remote sensors (each with distinct spec-
tral, spatial, and radiometric properties) studies that compare and
contrast their ability to estimate crop biomass can help reduce
uncertainties in biomass estimates and ultimately carbon flux
estimates.

Dorigo et al. (2007) reviews of methods for estimating bio-
physical and biochemical properties from remote sensing spec-
tral information in agro-ecosystem modeling, including crop
biomass. Plant chlorophyll absorbs strongly in the visible red
(620–700 nm) and transitions rapidly in a region known as the
‘‘red-edge” (700–740 nm) to reflect/transmit strongly in the near
infrared (NIR: 740–1000 nm) due to plant cellular structure.
Given this response, early attempts to measure biomass with
remote sensing focused on red-NIR vegetation indices. The most
commonly used of these is the Normalized Difference Vegetation
Index (NDVI) (Tucker, 1979). Red-NIR vegetation indices attempt
to enhance the vegetation signal and reduce the effects of soil
background and solar irradiance (Elvidge and Chen, 1995), but
remain sensitive to soil wetness and other noises, particularly
at coarser spatial resolution (Huete et al., 2002). Therefore other
methods have been developed that fall into two broad cate-
gories: empirical and semi-physical. Empirical methods typically
involve relating biomass to transformed spectral information via
band ratioing or stepwise linear regression (e.g. Mariotto et al.,
2013), partial least squares regression (e.g. Hansen and
Schjoerring, 2003), or artificial neural networks (e.g. Serele
et al., 2000). Although empirical methods are accurate in the
area they are developed, simple, and computationally unde-
manding, model transferability is often difficult. Semi-physical
methods involve the inversion of coupled radiative transfer and
biochemical models, such as PROSAIL (Casa and Jones, 2004).
These models in the ‘‘forward” mode are driven by biophysical
and biogeochemical parameters to estimate the spectral proper-
ties of a canopy. In the ‘‘inverted” mode, spectra can be used to
estimate the biophysical and biogeochemical determinants of
biomass in a cause-and-effect manner, increasing the likelihood
of transferability (Jacquemoud et al., 1995). However, these mod-
els require several inputs and are sensitive to canopy architec-
ture (i.e. clumping), and the inversion procedure is not trivial
(Jacquemoud et al., 2009).

The spectral data used to estimate crop biomass involves one of
two sensor types in the optical range: multispectral broadband
(MSBB) and hyperspectral narrowband (HNB). Multispectral
broadband data can be further classified into high (e.g. IKONOS),
medium (e.g. Landsat), and coarse (e.g. MODIS) spatial resolution.
High spatial resolution images are less affected by spatial hetero-
geneity than medium and coarse resolution images, but they must
be purchased on-demand, require greater computational
resources, and (with the exception of new deployments; e.g.
WorldView-3: http://worldview3.digitalglobe.com/) contain fewer
spectral bands (Thenkabail, 2004). Medium to coarse resolution
remote sensing images, on the other hand, are freely available, pro-
vide global coverage at a frequent (16-day to daily) return interval,
require little additional processing, and have a higher spectral res-
olution. Hyperspectral narrowband data are currently derived from
only one active space-borne sensor: Hyperion onboard Earth
Observing-1 (EO-1). Unlike MSBBs, it yields spectral information
at discrete 10 nm intervals over a wide optical range (350–
2500 nm) freely on-demand (Thenkabail et al., 2013). The level of
spectral detail afforded by EO-1 enhances vegetation characteris-
tics that are difficult to discriminate with MSBBs. A review of these
characteristics can be found in Goetz (2009) and Ustin et al. (2004).
They include pigment concentration (chlorophylls, carotenoids,
and anthocyanins) detected in the visible range (450–700 nm)
(Gitelson et al., 2006); leaf nitrogen content detected in the red-
edge (700–740 nm) (Perry and Roberts, 2008), canopy water con-
tent detected in the SWIR1 (1000–1700 nm) (Carter, 1991), and
canopy dry plant litter or wood (lignose/cellulose) detected in
the SWIR2 (1700–2500 nm) (Asner, 1998). The major drawback
of HNBs is the large number of bands involved and necessity for
data mining techniques to interpret the data. The merging of
MSBBs and HNBs could overcome some of the spectral, spatial,
and radiometric limitations of methods that use only MSBBs or
HNBs, but remains a relatively unexplored topic (Thenkabail
et al., 2004).

Given the lack of studies that report the relative ability of HNBs
and MSBBs to estimate crop biomass, either individually or in com-
bination, this study uses a suite of Hyperion HNBs; several high,
medium, and coarse spatial resolution MSBBs; and field estimates
of aboveground wet biomass (AWB) retrieved for field crops to
identify an optimal set of HNBs and MSBBs that maximize
explained biomass variability on a per-crop basis and for the
pooled data. We use AWB, which only includes the fresh-weight
aboveground portion of the crop, because retrieval is less labor
intensive and it correlates well with the dry biomass of field crops
(Thenkabail et al., 1994).
2. Study area

California is considered the most agriculturally diverse and pro-
ductive state in the United States (US): it produces more than 350
agricultural commodities and accrued cash receipts from agricul-
tural production amounting to 44.7 billion dollars or 11.3% of total
agricultural receipts in the US in 2012 (http://www.nass.usda.gov/
). The Central Valley of California (Fig. 1) covers an area of nearly
60,000 km2 (13.7% of the state’s total land area) and includes eight
of California’s most agriculturally productive counties (in descend-
ing order): Fresno, Tulare, Kern, San Joaquin, Merced, Stanislaus,
San Joaquin, and Kings (Umbach, 1997). Irrigation water use in
agricultural production accounts for approximately 75% of
California’s annual water budget (Kenny et al., 2009). Climate
change (Dettinger et al., 2004), rapid population growth (http://
www.census.gov/), and expanding agricultural land use (Soulard
and Wilson, 2013) have led to surface and groundwater
withdrawals that are projected to reach unstainable levels by
mid-21st century (Spencer and Altman, 2010).

In 2012, spectral information was retrieved from several earth
observation platforms and co-located with ground-based esti-
mates of AWB in the Central Valley. The farms where AWB was
measured were either privately owned or managed by University
of California at Davis Research and Extension Centers or the
California Department of Water Resources. The farms were strati-
fied across the Central Valley to account for different climate, soil,
and irrigation regimes. The purpose of the field survey was to
develop a series of AWB transects that accounted for spatial
heterogeneity and facilitated the identification of an optimal set
of space-borne MSBBs and HNBs that captured the most AWB vari-
ability. Image-AWB pairs included California’s four largest crop
water consumers (alfalfa, cotton, maize, and rice) (http://www.
water.ca.gov/) during the three primary phases of crop develop-
ment (sprouting, flowering/silking, and boll/grain-filling), yielding
nearly 250 samples for the analysis. Preprocessing steps were
taken to georectify and normalize the remote sensing data for
inter-sensor comparison.
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Fig. 1. The central valley of California. One hundred and twenty 60 � 60 m transects (&) were developed to estimate aboveground wet biomass (AWB) for California’s most
water intensive crops (alfalfa, cotton, maize, and rice) in 2012. The transects were visited during the sprouting, flowering/silking, and bud/grain-filling phases of crop
development. The upper (path/row = 44, 33) and lower (path/row = 42, 35) extent of Landsat ETM + scenes used to develop predictive models of AWB are outlined in red. The
extent of crop cover was downloaded from the National Agricultural Statistics Service Cropland Data Layer (http://nassgeodata.gmu.edu/) for 2012, while elevation is a subset
of the 30 m resolution National Elevation Dataset (http://nationalmap.gov/). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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3. Data and methods

3.1. Ground reference data

Marshall and Thenkabail (2015) details the development of
AWB (g m�2) transects used to evaluate the MSBB and HNB
vegetation indices in this study. Each transect, randomly dis-
tributed over 18 farms across the Central Valley during 2011 and
2012, represent an average of AWB estimates made over a
60 � 60 m2 area. The AWB estimates were made using empirical
equations developed from a subset of destructive AWB measure-
ments versus ground spectra and other non-destructive biophysi-
cal measurements taken in ten 1 � 1 m2 quadrats per transect.
Ground spectral predictors included aggregated (10 nm band-
width) HNBs collected with a spectroradiometer. Non-spectral pre-
dictors included crop height, the fraction of photosynthetically
active radiation absorbed by the canopy (FAPAR) estimated with a
hand-held ceptometer, and indices derived from Red–Blue–Green
(RGB) photo digital numbers. The empirical models of destructive
versus non-destructive AWB were made using the following pre-
dictors, because they had the highest correlation, as defined by
the coefficient of determination (R2), and lowest error, as defined
by Root Mean Squared Error (RMSE) in Marshall and Thenkabail,
2015: (1) crop height and HNBs in the NIR (963 and 993 nm) for
rice (R2 = 0.84, RMSE = 1.37 g m�2); (2) chromatic greenness
(Sonnentag et al., 2012) and HNBs in the visible (428, 468, and
631 nm) for alfalfa (R2 = 0.86, RMSE = 1.81 g m�2); crop height
and HNBs in the visible and NIR (539, 560, 943, and 963 nm) for
cotton (R2 = 0.91, RMSE = 1.56 g m�2); and crop height, FAPAR, and
HNBs in the NIR (794, 845, and 865 nm) for maize (R2 = 0.59,
RMSE = 1.27 g m�2). Hyperspectral narrowband data are labelled
by the median wavelength here and for the remainder of the paper.
Summary statistics of AWB samples by crop type for transects in
2012 are shown in Table 1. In general, the samples were evenly dis-
tributed across the sprouting and flowering/silking stages and less
so during the grain/boll-filling stages.

http://nassgeodata.gmu.edu/
http://nationalmap.gov/


Table 1
Summary statistics (l = mean and r = standard deviation) of alfalfa, cotton, maize,
and rice AWB samples developed from transects in 2012 to build remote sensing
models. Statistics are discretized by major phenological stage.

Crop N Stage l (g m�2) r (g m�2)

Alfalfa 30 Sprouting 1303 937
31 Flowering/silking 6373 2619
0 Grain/bud-filling N/A N/A

Cotton 30 Sprouting 1088 556
30 Flowering/silking 7168 2547
1 Grain/bud-filling 6245 N/A

Maize 29 Sprouting 4107 1147
17 Flowering/silking 10,181 1297
15 Grain/bud-filling 14,046 1325

Rice 30 Sprouting 1018 585
30 Flowering/silking 3080 855
2 Grain/bud-filling 3400 1677

Table 2
Sensor characteristics of MODIS (MD), Landsat (LS), IKONOS (IK), GeoEye (GE),
WorldView (WV), and Hyperion (HY) imagery. Panchromatic and thermal bands are
not included.

Spectral
bands

# of
Bands

Band range
(nm)

Spatial resolution
(m)

Digitization
(bits)

MD
1 6 620–670 500 12
2 841–876
3 459–479
4 545–565
5 1230–1250
7 2105–2155

LS
1 6 450–515 30 8
2 525–605
3 630–690
4 750–900
5 1550–1750
7 2090–2350

IK
1 4 445–516 4 11
2 506–595
3 632–698
4 757–853

GE
1 4 450–510 1.65 11
2 510–580
3 655–690
4 780–920

WV
1 8 400–450 1.85 11
2 450–510
3 510–580
4 585–625
5 630–690
6 705–745
7 770–895
8 860–900

HY
8–57 155 427–925 30 12
79 and 83 933 and 973
84–119 983–1336
133 1477
133–164 1488–1790
183–184 1982 and

1992
188–220 2032–2355
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3.2. Remote sensing imagery and processing

3.2.1. Dataset
We acquired spectral data from the following sensors for anal-

ysis: one coarse spatial resolution (MODIS), one medium spatial
resolution (Landsat ETM+), three high spatial resolution (IKONOS,
GeoEye-1, and WorldView-2), and one hyperspectral (Hyperion).
Only the non-thermal and non-panchromatic bands were used.
The spectral, spatial, and radiometric characteristics of MODIS,
Landsat ETM+ (hereafter Landsat), IKONOS, GeoEye-1 (hereafter
GeoEye), WorldView-2 (hereafter WorldView), and Hyperion ima-
gery are presented in Table 2. A total of nine Landsat, 23 IKONOS,
23 GeoEye, 24 WorldView, and ten Hyperion images were used
in the analysis. MODIS images were not used directly. Instead, 8-
day surface reflectance, captured onboard the Aqua satellite
(MYD09A1), were subset for pixels corresponding to the AWB tran-
sects and downloaded using the Oak Ridge National Laboratory
Distributed Active Archive Center for Biogeochemical Dynamic’s
MODIS Global sub-setting and visualization tool (http://daac.ornl.
gov/MODIS/MODIS-menu/modis_webservice.html/). Hyperion
imagery in its native format consists of 242 spectral bands, but
we only used the 155 bands that were radiometrically calibrated
(Simon, 2006) and free from atmospheric contamination or other
noise (Thenkabail et al., 2004).

In Table 3, we show the dates ground-based AWB measure-
ments were collected and Landsat images were acquired. Given
the large number of images used, we omitted this information
for the other sensors. We confined remote sensing data to a
±15 day window around the dates the AWB measurements were
collected. This window was considered conservative, as the accli-
mation time of temperate croplands to light and temperature has
been estimated to be up to ±21 days (Tu, 2000). Landsat ETM+
images were downloaded using the US Geological Survey (USGS)
Earth Explorer (http://earthexplorer.usgs.gov/). The high resolu-
tion imagery (IKONOS, GeoEye, WorldView) was provided freely
through a contractual agreement between the USGS and National
Geospatial Intelligence Agency. The reflectance data were accom-
panied by quality assessment codes. Less than ideal quality mea-
surements (cloud and other noises such as cloud shadow and
aerosals) were flagged as missing and filled by linear interpolation.
Further inconsistencies were smoothed with a Savitsky–Golay
local polynomial filter in the ‘‘signal” package in R (http://cran.r-
project.org/). The filter was pre-defined as a 3rd-order polynomial
with a temporal window of 17 (�136 days).

3.2.2. Image rectification
The images and AWB transects were registered as Universal

Transverse Mercator 10 north (Datum =WGS 1984). The imagery
was visually inspected against a vector file of primary and sec-
ondary roads from the U.S. Census Bureau’s Master Address File/
Topologically Integrated Geographic Encoding and Referencing
(MAF/TIGER) Database (http://catalog.data.gov/). With the excep-
tion of Hyperion, the images showed a high level of geo-location
accuracy. For Hyperion, road and field pixels consistently fell out-
side the road network and transect boundaries, respectively.
Therefore, we geometrically corrected the Hyperion images by
identifying points at major intersections in the road network vec-
tor file as ground control input to the ERDAS IMAGINE� geometric
correction routine, specifying a 3rd-order polynomial with nearest
neighbor resampling, producing a root mean square error <1 pixel/
30 m.

3.2.3. Normalization
Three normalization procedures were performed in order to

account for the differences in the radiometric, spatial, and spectral
resolutions of each sensor. With the exception of MODIS, which
were provided as surface reflectance (%), pixels were expressed
as digital numbers (DNs) and were converted to surface reflectance
to normalize the data across radiometric resolutions. In order to
convert DNs to surface reflectance, images were first converted
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Table 3
Landsat (path/row = 44, 33 and 42, 35) and aboveground wet biomass (AWB) retrieval
dates by crop type. The temporal difference between remote sensing dates and field
dates (DT) did not exceed ±15 days.

Crop Path Row Acquisition date AWB retrieval date DT

Alfalfa 42 35 June 10, 2012 June 13, 2012 3
42 35 June 26, 2012 June 21, 2012 5
42 35 June 26, 2012 June 19, 2012 7
44 33 July 10, 2012 July 6, 2012 4
42 35 July 28, 2012 July 27, 2012 1
42 35 July 28, 2012 July 28, 2012 0
42 35 July 28, 2012 August 1, 2012 4
44 33 August 27, 2012 August 21, 2012 6
42 35 September 14, 2012 September 17, 2012 3
44 33 September 12, 2012 September 14, 2012 2

Cotton 42 35 June 10, 2012 June 14, 2012 4
42 35 June 10, 2012 June 13, 2012 3
42 35 June 26, 2012 June 19, 2012 7
42 35 July 28, 2012 July 27, 2012 1
42 35 July 28, 2012 August 1, 2012 4
42 35 August 13, 2012 August 7, 2012 6
42 35 September 14, 2012 September 17, 2012 3

Maize 44 33 July 10, 2012 June 25, 2012 15
44 33 July 10, 2012 July 2, 2012 8
44 33 July 10, 2012 July 6, 2012 4
44 33 August 11, 2012 August 9, 2012 2
44 33 August 27, 2012 August 21, 2012 6
44 33 August 27, 2012 August 22, 2012 5
44 33 September 12, 2012 September 12, 2012 0
44 33 September 12, 2012 September 14, 2012 2

Rice 44 33 July 10, 2012 June 30, 2012 10
44 33 July 10, 2012 June 27, 2012 13
44 33 July 10, 2012 July 6, 2012 4
44 33 August 11, 2012 August 14, 2012 3
44 33 August 11, 2012 August 16, 2012 5
44 33 August 27, 2012 August 24, 2012 3
44 33 September 12, 2012 September 13, 2012 1
44 33 September 12, 2012 September 15, 2012 3
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to absolute at-sensor radiance (Wm�2 sr�1 lm�1) using standard
scaling factors for each sensor band provided in the accompanying
metadata. Absolute radiance was then converted to surface reflec-
tance using the Fast Line-of-sight Atmospheric Analysis of Spectral
Hypercubes (FLAASH) atmospheric correction algorithm in ENVI�.

Finally, we averaged the surface reflectance of all pixels that fell
on an AWB transect to produce a single reflectance value for each
sensor at each transect, thereby effectively normalizing the spatial
resolutions of the images (�one MODIS pixel, four Landsat and
Hyperion pixels, 225 IKONOS pixels, 1322 GeoEye pixels, and
1063 WorldView pixels per transect).

Following Thenkabail (2004), a cross-correlation matrix and
accompanying scatterplots (not shown) were generated between
each visible and NIR MSBBs to identify major differences in spec-
tral resolution. The strength and direction of each relationship
below are expressed with R2 to reflect the strength of each rela-
tionship. Overall, each sensor showed the highest correlations with
one another in the NIR (average R2 across sensors: MODIS = 0.45,
Landsat = 0.44, IKONOS = 0.58, GeoEye = 0.56, and WorldView =
0.49) and the lowest correlations with one another in the visible
blue (average R2: MODIS = 0.23, Landsat = 0.23, IKONOS = 0.09,
GeoEye = 0.21, and WorldView = 0.08), with visible green and red
in between. The strength of the relationships between bands was
stronger for the higher spatial resolution MSBB sensors (>0.6), with
the strongest being between GeoEye and with IKONOS NIR
(R2 = 0.71). The spatial and spectral properties of MODIS and
Landsat were notably different from these sensors, which may con-
tribute to their lower correlations. The low correlations in the vis-
ible blue bands was likely due to the sensitivity of this spectral
range to atmospheric noise, which was accentuated by the differ-
ent days and atmospheric conditions under which each sensor
captured reflectance for a given AWB estimate. The only two
MSBBs that capture reflectance in the SWIR1 and SWIR2 were
Landsat and MODIS. The relationship between the two in the
SWIR1 was weak (R2 = 0.08) and moderate in the SWIR2
(R2 = 0.37). The weak relationship in SWIR1 was likely due to the
narrow bandwidth of MODIS that falls within the range of
Landsat, whereas the overlap in SWIR2 is placed more comparably.

3.3. Model-building

Given the large number of spectral bands involved and sample
area, we built relationships between AWB and MSBBs and HNBs
using standard empirical data mining techniques (band-ratioing
and stepwise linear regression). For the remainder of the paper,
these techniques will be referred to as Two-Band Vegetation
Indices (TBVIs) and Multiple-Band Vegetation Indices (MBVIs),
respectively. Before deriving these indices, the HNBs were first-
derivative transformed, which enhanced the vegetation signal by
minimizing the impact of soil and other background on each spec-
trum (Thorp et al., 2004). This step is particularly important in the
absence of transmissivity data. The first-derivative transformation
was performed on functions fitted to each spectrum using cubic
splines with the ‘‘stats” package in R. Aboveground wet biomass
was transformed logarithmically to facilitate linear model-
building. Because the sample sizes varied across sensors, the
analysis was performed at three levels of sensor aggregation: each
individual MSBB and HNB sensor, all MSBBs, and all sensors com-
bined (MSBBs and HNBs). Because the strength of AWB relation-
ships varied between crops, and due the difficulties in retrieving
ground spectra for maize AWB transects (see Marshall and
Thenkabail, 2015), the analysis was also performed for three levels
of crop aggregation as well: each crop, all crops (maize omitted),
and all crops (maize included).

3.3.1. Band-ratioing: Two-Band Vegetation Index (TBVI)
Two-Band Vegetation Indices were developed by selecting two

bands and combining them as in the NDVI formula (Tucker, 1979):

TBVI ¼ k2 � k1

k1 þ k2
ð1Þ

where k1 is the reflectance for a given MSBB or HNB and k2 is the
reflectance for a given MSBB or HNB. We derived a TBVI for all pos-
sible combinations of k1 and k2, and tested each index by calculat-
ing a linear regression between it and the log-transformed AWB
across all transect groupings (entire set as well as crop-specific
sets). To identify the best TBVIs, the R2 of the linear regression for
every TBVI were plotted in a lambda–lambda (k–k) plot
(Thenkabail et al., 2000), where the vertical axis is the wavelength
centers of k1 and the horizontal axis is the wavelength centers of
k2. In these plots, the best TBVIs were readily identified as ‘‘bull-
eyes” of high R2 values. The k–k plots were generated for each sen-
sor grouping and each transect grouping to highlight and identify all
important band combinations. For each sensor grouping and each
transect grouping, the single TBVI with the highest R2 was chosen
for model validation. We also identified all the TBVIs strongly
correlated with AWB, setting a threshold of R2 = 0.50, and plotted
histograms (frequency of occurrence) of the bands composing these
TBVIs to see how well the HNBs performed over all. The statistical
analysis was performed in R, while the k–k plots were generated
with the ‘‘ggplot” package in R.

3.3.2. Data reduction: Singular Value Decomposition (SVD)
Multiple-Band Vegetation Indices were developed using the

‘‘regsubsets” function in the ‘‘leaps” package in R. The regsubsets
function takes a stepwise-approach, instead of a forward



Table 4
Summary of the highest ranked TBVIs by crop type for each MSSB and HNB sensor
(MD = MODIS, LS = Landsat, IK = IKONOS, GE = GeoEye-1, WV = WorldView-2, and
HY = Hyperion). Statistics were determined from the linear regression of log
transformed aboveground wet biomass: N is the number of samples; k1 and k2 are
the two most significant bands (predictors); and m, b, p, R2, and RMSE are the slope,
intercept, significance, coefficient of determination, and root mean squared error,
respectively. The results are significant to the 95% confidence band (p = 0.05).

Crop type N k1 k2 m b p R2 RMSE
(g m�2)

MD
Rice 62 2 4 �7.30 5.85 <0.001 0.62 1.63
Alfalfa 59 1 2 8.30 6.59 <0.001 0.59 2.05
Cotton 61 2 4 �9.09 6.16 <0.001 0.59 2.06
Maize 61 1 7 �3.05 13.48 0.007 0.12 1.79
All Crops 243 2 4 �7.04 7.16 <0.001 0.32 2.40

LS
Rice 56 4 7 �13.07 1.16 <0.001 0.74 1.50
Alfalfa 53 1 5 24.18 �4.64 <0.001 0.53 2.10
Cotton 51 5 7 �9.12 8.75 <0.001 0.58 2.05
Maize 60 3 7 �6.58 14.37 <0.001 0.59 1.50
All Crops 220 5 7 �7.35 8.99 <0.001 0.25 2.47

IK
Rice 52 2 4 4.50 7.88 <0.001 0.79 1.48
Alfalfa 59 2 3 �14.46 12.07 <0.001 0.62 2.02
Cotton 61 3 4 6.75 7.43 <0.001 0.93 1.35
Maize 61 1 2 �7.79 15.22 <0.001 0.63 1.45
All Crops 233 2 4 6.09 7.63 <0.001 0.53 2.10

GE
Rice 52 2 4 3.84 8.06 <0.001 0.69 1.60
Alfalfa 59 1 4 11.70 2.05 <0.001 0.73 1.81
Cotton 61 3 4 7.15 6.68 <0.001 0.92 1.35
Maize 61 1 4 3.67 9.44 <0.001 0.22 1.72
All Crops 233 2 4 6.38 7.15 <0.001 0.57 2.04

WV
Rice 62 6 8 5.52 9.33 <0.001 0.85 1.36
Alfalfa 49 3 4 �9.72 11.00 <0.001 0.33 2.46
Cotton 51 4 7 7.28 7.41 <0.001 0.66 1.94
Maize 61 2 4 4.95 11.70 <0.001 0.40 1.60
All Crops 223 6 7 7.90 9.45 <0.001 0.42 2.27

HY
Rice 20 549 752 1.82 9.62 <0.001 0.91 1.22
Alfalfa 36 925 1104 �0.95 12.34 <0.001 0.81 1.73
Cotton 20 722 732 11.18 12.51 <0.001 0.97 1.26
Maize 20 529 895 �0.66 13.05 <0.001 0.94 1.15
All Crops 96 539 752 3.85 9.34 <0.001 0.56 2.19
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addition-approach to model-building, so the number of predictors
(p) must be less than the number of samples (N). Singular Value
Decomposition (SVD) (Bretherton et al., 1992), therefore, was per-
formed before the stepwise analysis, so that p < N. Singular value
decomposition is a common data reduction technique used in
image processing and compression to reduce multicollinearity
and yield factors (linear combinations) of input variables that
explain unique proportions of the input variance (Richards,
2013). Singular value decomposition decomposes a p � N matrix
F into the form:

F ¼ UCVT ð2Þ
where U is a p � p orthonormal matrix, V is an N � N orthonormal
matrix, and C is a diagonal matrix where the number of elements is
less than the smaller of p or N. In our case, F consisted of 155 pre-
dictor HNBs and 36 (alfalfa), 20 (cotton), 20 (maize), 20 (rice), and
96 (pooled) AWB samples. The dimensions of the left singular vec-
tors (U) equaled the number of predictor HNBs and of the right sin-
gular vectors (V) equaled the number of AWB samples. The
decomposition therefore yielded N linear combinations whose load-
ings described the relative strength of the predictors on each com-
ponent. Since each component explains successively less variance,
we only used the first component to identify the most important
HNBs for MBVI development. The SVD was performed using the
‘‘SVD” function in R.

3.3.3. Stepwise linear regression: Multiple-Band Vegetation Index
(MBVI)

The ‘‘regsubsets” function in R was used to perform the step-
wise regression, which identifies an optimal set of MSBBs or
HNBs combines additively to explain the most predicted variance:

MBVI ¼ C0 þ
Xnmax

i¼1

CiXi ð3Þ

where C0 is the model intercept, C is the weighting coefficient of
predictor i, X is the MSBB or HNB predictor, and nmax is the max-
imum number of predictor variables. Regsubsets performs a step-
wise search for the linear model that explains the most variance,
while minimizing the Bayesian Information Criterion. The
Bayesian Information Criterion is used to prevent model over-
fitting (Hair et al., 1998). Even so, over-fitting can still occur, so
an additional criterion was used: nmax was set, so that the ratio
of the number of MSBBs or HNBs to the number of AWB samples
was less than or equal to 0.1. The ratio is typically set between
0.1 and 0.2, where 0.1 is more restrictive than 0.2 (Thenkabail
et al., 2000). Unlike other stepwise procedures, the regsubsets func-
tion produces a predetermined number of optimal MBVIs up to
nmax in a convenient tabular format. In our case, we only selected
the best MBVI involving up to nmax predictors for comparison.

3.3.4. Accuracy assessment
The TBVIs and MBVIs were evaluated visually and numerically.

Studentized residual plots (not shown) and scatterplots were used
to identify outliers and verify that the assumptions of linear regres-
sion were met. Standard model comparison statistics from linear
model building (R2 and RMSE) were computed to evaluate the
strength and the sample standard deviation of the differences
between observed AWB and predicted AWB. Since the sample size
was small, we expected that the sensitivity of RMSE to the training
and validation subsets in a standard split-sample approach would
be high (Michaelsen, 1987). We therefore performed a k-fold cross-
validation to estimate RMSE, where k is the number of times the
subsetting is performed. We set k = 10, meaning subsetting was
performed ten times, as opposed to k = N (i.e. leave-one-out cross
validation), because the estimate of RMSE from a 10-fold cross
validation is more stable, making it better for model comparison
(Arlot and Celisse, 2010).
4. Results

4.1. Band-ratioing: Two-Band Vegetation Index (TBVI)

On a per sensor basis, the AWB models using TBVIs derived
from high spatial resolution MSBBs performed better than the
models using TBVIs derived from coarse (MODIS) or medium
(Landsat) spatial resolution MSBBs (Table 4). Table 4 is organized
by sensor and crop type. The all crops (maize omitted) aggregation
is not displayed, because the results did not significantly differ
from the all crops (maize included) aggregation. In all cases, the
order in which the two bands are presented represents their order
in the TBVI equation (Eq. (1)), with the first band k1 and the second
k2. Of the MSBBs, GeoEye and IKONOS bands 2 and 4 TBVIs (i.e., k1 -
= band 2 and k2 = band 4) showed the highest correlations and
lowest error when the crops were pooled. When a TBVI involved
IKONOS and GeoEye band 4, results were very similar, reflecting
the strong correlation between high resolution NIR bands. For indi-
vidual crops, WorldView bands 6 and 8, GeoEye bands 1 and 4,
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IKONOS bands 3 and 4, and IKONOS bands 1 and 2 were the top
performers for rice, alfalfa, cotton, and maize, respectively.

The k–k plot for all HNB combinations are shown on a per crop
basis in Fig. 2, while the histograms in Fig. 3 illustrate the most fre-
quent bands included in the highest ranked HNB TBVIs. Cotton and
maize AWB tended to be correlated with a wider range of HNBs
than rice or alfalfa AWB. The highest and most frequently corre-
lated TBVIs for cotton included bands that were centered at three
important HNBs: NIR, SWIR1, and SWIR2 (732, 1124, and
1982 nm). The model for maize also highlighted HNB band
732 nm as a band commonly included in the highest and most fre-
quently correlated TBVIs. In addition, strong correlations of AWB
models for maize resulted in TBVIs that included HNB NIR
(854 nm) and bands across a narrow region centered at 1225 nm
in the SWIR1. For rice, TBVIs involving three narrow regions cen-
tered at 691, 752, and 813 nm in the red-edge NIR tended to be
the best performers, mirroring the MSBB results. Alfalfa AWB
was the least responsive, with the highest and most frequently cor-
related TBVIs including bands centered at 1104 nm in the SWIR1.

The HNB TBVIs performed as well or better than the MSBB
TBVIs (Table 4). Like the best MSBB TBVI, the visible green
(539 nm) and NIR (752 nm) bands yielded the highest correlations
and lowest error when all crops were included, however, the HNB
TBVI explained 1% less variance than the best MSBB TBVI. On an
Fig. 2. Lambda–lambda (coefficient of determination-R2) contour plots created from 15
cotton (C), and maize (D) aboveground wet biomass. The number of samples used to dev
with R2 less than or equal to 0.5 were masked to accentuate relatively strong relationsh
individual crop basis, however, the HNBs did better: for rice, visible
green (549 nm) and NIR (752 nm) explained an additional 6% in
AWB variance than the best MSBB TBVI; for alfalfa, NIR (925 nm)
and SWIR1 (1104 nm) explained an additional 8% in AWB variance
than the best MSBB TBVI; for cotton, NIR (722 and 732 nm)
explained an additional 4% in AWB variance than the best MSBB
TBVI; and for maize, visible green (529 nm) and NIR (895 nm)
explained an additional 31% in AWB variance than the best MSBB
TBVI.

4.2. Stepwise linear regression: Multiple-Band Vegetation Index
(MBVI)

The ability of MSBB MBVIs to predict AWB was significantly
better than the MSBB TBVIs (Table 5). The MODIS MBVI for rice
(bands 2 and 4), Landsat MBVI (bands 5 and 7) for alfalfa,
GeoEye MBVI (bands 1 and 3) for maize, WorldView MBVI (bands
2 and 4) for alfalfa, and WorldView MBVI (bands 7 and 8) for
maize, explained an additional 25%, 29%, 37%, 24%, and 20% of
AWB variance, respectively. On a per crop basis, however, models
of AWB developed from stepwise linear regression were more
mixed and less consistent than models developed using MSBB
TBVIs. This was true for all high, medium, and coarse spatial reso-
lution MSBB MBVIs. Note that we distinguish the optimal MBVIs
5 first-derivative transformed hyperspectral narrowbands and rice (A), alfalfa (B),
elop the statistics was 20, 36, 20, and 20, respectively. Two-band vegetation indices
ips.



Fig. 3. Histograms showing the frequency of occurrence of hyperspectral narrowbands in two-band vegetation indices with correlation of determination greater than 0.5 for
rice (A), alfalfa (B), cotton (C), and maize (D) aboveground wet biomass.
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using two bands to be consistent with MSBB TBVIs; these are the
two bands that display the highest loadings in the MBVI models.

For all crops pooled, GeoEye bands 2 and 4 yielded the highest
correlation and lowest RMSE of the MSBBs, mirroring the TBVI
analysis. For rice, MODIS bands 2 and 4 performed on par with
IKONOS (bands 2 and 4), GeoEye (bands 2 and 4), and
WorldView (bands 7 and 8). For alfalfa, Landsat bands 5 and 7
outperformed IKONOS (bands 3 and 4), GeoEye (bands 1 and 4),
and WorldView (bands 2 and 4). For cotton, as found in the TBVI
analysis, GeoEye and IKONOS bands 3 and 4 performed consider-
ably better than MODIS and Landsat. MODIS bands performed
poorly with maize AWB, while results for GeoEye (bands 1 and
3), IKONOS (bands 3 and 4), and WorldView (bands 7 and 8) were
comparable to TBVI results. With the exception of a dozen cases
out of the 25 MBVIs listed in Table 5, the incorporation of more
MSBBs into the MBVIs either increased the RMSE and/or did not
significantly add to explained AWB variance (DR2 6 0.02).

The ability of HNB MBVIs to predict AWB was mildly better
than the HNB TBVIs (Table 5). For all crops, the model using the
HNB MBVI that involved two NIR bands (813 and 1114 nm)
explained an additional 15% of AWB variance compared to the
HNB TBVI. As with the TBVIs, HNB MBVIs out-performed MSBB
MBVIs in all cases. The best MSBB MBVI for rice (IKONOS bands 2
and 4) explained 3% lower AWB variance than the best HBN
MBVI. The best MSBB MBVI for alfalfa (Landsat bands 5 and 7)
explained 4% lower AWB variance than the best HBN MBVI. The
best MSBB MBVI for cotton (GeoEye bands 3 and 4) explained 3%
lower AWB variance than the best HBN MBVI. The best MSBB
MBVI for maize (GE bands 1 and 3 and WorldView bands 7 and
8) explained 33% lower AWB variance than the best HBN MBVI –
a difference considerably larger than any other crop. Other impor-
tant HNBs (derived from the SVD analysis) are shown in Table 6.
For convenience, only the top 19 HNBs by component loading iden-
tified in the SVD and used to constrain the stepwise regression are
shown. We only used HNBs from the first component, because they
explained 84%, 78%, 89%, and 72% of the HNB variability, while the
second components explained only an additional 6%, 8%, 3%, and
10% of the HNB variability for rice, alfalfa, cotton, maize, and all
crops, respectively. The HNBs were primarily in the NIR and
secondly in the SWIR1. Cotton included one HNB in the SWIR2
(1982 nm).

4.3. Two-Band Vegetation Indices (TBVIs) and Multiple-Band
Vegetation Indices (MBVIs) across sensors

We explored the possibility that AWB models could be
improved by combining reflectance data from two different sen-
sors to calculate TBVIs and MBVIs. The merging of MSBBs and
HNBs into vegetation indices led to erratic responses (not shown),
due to small sample sizes and over-fitting, so we only present the
results of merging MSBBs here. Fig. 4 shows k–k plots for each crop,
indicating the most highly correlated TBVIs across MSBBs. Rice and
cotton showed the highest correlations across the MSBBs, and less
so for alfalfa and maize. For rice, the combination of WorldView
(bands 7 and 8) across MSBBs yielded high correlations with
AWB, while IKONOS (band 4) was more robust, but yielded rela-
tively lower correlations. Although alfalfa and maize showed lower
correlations over a narrower range of sensors, merging MSBB TBVIs
for these two crops yielded higher correlations than with individ-
ual sensors. The combination of GeoEye (band 2) and Landsat
(band 4) for alfalfa (R2 = 0.77, RMSE = 1.36 g m�2) led to a 4%
increase in explained variance over the best individual MSBB
TBVI, while the combination of IKONOS (band 1) and GeoEye
(band 2) for maize (R2 = 0.80, RMSE = 1.31 g m�2) led to a 17%



Table 5
Summary of the highest ranked multiple-band vegetation indices by crop type for each MSSB and HNB sensor (MD = MODIS, LS = Landsat, IK = IKONOS, GE = GeoEye-1,
WV = WorldView-2, and HY = Hyperion). Statistics were determined from the linear regression of log transformed aboveground wet biomass: N is the number of samples; k1 and
k2 are the two most significant bands (predictors); and m, b, p, R2, and RMSE are the slope, intercept, significance, coefficient of determination, and root mean squared error,
respectively. The results are significant to at least the 95% confidence band (p = 0.05).

Crop type N k1 k2 m1 m2 b p1 p2 R2 RMSE (g m�2)

MD
Rice 62 2 4 10.37 8.72 6.63 <0.001 0.045 0.88 1.32
Alfalfa 59 1 2 �24.59 8.12 10.75 <0.001 <0.001 0.61 2.04
Cotton 61 2 4 10.40 �19.82 9.31 <0.001 0.008 0.58 2.08
Maize 61 2 5 �3.89 9.55 11.08 0.055 0.015 0.10 1.82
All Crops 243 2 4 9.39 �12.40 9.06 <0.001 <0.001 0.37 2.35

LS
Rice 56 4 7 11.79 �52.47 9.23 <0.001 <0.001 0.76 1.46
Alfalfa 53 5 7 87.73 �104.61 3.16 <0.001 <0.001 0.82 1.61
Cotton 51 3 7 35.73 �47.40 14.25 <0.001 <0.001 0.65 1.99
Maize 60 3 7 60.40 �37.73 12.79 <0.001 <0.001 0.53 1.58
All Crops 220 5 7 28.52 �41.09 10.23 <0.001 <0.001 0.32 2.36

IK
Rice 52 2 4 �9.97 6.55 8.99 0.021 <0.001 0.89 1.35
Alfalfa 59 3 4 �8.81 8.84 8.66 0.003 <0.001 0.62 2.03
Cotton 61 3 4 �16.53 10.39 9.15 <0.001 <0.001 0.94 1.34
Maize 61 3 4 22.97 3.34 10.08 <0.001 <0.001 0.58 1.52
All Crops 233 3 4 �10.26 7.11 9.72 <0.001 <0.001 0.50 2.17

GE
Rice 52 2 4 �4.85 6.90 8.48 <0.001 <0.001 0.88 1.36
Alfalfa 59 1 4 �41.74 4.38 11.37 <0.001 <0.001 0.75 1.79
Cotton 61 3 4 �17.46 6.30 10.05 <0.001 <0.001 0.95 1.29
Maize 61 1 3 �81.13 48.13 12.46 <0.001 <0.001 0.60 1.52
All Crops 233 2 4 �19.73 5.60 10.64 <0.001 <0.001 0.55 2.08

WV
Rice 62 7 8 8.36 �5.00 11.57 <0.001 <0.001 0.87 1.33
Alfalfa 49 2 4 59.00 �50.21 12.53 <0.001 <0.001 0.57 2.18
Cotton 51 2 5 33.61 �42.80 13.40 <0.001 <0.001 0.83 1.60
Maize 61 7 8 �40.22 47.28 10.73 <0.001 <0.001 0.60 1.50
All Crops 223 6 7 �12.10 9.23 10.57 <0.001 <0.001 0.36 2.37

HY
Rice 20 1124 1134 190.49 �216.49 8.96 <0.001 <0.001 0.92 1.61
Alfalfa 36 834 1114 �1502.06 �434.99 11.07 <0.001 <0.001 0.85 1.66
Cotton 20 1114 1982 �133.41 665.86 12.08 0.005 <0.001 0.98 1.23
Maize 20 813 895 809.58 �272.34 13.01 <0.001 0.079 0.93 1.18
All Crops 96 813 1114 1280.11 �402.48 9.48 <0.001 <0.001 0.71 1.91

Table 6
List of the hyperspectral narrowbands (HNBs) that had the highest loadings on the
first component of the singular value decomposition. The HNBs are listed in
numerical order. The first component explained 84%, 78%, 89%, and 72% of the HNB
variability for rice, alfalfa, cotton, maize, and all crops, respectively.

Rice Alfalfa Cotton Maize All crops

702 732 722 742 732
712 742 732 752 742
722 895 742 763 895
732 905 752 813 905
742 925 905 834 915
752 933 925 895 925
763 973 933 905 933
844 983 973 915 973
905 1094 1094 925 983
925 1104 1114 933 1094
933 1114 1124 973 1104

1104 1124 1134 1094 1114
1124 1134 1155 1104 1124
1134 1144 1165 1114 1134
1144 1155 1306 1134 1144
1165 1165 1336 1144 1155
1306 1316 1488 1155 1165
1316 1326 1498 1165 1316
1326 1336 1982 1326 1326
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increase in explained variance over the best individual MSBB TBVI.
The MBVI approach, via MSBB merging, yielded modest improve-
ments as well. The combination of MODIS (band 2) and GeoEye
(band 4) (R2 = 0.95, RMSE = 1.22 g m�2) led to a 7% increase in
explained model variance over the individual MSBB MBVI for rice.
The combination of IKONOS (band 1) and GeoEye (band 2) for
maize (R2 = 0.85, RMSE = 1.27 g m�2) led to a 25% increase in
explained variance over the best individual MSBB MBVI.

Scatterplots of predicted AWB versus reference AWB for the
highest correlated MSBB and HNB vegetation index on a per crop
basis using either individual or combined sensors are shown in
Figs. 5 and 6, respectively. There are fewer data points in Fig. 6
because Hyperion acquisition was much more limited than MSBB
acquisition and the spatial extent of Hyperion imagery is much
narrower than many of the other MSBB imagery. In each case,
the MBVI approach was selected, because it yielded higher correla-
tions and lower error than the TBVI approach. In general, the HNB
MBVI residuals appeared almost bimodal, while the MSBB MBVI
residuals appeared to be more randomly distributed.
5. Discussion

The study examined the ability of several MSBBs (GeoEye-1,
IKONOS, Landsat ETM+, MODIS, and WorldView-2) and HNBs
(Hyperion) to estimate AWB for four of California’s most water-
intensive crops (alfalfa, cotton, maize, and rice). The analysis was
performed on a per-crop and per-sensor basis, but the ability of
combining MSBBs across sensors to simulate AWB was also



Fig. 4. Lambda–lambda (coefficient of determination-R2) contour plots created from 28 multispectral broadbands and rice (A), alfalfa (B), cotton (C), and maize (D) AWB
samples. The number of samples used to develop the statistics was 47, 46, 45, and 60, respectively. Two-band vegetation indices with R2 less than or equal to 0.5 were masked
to accentuate relatively strong relationships.
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evaluated. The comparison was done by building linear models
that related log-transformed AWB with vegetation indices. The
vegetation indices combined MSBBs and HNBs either as a normal-
ized ratio (TBVI) or additively (MBVI). The performance of each
model was ranked according to its correlation and cross-
validation statistics to select a model for comparison.

The highest ranked HNB TBVIs and MBVIs in general, performed
better than the highest ranked MSBB TBVIs and MBVIs, indicating
that narrow spectral bands are more important than high spatial
resolution bands in predicting AWB. Narrowband models exploit
specific spectral regions sensitive to crop characteristics and
reduce redundant or insignificant spectral regions, while broad-
band models average information over larger spectral regions.
Caution should be taken in interpreting these results, however,
as the HNB models were built using smaller samples sizes
(N = 20, 36, 20, and 20 for rice, alfalfa, cotton, and maize, respec-
tively). The small sample sizes led to potential over-fitting and
leveraging that was observed in the scatterplots (shown) and
residual plots (not shown). We would expect that over-fitting
and leveraging would inflate the predictive ability of the models,
but this was not reflected in the cross-validation analysis.

The explanatory power of HNB TBVIs (R2 = 0.56) compared to
MSBB TBVIs (R2 = 0.57) was negligible, while the gains made using
HNB MBVIs (R2 = 0.71) versus MSBB MBVIs (R2 = 0.49) was more
substantial. The two most important HNBs (from the pooled anal-
ysis) were in the NIR (813 nm) and SWIR1 (1114 nm) when HNBs
were combined using stepwise regression (MBVI), while the visible
green (539 nm) became important when HNBs were combined as
ratios (TBVI). The two NIR HNBs correspond to strong scattering
peaks in and are due to light interaction with plant cell walls
(Ollinger, 2011). Alfalfa, which did not have a senescent phase
and is a strong planophile, showed the highest correlation with
the wavelength where scatter in the NIR due to accumulated bio-
mass is the highest (1104 nm). The green HNB corresponds to
the largest scattering peak in the visible range, which is due to
the spectral properties of plant chlorophyll and accessory pig-
ments. The results of the per-crop analysis were similar to the
pooled analysis, but variations were observed and can be due to
any number of differences among crops characterized by: leaf
angle geometry, plant physiology, irrigation timing and regime,
fertilizer application, and background soil properties. For example,
the TBVIs for rice and maize, as in the pooled TBVI, involved visible
green wavelengths (549 and 529 nm) and NIR wavelengths (752
and 895 nm) that lie within the same spectral range where chloro-
phyll/accessory pigments (alignment of plant cell walls) absorb
(scatter) light, while the TBVI for cotton involved two wavelengths
(722 and 732 nm) that lie outside these ranges in the red-edge. The
red-edge tends to shift in response to plant stress (Merton and



Fig. 5. Scatterplots of predicted versus reference AWB for the highest correlated vegetation indices using all possible MSBB combinations for rice (A), alfalfa (B), cotton (C),
and maize (D). In each case, the MBVI approach resulted in the highest correlations. The diagonal line represents a 1:1 relationship between predicted and reference AWB.

Fig. 6. Scatterplots of predicted versus reference AWB for the highest correlated vegetation indices using hyperspectral narrowbands for rice (A), alfalfa (B), cotton (C), and
maize (D). In each case, the MBVI approach resulted in the highest correlations. The diagonal line represents a 1:1 relationship between predicted and reference AWB.
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Huntington, 1999) and could therefore be reflecting the poor soil
quality characteristic of cotton fields in the Central Valley and
reduction in fertilizer and water application during boll formation
that increases harvest efficiency and yields. Similarly, the MBVIs
for each crop involve various strong scattering wavelengths due
to the alignment of plant cell walls (813, 834, 895, 1114, 1124,
and 1134 nm), while cotton is the only crop that includes a
SWIR2 wavelength (1982 nm) in its top performing MBVI. This
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wavelength corresponds to a strong water absorption region and
could therefore be indicating water status. The SWIR2 region was
particularly noisy and could be obscuring its importance in AWB
estimation for the other crops.

Perhaps the most interesting findings of the analysis lie with
the MSBBs. Overall, IKONOS and GeoEye using the green and NIR
bands produced the highest correlated TBVIs and MBVIs with
AWB of the MSBBs, as we might expect, because of their high spa-
tial resolution. In general, the two sensors were highly correlated
and could be used interchangeably, but GeoEye had a slight advan-
tage over IKONOS that can be attributed to its higher spatial
resolution.

The performance of WorldView, with its relatively high spatial
and spectral resolution, was unexpectedly poor for all the crops,
except rice. The reflectance from two WorldView images (acquisi-
tion dates = July 18, 2012 and August 22, 2012) were averaged for
cotton AWB transects made on August 7, 2012, because of high
demand for the sensor during the Olympic Games in London,
United Kingdom. Even so, the cotton transects were not flagged
as outliers when inspecting the residuals. In addition, rice, which
resulted in high AWB and WorldView correlations had image
acquisition dates that were the farthest from AWB retrieval dates.
Three of the WorldView images were the only high resolution
images that had noticeable cloud cover and this could have con-
taminated ground reflectance estimates. It will be interesting to
see in future work if the newly deployed WorldView sensor will
perform better, with its higher spatial resolution and added spec-
tral bands in the NIR and SWIR.

The most promising results lie with the ability of MODIS and
Landsat NIR to predict AWB, which yielded high correlations for
rice and alfalfa. MODIS has narrower spectral bands than Landsat
and previous research has shown (e.g. Marshall and Thenkabail,
2014) that rice is sensitive to a much narrower spectral range than
other crops, again reflecting the importance of spectral resolution
over spatial resolution. In the future, a comparative analysis
between the recently operational Landsat OLI (with its higher spec-
tral resolution than Landsat ETM+) and MODIS could provide more
evidence of this hypothesis.

The MBVIs in general, performed better than the TBVIs for
MSBBs and HNBs. Based on the pooled analysis, the improvement
was greater with the HNB MBVIs (R2 = 0.71 versus R2 = 0.56) than
the MSBB MBVIs (R2 = 0.55 versus R2 = 0.53). On a per crop basis,
the differences were even more pronounced. This could reflect
the modest ability of TBVIs, such as NDVI, to estimate AWB at
coarse spatial resolution compared to smaller scale and crop-
specific targets. If the results presented here were not constrained
to two variables, so that a legitimate comparison could be made
with TBVIs, the superiority of the MBVI approach was more pro-
nounced. For example, MODIS band 2 alone for rice (R2 = 0.87
and RMSE = 1.34 g m�2); Landsat bands 3, 4, and 7 for cotton
(R2 = 0.76 and RMSE = 1.75 g m�2); GeoEye bands 1, 2, and 3 for
alfalfa (R2 = 0.78 and RMSE = 1.72 g m�2); IKONOS bands 2, 3, and
4 for maize (R2 = 0.63 and RMSE = 1.51 g m�2); and WorldView
bands 2, 7, and 8 for rice (R2 = 0.92 and RMSE = 1.27 g m�2) led to
higher correlations and lower errors on a per-sensor basis than
the MBVIs using two bands presented here.

The MBVI approach has been criticized, because it is sensitive to
over-fitting, does not fully account for multicollinearity, and often
fails to produce bands that reflect known absorption features
(Grossman et al., 1996). To overcome these obstacles, SVD was
used to minimize the effects of multicollinearity and rules were
applied to restrict the number of predictors to prevent over-
fitting. These factors undoubtedly contributed to the interpretabil-
ity of the HNBs. Partial least squares regression is perhaps more
straight forward than a combined SVD and stepwise approach to
build vegetation indices, however a previous analysis using
ground-level spectroradiometric data, showed PLSR type models
performed worse than stepwise regression on validation subsets
(Marshall and Thenkabail, 2015). Cetin and Musaoglu, 2009
reviewed and compared the most non-parametric approaches to
multi-sensor data fusion. These should be evaluated in the future
because they are more flexible and less sensitive to outliers than
parametric techniques like stepwise regression.

It is difficult to compare the results of this study to others, due
to the issue of transferability, the different sample sizes and sam-
pling techniques, and the different processing steps and modeling
techniques. Another consideration is the sensitivity of AWB to
canopy water content, which varies drastically across space and
time. This may explain the relatively poor performance of SWIR
MSBBs and HNBs, which are also sensitive to canopy water con-
tent. To illustrate these difficulties, we compare our findings to
Mariotto et al. (2013), who performed an evaluation of MSBBs
and HNBs for predicting AWB for alfalfa, cotton, maize, rice, and
wheat fields in a region with complex topography (Syr Darya river
basin in Uzbekistan). As in our study, in situ AWB data was log-
transformed and TBVIs and MBVIs were developed for inter-
model comparison. In contrast to our study, the images were not
georectified and the HNBs were not first-derivative transformed
and no validation was performed. In addition, in situ AWB was
not extrapolated over transects corresponding to the spatial reso-
lution of the sensors analyzed.

The two studies produced results both similar and dissimilar.
Like this study, Hyperion HNBs performed better than MSBBs,
and MBVIs performed better than TBVIs. Unlike this study,
Landsat consistently performed better than IKONOS or Quickbird
(another high spatial resolution sensor). For the crops reported,
the optimal HNBs for cotton (R2 = 0.95, N = 16) and maize
(R2 = 0.99, N = 9), were in the NIR and SWIR2 (2052 and
2285 nm); and visible blue (427 and 437 nm), NIR (973 nm), and
SWIR1 (1165 nm), respectively. This somewhat overlaps with the
results of this study, but the sample sizes in the Uzbekistan study
tended to be small and the number of predictors large. The combi-
nation of small sample size and a large number of predictors is par-
ticularly problematic for forward selection automated regression
methods (Hair et al., 1998), which was the approach taken to build
the MBVIs in that study. For the crops reported, similarities
between the two studies involving Landsat were quite divergent.
Landsat bands 1, 4, and 6 yielded the highest correlation to cotton
AWB (R2 = 0.55, N = 38), while Landsat bands 1, 6, and 7 yielded the
highest correlation to maize AWB (R2 = 0.62, N = 14) in the
Uzbekistan study. In this study, Landsat bands 3, 4, and 7 yielded
the highest correlation with cotton AWB (R2 = 0.76, N = 51) and
Landsat bands 4, 5, and 7 yielded the highest correlation with
maize AWB (R2 = 0.60, N = 60). It is difficult to know whether the
contrasting results are due to different methodologies or different
biophysical settings. Given the potential difficulty, therefore in
using the empirically-based models beyond the area they are
developed, the models developed here may be best suited to
develop larger AWB transects to calibrate/validate physically-
based agro-ecosystem models.
6. Conclusions

This research compared multispectral broadband (MSBB) data
from: three high spatial resolution (sub-meter to 5 m) sensors
(IKONOS, GeoEye-1, and WorldView-2); one moderate resolution
sensor (Landsat ETM+), and one coarse resolution sensor (MODIS)
with hyperspectral narrowband (HNB) data from EO-1 Hyperion
in studying aboveground biomass (AWB) of four water-intensive
crops (alfalfa, cotton, maize, and rice) in the Central Valley of
California. The importance of high spectral resolution, as opposed
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to high spatial resolution, in quantifying AWB is well established in
this research: overall, hyperspectral narrowband vegetation
indices explained 3–33% greater variability in modeling AWB than
MSBB vegetation indices. The study also established the impor-
tance of the red-edge (700–740 nm), which is absent in most
MSBBs, and identified six specific HNBs within the 400–2500 nm
range that explained the most AWB variability: 539 nm, 722 nm,
758 nm, 914 nm, 1130 nm, 1320 nm (bandwidth of 10 nm). These
are the optimal bands with nearby bands often producing similar
results. When hyperspectral data are available, such as from
narrowly-focused EO-1 Hyperion HNBs, as identified here, signifi-
cant advances can be made in quantifying and modeling agricul-
tural crop biomass. Most importantly, the HNB vegetation indices
can be used to return rapidly, estimates of crop AWB over large
areas, which in turn can be used to calibrate/validate agro-
ecosystem models at multiple scales.
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