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V) is an enveloped, positive-stranded RNA virus belonging to the family
Arteriviridae. Infection by EAV requires the release of the viral genome by fusion with the respective target
membrane of the host cell. We have investigated the entry pathway of EAV into Baby Hamster Kindey cells
(BHK). Infection of cells assessed by the plaque reduction assay was strongly inhibited by substances which
interfere with clathrin-dependent endocytosis and by lysosomotropic compounds. Furthermore, infection of
BHK cells was suppressed when clathrin-dependent endocytosis was inhibited by expression of antisense
RNA of the clathrin-heavy chain before infection. These results strongly suggest that EAV is taken up via
clathrin-dependent endocytosis and is delivered to acidic endosomal compartments.

© 2008 Elsevier Inc. All rights reserved.
Introduction
Equine arteritis virus (EAV) is an enveloped positive-stranded RNA
virus (van Dinten et al., 1997) of the family Arteriviridae which belongs
together with Coronaviruses to the order Nidovirales. Horses are the
typical target of EAV. Consequences of infection range from an asympto-
matic, persistent carrier state to abortion or even to lethal haemorrhagic
fever (Snijder and Meulenberg, 1998). EAV buds from the rough
endoplasmic reticulum and the outer nuclear membrane, but not from
the cell surface (Wada et al., 1995).

EAV contains seven structural proteins which are essential for virus
infectivity andmaturation. The nucleocapsid protein N forms an isometric
core particle (de Vries et al., 1992), which is surrounded by the lipid
envelope. N and the complex of the non-glycosylated membrane protein
M and the major glycoprotein Gp5 are required for virus assembly
(Wieringa et al., 2004). The putative envelope heterotrimer of the
glycosylated proteins Gp2b, Gp3, Gp4 (ratio: 1:1:1) is a prime candidate
for receptor-bindingand for fusionof EAVenvelopewith the cellular target
,
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membrane (Wieringa et al., 2003, 2004). The function of the non-
glycosylated envelope protein E is not yet known.

Two major cell entry pathways, the endosomal and the non-
endosomal pathway, are known for enveloped virus to deliver the viral
genome into the target cell. In both cases the release of the viral genome
requires fusionof theviral envelopewith the respective targetmembrane
of the host cell, the endosomal or the plasma membrane. Membrane
fusion is mediated by a conformational change of viral proteins. For
viruses utilizing the non-endosomal pathway (Marsh and Helenius,
2006), like Retroviruses (HIV-1) and Paramyxoviruses (e.g. Sendai virus)
the conformational change of the viral glycoproteins is induced by
interaction with the receptor of the host cell surface, thereby triggering
fusion between the viral envelope and the plasmamembrane. In the case
of viruseswhich are taken up by cells via the endosomal pathway (Marsh
andHelenius, 2006), acidification of late endosomal lumen by the proton
pump activity of V-type ATPases (Perez and Carrasco, 1994) is essential
for activating the fusion competence of viral glycoproteins. The low pH
triggers the conformational change either directly as for example for the
glycoprotein hemagglutinin of influenza virus (Orthomyxoviruses) or
indirectly by activation of endosomal proteases cleaving the ectodomain
of the viral glycoprotein to enable the structural transition into a fusion
competent state. The lattermechanism has been described for the fusion
mediating S-protein of SARS virus (Coronaviruses) (Simmons et al.,
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Fig.1. Role of clathrin-dependent endocytosis in infection of BHK cells by EAV. BHKasc cells were preincubated in the presence (tc+) and absence (tc−) of tetracycline. In the latter case
antisense RNA against clathrin heavy chain is expressed suppressing clathrin-dependent endocytosis. A. Alexa Fluor 633 transferrin uptake. CHC expressing cells (tc+) display
fluorescent transferrin (Tf) with high intensities in intracellular vesicles, whereas cells (tc−) with suppressed CHC expression show no or less intense intracellular internalisation of
transferrin. Uptake was measured one min after addition of transferrin (37 °C). B.Infection of BHKasc cells by EAV. At 2h p.i. and 24h p.i. cells were fixed and examined, stained with a
primary antibody against nucleocapsid protein and TRITC labelled secondary antibodies, and examined by confocal microscopy. Fluorescence images were recorded at identical gain
settings. PC — phase contrast microscopy. DIC — differential interference microscopy.
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2005). Recently, it has been shown for Avian Sarcoma/Leucosis virus
(ASLV) that the conformational change of fusion mediating protein
requires both receptor priming and low pH (Mothes et al., 2000).

In this study we have investigated the entry pathway of EAV using
BHK cells as a target. The influence of substances interfering either
with the endosomal pathways or with the acidification of late endo-
somal compartments, such as lysosomotropic agents and inhibitors of
the vacuolar H+-ATPase (V-type ATPases) (Perez and Carrasco, 1994),
was studied by the plaque assay. To assess more specifically the role of
clathrin-dependent endocytosis in EAV infectionwe utilized a BHK-21
cell line with inducible expression of clathrin heavy chain (CHC) anti-
sense RNA (Iversen et al., 2001). Activation of the antisense RNA causes
a blockof the clathrin-mediated endocytosis. Ourdata provide evidence
that the clathrin-dependent endocytic pathway is the major route of
EAV cell entry and that infection by EAV requires a low pH trigger.

Results and discussion

EAV enters BHK cells via clathrin-dependent endocytosis

To investigate whether EAV cell entry proceeds via endocytic up-
take we first studied the involvement of clathrin-coated pits in EAV
internalization using a BHK cell line that can be induced to express
antisense RNA of the clathrin heavy chain (CHC) causing a selective
block in clathrin-dependent endocytosis (Iversen et al., 2001). For
expression of antisense CHC (anti-CHC) cells (tc−) were incubated in
the absence of tetracycline (see Materials and methods). To demon-
strate the repression of CHC-expression clathrin-dependent endocy-
tosis of fluorescent transferrinwasmeasured.While efficient transferrin
uptake was observed for CHC expressing cells (tc+), internalisation of
transferrin was strongly inhibited for tc− cells (Fig. 1A). The results
confirmprevious studies that in tc− cells cathrin-dependent endocytosis
is abolished (Iversen et al., 2001).

BHKasc tc+ and tc− cells were infected with EAV. Infection was
assessed by immunofluorescence detection of the nucleocapsid protein
N (see Materials and methods). For control cells (tc+), N was detected
after 2h p.i. and much stronger after 24h p.i. (Fig. 1B). Similar ob-
servations were made for BHK-21 cells (not shown). We surmise that N
after 2h p.i. originated from uncoated, disassembled viruses in infected
cells rather than fromexpression of newproteins,while N detected after
24h p.i. corresponded to newly expressed proteins. For cells expressing
anti-CHC (tc−) N proteinwas observed neither 2hp.i nor 24hp.i. (Fig.1B)
showing that inhibition of clathrin-dependent endocytosis prevents cell
infection. To confirm the result we performed an infectivity assay. The



Fig. 2. Influence of chlorpromazine on EAV infection of BHK-21 cells. BHK-21 cells were
incubated with chlorpromazine and infection by EAV (filled circles) or by SV5 (open
circles) was assessed by the plaque assay. Data present mean±standard error of
estimate of three independent experiments.
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supernatant of cell monolayers incubated for 20–22h after virus
adsorption was harvested and probed for infectivity by the plaque
assay (seeMaterials andmethods).Whileweobserved strong infectivity
of the supernatant fromtc+ cells,we couldnotfindanyplaque formation
when supernatants from tc− cells were used (data not shown).

Next we studied the influence of chlorpromazine known to abolish
the formation of clathrin-coated endocytic vesicles by interfering with
the interaction between the adapter protein AP-2 and the clathrin-
coated pit lattice (Wang, Rothberg, and Anderson, 1993). Chlorproma-
zine as well as all other drugs used (see below) were present shortly
Fig. 3. Influence of the lysosomotropic agents on EAV infection of BHK-21 cells. BHK-21 cells w
inhibitors (B) bafilomycin A1 (circles) and (C) concanamycin A (triangles up), and (D) with mo
was assessed by the plaque assay. Data present mean±standard error of estimate of twelve
before and during virus adsorption, but not during the subsequent
plaque assay. As shown in Fig. 2 a strong inhibition of infection of BHK-
21 cells was observed upon treatment of cells with chlorpromazine. In
agreement with this observation, we could detect the nucleocapsid
protein N neither at 2h p.i nor at 24h p.i of chlorpromazine treated
BHK-21 cells (60 µMchlorpromazine) by immunofluorescence (images
not shown).

The absence of any detectable intracellular N protein after 2h p.i. in
chlorpromazine treated cells supports strongly that the early phase of
virus infection is inhibited, and that it is unlikely, that suppression of
virus production is due to inhibition of transport of viral proteins or
assembly and budding of virions. In contrast to EAV, chlorpromazine
treatment of BHK-21 cells did not reduce infection by SV5 (Fig. 2)
belonging to Parainfluenza viruses which are known to infect cells via
a non-endocytic mechanism (Lamb and Kolakofsky, 2001). This result
confirms that treatment with chlorpromazine does not interfere with
other cellular processes at least those which are important for virus
maturation.

Taken together these results strongly argue for a clathrin-de-
pendent endocytic uptake as the main cell entry route for EAV.

EAV infection requires a low pH compartment

Based on the observation that EAV enters via endocytosis the host
cell we asked whether EAV infection requires the acidic environment
of the endosomal compartment. To this end, we incubated cells with
substances preventing endosomal acidification. We have used
lysosomotropic agents as (i) ammonium chloride, a relatively weak
base accumulating inside endosomal vesicles (Brindley and Maury,
2005; Jin et al., 2005; Ohkuma and Poole, 1978), (ii) bafilomycin A1
ere incubatedwith ammonium chloride (squares) (A), with the vacuolar type H+-ATPase
nensin (triangles down), and infection by EAV (filled symbols) or by SV5 (open symbols)
(A) and at least three (B–D) and independent experiments.



Fig. 4. Influence of preincubation at acidic pH. EAV (filled circles) or SV5 (open circles)were
incubated at the indicated pH for 1h at 37 °C. After pH neutralization of virus suspension,
viruseswere adsorbed to BHK cells and the plaque assaywasperformed (seeMaterials and
methods). Data present mean±standard error of estimate of three independent
experiments.

Fig. 5. Low pH-bypass of inhibition of virus infection. BHK cells were pretreated as
described above either with chlorpromazine (60 µM), concanamycin A (4nM),
monensin (400nM), or MβCD. After the first 60 min of virus adsorption at 37 °C, the
pH was lowered to 5.0 for 15 min. After neutralization, virus–cell complexes were
incubated for further 45 min and the plaque assay was performed as described in
Materials and methods. Control — mock pretreatment, no low pH exposure. w/o —

without low pH exposure. w — with low pH exposure. Data present mean±standard
error of estimate of three independent experiments.

251M. Nitschke et al. / Virology 377 (2008) 248–254
and concanamycin A, specific inhibitors of the vacuolar H+-ATPase (V-
ATPase) in animal and other eukaryotic cells belonging to macrolide
lactone ring antibiotics (Drose and Altendorf, 1997), and (iii) monen-
sin, an ionophore that disrupts the proton gradient across vesicular
membranes (Perez and Carrasco, 1994).

Preincubation of BHK-21 cells with ammonium chloride revealed
an inhibitory effect on virus reproduction (Fig. 3A).

Incubation of cells with the vacuolar H+-ATPase inhibitors bafilo-
mycin A1 and concanamycin A caused also a suppression of EAV
infection (Figs. 3B, C). Even at 2nM of concanamycin A infection was
completely abolished. A similar extent of infection suppression was
observed for bafilomycin A1 at 20nM. It is known that concanamycin A
has a higher inhibitory activity in comparison to bafilomycin A1 (Drose
and Altendorf, 1997).

Finally, EAV infection was abolished in the presence of monensin
(Figs. 3D). At 100nM plaque reduction was diminished by about 50%
with respect to the control. In agreement with this observation, we
could detect the nucleocapsid protein N neither at 2h p.i nor at 24h p.i
of monensin treated BHK-21 cells (400nM monensin) by immuno-
fluorescence (images not shown).

Hence, all lysosomotropic agents used, showed a strong inhibitory
effect on virus infection. In contrast to EAV, neither concanamycin A
nor bafilomycin A1 nor monensin treatment of BHK-21 cells did affect
SV5 mediated plaque formation (Fig. 3) consistent with the fact that
infection by Parainfluenza viruses does not require a low pH compart-
ment (Lamb and Kolakofsky, 2001).

In conclusion, our results strongly argue that EAV after clathrin-
dependent endocytic uptake has to be exposed to the low pH en-
vironment of endosomes as presuppositions to release the viral genome
into the cytoplasm. The low pH compartment might be required to
expose EAV to acid-dependent proteases, i.e. to cathepsins. It has
recently been reported that cathepsins cleave the S-protein of SARS
(Simmons et al., 2005) and gp1 of Filoviruses (Chandran et al., 2005;
Brindley et al., 2007) and that this cleavage is required to facilitate the
acid-dependent conformational change required to activate the fusion
capacity of those proteins. To explore whether proteases of the late
acidic compartments may play a role in fusion activation of EAV, we
measured infection of BHK-21 cells upon incubationwith leupeptin and
E64d, which have been shown to inhibit acidic proteases in the
endosomal compartment. Leupeptin is a competitive inhibitor of serine
and cysteine proteases, while E64d is an irreversible cysteine protease
inhibitor. We did not observe any influence on EAV infection up to
concentrations of 100 µM leupeptin and 10 µM E64d appropriate con-
centrations formerly used for inhibition of those proteases (Qiu et al.,
2006; Simmons et al., 2005) (data not shown). However, before
conclusive results on this issue can be made further studies are war-
ranted to demonstrate that inhibitors indeed are efficient to suppress
endosomal proteases.

Since endosomal protease activity does not seem to play a role in
infection by EAV, it is more plausible that the low pH directly induces a
conformational change of the (still unknown) glycoproteins of EAV
mediating membrane fusion. This is supported by our observation of a
strong inhibition of infection of BHK cells when viruses were
preincubated at pHb6.0 (Fig. 4). The irreversible loss of infectivity
upon low pH treatment resembles the behaviour of other enveloped
viruses which requires an acidic pH for infection of host cells such as
Influenza viruses (Earp et al., 2005). The fusionmediating glycoprotein
hemagglutinin of the Influenza virus A undergoes a conformational
change at acidic pH and elevated temperatures (Korte et al., 1999; Puri
et al., 1990). This conformational change is irreversible and abolishes
the fusion activity and, thus, the infectivity of influenza viruses.
Infection of cells by SV5 was not affected by low pH preincubation of
viruses (Fig. 4). It is known that the conformational change of the
fusion mediating F protein of Parainfluenza viruses is triggered by
interaction with cellular receptors but not by acidic pH (Lamb and
Kolakofsky, 2001).

To confirm the important role of acidic pH for infection of cells, we
have performed ‘low pH-bypass' experiments. Those experiments
show whether cells treated with inhibitors of virus entry can be
infected by triggering fusion of viruses with the plasma membrane at
low pH. For this purpose, cells were pretreated as described above
either with chlorpromazine (60 µM), concanamycin A (4nM), or
monensin (400nM) known to inhibit infection of BHK-21 cells (see
Figs. 2 and 3). During virus adsorption, virus–cell complexes were
incubated for 15 min at pH 5.0, 37 °C, and subsequently re-neutralised
(see Materials and methods). While without low pH incubation
infection was almost completely abolished (Fig. 5) as expected (see
above)we observed a very strong infectionwhen virus–cell complexes
were exposed to low pH. These experiments support that low pH
triggers fusion of EAV viruses. Remarkably, infection was four to six
folds higher in comparison to infection of cells not treated with
inhibitors (control, without low pH incubation). Obviously, the low pH
incubation was much more efficient in activating the infection



Fig. 6. Influence of cholesterol depletion on EAV infection of BHK-21 cells. (A) After
pretreatment of BHK cells with MßCD or (B) incubation with filipin III infection of cells
by EAV (filled circles) or by VSV (open circles) was assessed by the plaque assay. For
treatment of the cells with substances see Materials and methods. Data present mean±
standard error of estimate of three independent experiments.
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potential of viruses in comparison to the natural entry pathway of
viruses. Infection of BHK-21 cells by SV5 was neither enhanced nor
reduced by low pH exposure (data not shown) indicating also that cells
were not affected by a temporary acidic environment.

Cholesterol is a determinant of EAV entry

Recent studies provide evidence that cell entry of enveloped
viruses, for example murine coronavirus (Choi et al., 2005; Eifart et al.,
2007), could be associated with lipid domains enriched of cholesterol,
so called rafts. To assess the role of cholesterol in EAV entry, BHK-21
cells were depleted of cholesterol by preincubationwith methyl-beta-
cyclodextrin (MβCD, see Materials and methods). At concentrations
N5 mM MβCD EAV infection was completely blocked (Fig. 6A).
Furthermore, treatment of cells with filipin III which is known to
form complexes with cholesterol in membranes abolished EAV
infection (Fig. 6B). As a control BHK-21 cells were infected with VSV,
which enters cells independently of cholesterol and/or rafts (Guyader
et al., 2002). Indeed, cholesterol depletion of the BHK-21 cells byMβCD
(Fig. 6A) or treatment of cells with filipin III (Fig. 6B) did not diminish
infection by VSV. Notably, we found a slightly enhanced infectivity of
VSV upon filipin III treatment.

Thesefindings strongly indicate an important role of cholesterol for
EAV infection. Since the inhibitory effect of cholesterol depletion could
be overcome by low pH-bypass (Fig. 5) we conclude that cholesterol
depletion inhibits virus uptake but not binding of viruses to cells.
Cholesterol is strongly engaged in the clathrin- (Rodal et al., 1999;
Subtil et al., 1999) as well as in the caveolae-dependent endocytic
pathway (Yumoto et al., 2006). Because inhibition of expression of the
clathrin-heavy chain completely blocked infection (see above) the
caveolae-dependent endocytic entry plays no role in EAVuptake. Hence,
cholesterol depletion may interfere with the clathrin-dependent entry
of EAV.

In summary, EAV enters host cells via clathrin-dependent end-
coytosis. After uptake endocytic vesicles are delivered to a late acidic
endosomal compartment. Low pH is essential for infection of the cell.
Since we have no indication that proteases of this late compartment
are essential for infection, we surmise that low pH is required to
trigger a conformational change of the structural virus protein
mediating fusion. Alternatively, it might be that EAV in principle can
fuse at neutral pH, but its cellular receptor is rapidly endocytosed and
subsequent acidification in the endosome is required to release virus
particles from the receptor. Although the structural proteins of the
EAV envelope have been identified, it is not yet known which of the
protein(s) is (are) responsible for mediating fusion. The Gp2b/Gp3/
Gp4 complex is currently a prime candidate for the membrane-fusion
activity of EAV (Wieringa et al., 2003, 2004).

One may wonder whether the clathrin-dependent endocytosis is
typical for infection of cells by Arteriviruses. As shown recently mouse
hepatitis viruses (MHV) belonging to Coronavirus family may use
different routes for cell entry.WhileMHV-A59 is taken up via clathrin-
dependent endocytosis (Eifart et al., 2007), non-endocytic internalisa-
tion has been described for MHV-4 (JHM) and MHV-S4 ((Nash and
Buchmeier, 1997; Kooi etal., 1991). The entry pathway of EAV shares
similarities with that of another Arteriviruses, the Porcine Reproduc-
tive and Respiratory Syndrome virus (PRRSV). It has been shown that
PRRSV enters cells via receptor-mediated and low pH-dependent
endocytic pathway through a pH-dependent mechanism like we have
described here for EAV (Kreutz and Ackermann,1996; Nauwynck et al.,
1999). Kreutz and Ackermann (1996) found that infection of a monkey
kidney cell line by PRRSV was strongly inhibited in the presence of
20 µM cytochalasin B pointing to an involvement of active transport of
PRRSV containing endocytic vesicles by microfilaments. Lysosomo-
tropic agents such as ammonium chloride and bafilomycin A1
suppressed PRRSV infection of those cells at concentrations similar
to that used in our study. Taken together, these results suggest that
viruses belonging to the family Arteriviridae enter cells via a similar
endocytic route.

Materials and methods

Cells and viruses

Cell lines were propagated as adherent monolayer cultures. Baby
hamster kidney (BHK-21 C13) (American Type Culture Collection) cells
were grown in Dulbecco's modified Eagle medium (DMEM) (Cambrex,
Verviers, Belgium) mixed one to one with Leibovitz L-15 medium
(Cambrex, Verviers, Belgium) supplemented with 5% heat-inactivated
fetal bovine serum (ΔFBS) (HyClone, Logan, UT) called grow media
(GM). These cells were maintained at 37 °C in a humidified incubator
at 5% CO2.

EAV strain bucyrus (Doll et al.,1957) were grown in roller cell culture
flask in roller incubator at 5%CO2, 37 °C. The adherent, confluent BHK-21
monolayers were incubatedwith virusmultiplicity (MOI) of 1 in serum-
free growmedia at 37 °C and 5% CO2 for 3h (0.25rpm). After adsorption,
the inocula were washed and replaced with GM. The cell supernatant
was harvested at 20–22h post infection (titer was determined by the
plaque assay). After differential centrifugation to remove cellular debris
(sequential spins of 15 min at 4 °C at 4000×g, followed by 2 h at 4 °C at
13000×g) the virus preparationswere either used immediately or stored
at −80 °C in phosphate buffered saline (PBS, Cambrex, Verviers,
Belgium). No influence of storage on virus infection was observed.

The BHK-21-tTA clathrin heavy chain/antisense (BHKasc) cell line,
kindly provided by K. Sandvig (Institute for Cancer Research at the
Norwegian Radium Hospital, Montebello), was grown in complete
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DMEM (Cambrex, Verviers, Belgium) supplemented with 10% heat-
inactivated fetal bovine serum (ΔFBS) (HyClone, Logan, UT), 2 mM
L-glutamine (Cambrex, Verviers, Belgium), and 20µg/ml tetracycline in
a cell culture flask at 5% CO2, 37 °C. For induction of CHC antisense RNA
expression, tetracycline was removed from the medium.

Titer determination of viral stocks

The viral titer was determined by the plaque assay using BHK-21
cells as indicator cells in EMEM (Cambrex, Verviers, Belgium) with 1%
ΔFBS,1% L-Glutamine (Sigma, Berlin, Germany) and 0.9% v/v SeaPlaque
agarose (Cambrex, Verviers, Belgium).

Plaque assay

BHK-21cellswereplatedon6-well plates andgrown inGM(2ml/well).
The confluent BHK-21 monolayer was washed with PBS. Sequential 10-
fold dilutions of virus were prepared and cells were inoculated with a
volumeof 1ml/well todetermine theplaque formingunits (pfu)which are
plottedas the amountof plaques in%.Adecreaseofpfuby10%corresponds
to a reduction of plaques by one order of magnitude.

After adsorption for 2h at 37 °C and 5% CO2 the cells were washed
again to remove also any lysosomotropic substance or inhibitor (see
below). Subsequently, the overlay, EMEM (Cambrex, Verviers, Bel-
gium) with 1% ΔFBS, 1% L-Glutamine (Sigma, Hannover, Germany) and
0.9% v/v SeaPlaque agarose (Cambrex, Verviers, Belgium) was added.

After 2days of incubation at 37 °C and 5% CO2 the cells were stained
with neutral red (Biochrom, Berlin, Germany), fixed with 10% formalin
(Roth, Karlsruhe, Germany), and viral plaques were counted. For
control experiments Simian Parainfluenza virus 5 (SV5) and Vesicular
Stomatitis virus (VSV) (strain Indiana) was used.

Low pH pretreatment

In some cases, viruses (EAV or SV5) were pretreated for 1 h at 37 °C
in serum-free growth medium adjusted to various acidic pH-values
with 0.25 M citric acid. After neutralization of virus suspension,
viruses were adsorbed to BHK cells and a plaque assay was performed.

Influence of lysosomotropic agents, various inhibitors and cholesterol
depleting substances

Bafilomycin A1, chlorpromazine, concanamycin A, E64d, filipin III,
leupeptin, methyl-beta-cyclodextrin (MβCD), monensin were
obtained from Sigma (Hannover, Germany), and ammonium chloride
from Roth (Karlsruhe, Germany). Substances were used within the
following concentration range; bafilomycinA1 ranged from5 to40nM,
chlorpromazine from 5 to 100 µM, concanamycin A from 2 to 4 nM,
E64d from 0.1 to 10 µM, filipin III from 1 to 10 µM, leupeptin from 1 to
100 µM, methyl-beta-cyclodextrin from 1 to 10 mM, monensin from
100 to 600nM, and ammonium chloride from 5 to 30 mM.

Before addition of virus and performing the plaque assay, cells
were treated with the substances for 30 min in GM without ΔFBS.
Subsequently, cells were infected in the presence of different drug
concentrations and incubated for 2 h (see above). Subsequently,
lysosomotropic substances and inhibitors were washed out. Only for
MβCD and filipin III cells were washed with PBS (with physiological
conentrations of Mg2+ and Ca2+) before infection.

Low pH-bypass

To bypass any inhibitory effect of substances, virus was bound to
BHK cells pretreated with substances for 2 h at 37 °C and 5% CO2 as
described above. After the first 60 min of virus adsorption, the pH was
lowered to 5.0 for 15 min. After neutralization, virus–cell complexes
were incubated for further 45 min and processed as described above.
To account for strong infectivity and, hence, high amounts of plaques
sequential 10-fold dilutions of virus were performed.

Infectivity assay

The adherent, confluent BHKasc cell monolayers (tc− or tc+) were
incubated with virus multiplicity (MOI) of 1 in serum-free growth
media at 37 °C and 5% CO2 for 2h. After adsorption, the inocula were
washed and replaced with growth medium. The cell supernatant was
harvested at 20–22 h post infection and the titer was determined by
plaque assay using BHK-21 cells.

Immunofluorescence

To induce the expression of antisense CHC RNA (anti-CHC) in
BHKasc cells, the cells were incubated for 18 h in the absence of
tetracycline (tc−), for control cells tetracycline was present (tc+). The
adherent, confluent BHKasc cellmonolayerswere incubatedwith virus
multiplicity (MOI) of approximately 10 in serum-free grow media at
37 °C and 5% CO2 for 2h. After adsorption, the inocula were washed
twice with PBS. Cells were fixed at different time points post infection
by PBS containing 3% formaldehyde, subsequently quenched with
100 mM glycin, permeabilized with 0.5% Triton X-100, and then
incubated with the primary mouse monoclonal antibody against EAV
nucleocapsid protein (VMRD Inc., PullmanUSA) (Deregt et al.,1994) for
30 min at 37 °C. Subsequently, cells were incubated with the
appropriate TRITC labelled secondary antibody against mouse IgG
developed in goat (Sigma, Hannover, Germany). Coverslips were
obtained from Marienfeld (Germany). Confocal fluorescence micro-
scopy was done with an Olympus FV-1000.

Uptake of transferrin

BHKasc cells with andwithout removal of tetracycline from culture
mediumwere seeded into 8-well µ-slide observation chambers (Ibidi,
Martinsried, Germany) and incubated for 24h at 37 °C at 5% CO2. Prior
to the experiment the culture medium was gently removed from the
cells and exchanged against transferrin conjugated to Alexa Fluor 633
(Invitrogen, Paisley, UK) (10µg/ml final concentration) diluted med-
ium (GM). Immediately after adding of the marker dilution to the cells
were incubated for 1h at 37 °C and images were taken. Confocal and
phase contrast images were acquired with a Zeiss laser scanning
microscope LSM510 Meta mounted on an Axiovert 200 M inverted
microscope using a 63× phase contrast oil immersion plan-apochro-
mat objective NA1.4. Visualization of transferrin uptake was per-
formed under identical conditions for the tc+ and tc− cells.
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