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Abstract

The Newton-PCG (preconditioned conjugate gradient) like algorithms are usually very e%cient. However,
their e%ciency is mainly supported by the numerical experiments. Recently, a new kind of Newton-PCG-like
algorithms is derived in (J. Optim. Theory Appl. 105 (2000) 97; Superiority analysis on truncated Newton
method with preconditioned conjugate gradient technique for optimization, in preparation) by the e%ciency
analysis. It is proved from the theoretical point of view that their e%ciency is superior to that of New-
ton’s method for the special cases where Newton’s method converges with precise Q-order 2 and �(¿ 2),
respectively. In the process of extending such kind of algorithms to the more general case where Newton’s
method has no =xed convergence order, the =rst is to get the solutions to the one-dimensional optimization
problems with many di>erent parameter values of �. If these problems were solved by numerical method
one by one, the computation cost would reduce the e%ciency of the Newton-PCG algorithm, and therefore
is unacceptable. In this paper, we overcome the di%culty by deriving an analytic expression of the solution
to the one-dimensional optimization problem with respect to the parameter �. c© 2002 Elsevier Science B.V.
All rights reserved.
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1. Introduction

For the unconstrained optimization problem

min f(x); x∈Rn (1.1)
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Newton’s method is a basic method. The study on improving it has been continued for many years.
The Newton-PCG (preconditioned conjugate gradient) like algorithms are one kind of the improved
methods. It has been shown that they are usually very e%cient (see e.g. [1,3–5]). However, their
e%ciency is mainly supported by the numerical experiments.

Recently, a new kind of Newton-PCG-like algorithms is derived in [2,7] from some algorithm
models by an e%ciency analysis. It is proved from the theoretical point of view that their e%ciency
is superior to that of Newton’s method. The basic idea to construct the algorithms model is that
the Newton equations are solved exactly by Cholesky factorization (CF step) or approximately by
preconditioned conjugate gradient method (PCG step). More precisely, the models are made up by
circles. Each circle consists of one CF step and p PCG steps, where p is a parameter. The key
point is to choose such p in the model that the e%ciency (or its approximation) of the algorithms
to be maximized. In detail, in each circle, the CF step is executed =rstly, and the value of p is
obtained by solving a one-dimensional optimization problem which is established according to the
progress speed of the CF step, then p PCG steps are executed.

In fact, [2] is concerned with the case where the Newton’s method is precisely quadratically
convergent. In this case, the progress speed of CF step in every circle is “the same”. Therefore,
there is only one one-dimensional optimization problem to be solved and the computation cost is
negligible. In [7] the corresponding convergence Q-order is assumed to be a =xed scalar �(¿ 2)
but unknown. So in each circle, the progress speed of CF step, say �k , is calculated =rstly, then
a one-dimensional optimization problem established according to �k should be solved. However,
noticing that

�k → �; (1.2)

eventually, there are at most two one-dimensional optimization problems to be solved. Therefore,
the computation cost is still acceptable.

This paper deals with the more general case where the convergence speed of Newton’s method
is unknown and even Newton’s method may have no a =xed convergence order. We assume that
the convergence speed of Newton’s method is allowed to be in some interval, say [�l; �h], in the
following sense: There exist �¿ 0; Ml¿Mh ¿ 0; �l and �h such that when ‖xc − x∗‖¡� (x∗ is
the solution of (1.1))

Mh‖xc − x∗‖�h 6 ‖x+ − x∗‖6Ml‖xc − x∗‖�l ; (1.3)

where

x+
def=xc −∇2f(xc)−1∇f(xc): (1.4)

In this case, the convergence speed of Newton’s method is not a =xed number any more. Therefore,
in a circle of the new Newton-PCG-like algorithm, we =rst calculate the approximate progress speed
of CF step, say �k ; k=1; 2; : : :, and establish the corresponding one-dimensional optimization problem,
then take the solution as p to =nish the following PCG steps of this circle. Noting that instead of
the validity of (1.2), these �k may be any points in the interval [�l; �h]. So we have to solve a series
of the one-dimensional optimization problems instead of the two ones in [7]. If these problems were
solved by numerical method one by one, the computation cost would reduce the e%ciency of the
new Newton-PCG algorithm dramatically, and therefore, is unacceptable. This is the =rst di%culty
for us to establish the new algorithm.
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In this paper, the above di%culty is overcome by deriving an analytic expression of the solution
to the one-dimensional optimization problem with the parameter �.

The paper is organized as follows: Section 2 gives some lemmas, which are used to derive the
analytic expression of the solution (Theorem 3.1) in Section 3.

2. Some lemmas

Extending the Newton-PCG algorithms in [2,7] leads to the one-dimensional problem with a
parameter �:

P(n; �): min
K

u(K ; n; �) =
1 +

∑K
m=1 ’(�; m)Q(n)

1 + K
; (2.1)

s:t: K is a nonnegative integer; (2.2)

where n is the dimension of the optimization problem (1.1), ’(�; q) is an integer function satisfying

(�)q(� − 1) ¡’(�; q)6 (�)q(� − 1) + 1 (2.3)

and

Q(n) = (2n2 + 6n + 2)=(n3=6 + 3n2=2 − 2n=3): (2.4)

(Note that when K = 0, we de=ne the “sum”
∑K

m=1 · · · = 0:)
In fact, for a certain circle in the new algorithm model, � is the calculating value of the progress

speed of CF step and the solution K∗ = K∗(n; �) to problem (2.1)–(2.4) is taken as the PCG step
number, i.e. the value of p. Just as mentioned above, in di>erent circles, the values of � can be
di>erent in [�l; �h]. So, we will have a series of di>erent one-dimensional problems in di>erent
circle. The cost of solving them is not negligible. This di%culty can be overcome by obtaining the
analytic expression with respect to the parameter � for this solution, and the value of p in each
circle can be obtained easily by the analytic expression. Theorem 3.1 in Section 3 will give this
analytic expression. To derive Theorem 3.1, we give =ve lemmas in this section.

Lemma 2.1. For �¿ 2; K∗=K∗(n; �) is the smallest global solution to the problem P(n; �) de3ned
by (2.1)–(2.4) if and only if

u(0; n; �) ¿u(1; n; �) ¿ · · ·¿u(K∗; n; �)6 u(K∗ + 1; n; �) ¡u(K∗ + 2; n; �) ¡ · · · : (2.5)

Proof. If (2.5) is valid; K∗ is obviously the smallest global solution to the problem P(n; �). Now
we prove that (2.5) is valid when K∗ is the smallest global solution to the problem P(n; �) by the
following three steps.

(1) we prove the following conclusion: if

u(K̃ ; n; �)6 u(K̃ + 1; n; �); (2.6)

then

u(K̃ + 1; n; �) ¡u(K̃ + 2; n; �) (2.7)
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for all positive integer K̃ . In fact, when �¿ 2, we have

(�)1(� − 1) ¡ (�)2(� − 1) ¡ · · · ;
(�)1(� − 1) + 1 ¡ (�)2(� − 1) + 1 ¡ · · · :

Therefore, by de=nition (2.3) of ’, the sequence {’(�; m)Q(n)} is increasing

’(�; 1)Q(n) ¡’(�; 2)Q(n) ¡ · · · : (2.8)

Since u(K̃ + 1; n; �) can be written as

u(K̃ + 1; n; �) =
(1 + K̃)u(K̃ ; n; �) + ’(�; K̃ + 1)Q(n)

1 + (K̃ + 1)
(2.9)

it is shown by (2.6) that

u(K̃ ; n; �)6’(�; K̃ + 1)Q(n): (2.10)

Therefore, by (2.9)

u(K̃ + 1; n; �)6’(�; K̃ + 1)Q(n): (2.11)

On the other hand, u(K̃ + 2; n; �) can be written as

u(K̃ + 2; n; �) =
(1 + K̃ + 1)u(K̃ + 1; n; �) + ’(�; K̃ + 2)Q(n)

1 + (K̃ + 2)
:

So by (2.8) and (2.11), we have

u(K̃ + 2; n; �) ¿
(1 + K̃ + 1)u(K̃ + 1; n; �) + u(K̃ + 1; n; �)

1 + (K̃ + 2)
= u(K̃ + 1; n; �):

The proof of (2.7) is completed.
(2) we prove the following conclusion: if

u(K̃ − 1; n; �) ¿u(K̃ ; n; �); (2.12)

then

u(K̃ − 2; n; �) ¿u(K̃ − 1; n; �) (2.13)

for any integer K̃¿ 2. In fact, by (2.12) and de=nition (2.1) of u, we have

1 +
K̃−2∑
m=1

’(�; m)Q(n) ¿K̃’(�; K̃)Q(n) − ’(�; K̃ − 1)Q(n): (2.14)

In order to prove (2.13), by de=nition (2.1) of u again, we only need to prove

1 +
K̃−2∑
m=1

’(�; m)Q(n) ¿ (K̃ − 1)’(�; K̃ − 1)Q(n): (2.15)
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So by (2.14), we only need to prove

K̃’(�; K̃)Q(n) − ’(�; K̃ − 1)Q(n) ¿ (K̃ − 1)’(�; K̃ − 1)Q(n)

or

K̃[’(�; K̃) − ’(�; K̃ − 1)]Q(n) ¿ 0: (2.16)

However, by (2.8) and (2.16) is valid. Therefore, (2.13) is proved.
(3) we prove (2.5) for the smallest global solution K∗. Reminding the validity of (2.7),

u(K∗−1; n; �)6 u(K∗; n; �) implies that K∗ is not the smallest global solution to P(n; �). Therefore,
we have

u(K∗ − 1; n; �) ¿u(K∗; n; �): (2.17)

On the other hand, we have

u(K∗; n; �)6 u(K∗ + 1; n; �): (2.18)

Therefore, (2.5) follows from (2.17), (2.18), (2.7) and (2.13).

Due to Lemma 2.1, in order to solve the problem P(n; �), we only need to examine the sequence
u(0; n; �); u(1; n; �); : : : until it becomes increasing.

Lemma 2.2. For the problem P(n; �); both the objective function u(K ; n; �) and its smallest global
solution K∗(n; �) are right-continuous functions with respect to �.

Proof. The results are obtained by the fact that ’(�; m) is a right-continuous function with respect
to �.

Lemma 2.3. The smallest global solution K∗(n; �) of the problem P(n; �) is nonincreasing with
respect to � when �¿ 2.

Proof. We =rst prove that for any �2 ¿ 2; there exists �¿ 0 such that

K∗
2 6K∗

1 for �1 ∈ (�2 − �; �2); (2.19)

where K∗
2 = K∗(n; �2) and K∗

1 = K∗(n; �1). We; respectively; prove (2.19) for the two cases

K∗
1 = 0 (2.20)

and

K∗
1 ¿ 1: (2.21)

For case (2.20), i.e. K∗
1 = 0, it is su%cient to show K∗

2 = 0. In fact, since K∗
1 = 0, we have

16 u(1; n; �1): (2.22)

However, by de=nition (2.3) of ’, for �1 ¡�2, we have

’(�1; 1)6’(�2; 1): (2.23)
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Therefore,

u(1; n; �1)6 u(1; n; �2): (2.24)

By (2.22) and (2.24) and Lemma 2.1, we know that K∗
2 = 0. So (2.19) is proved.

For case (2.21), by de=nition (2.3) of ’, we see that, for m = 1; 2; : : : ; K∗
1 + 1

lim
�→+0

’(�2 − �; m) =

{
’(�2; m) − 1 if �2 is an integer;

’(�2; m) otherwise:

Therefore, noticing ’ is an integer function, we conclude that there exist �m ¿ 0 (m=1; 2; : : : ; K∗
1 +1)

such that when 0 ¡�¡�m

’(�2 − �; m) =

{
’(�2; m) − 1 if �2 is an integer;

’(�2; m) otherwise:
(2.25)

De=ning

� = min{�m |m = 1; 2; : : : ; K∗
1 + 1} (2.26)

equality (2.25) leads to that for any �1 ∈ (�2 − �; �2)

’(�2; m) − ’(�1; m) =
{

1 if �2 is an integer;
0 otherwise: (2.27)

Therefore, by de=nition (2.1) of u

u(K∗
1 ; n; �2) − u(K∗

1 ; n; �1) =
∑K∗

1
m=1 [’(�2; m) − ’(�1; m)]Q(n)

1 + K∗
1

6 [’(�2; K∗
1 + 1) − ’(�1; K∗

1 + 1)]Q(n):

The above inequality can be rewritten as

’(�1; K∗
1 + 1)Q(n) − u(K∗

1 ; n; �1)6’(�2; K∗
1 + 1)Q(n) − u(K∗

1 ; n; �2): (2.28)

Since K∗
1 is the smallest global solution to the problem P(n; �1) de=ned by (2.1)–(2.4) with � there

being replaced by �1, by Lemma 2.1, we have

u(K∗
1 ; n; �1)6 u(K∗

1 + 1; n; �1): (2.29)

So by (2.29) and (2.11) with K̃ there being replace d by K∗
1

u(K∗
1 ; n; �1)6’(�1; K∗

1 + 1)Q(n): (2.30)

Combining (2.28) and (2.30) yields

u(K∗
1 ; n; �2)6’(�2; K∗

1 + 1)Q(n): (2.31)

Furthermore, by (2.8)

u(K∗
1 ; n; �2)6’(�2; K∗

1 + 1)Q(n) ¡’(�2; K∗
1 + 2)Q(n) ¡’(�2; K∗

1 + 3)Q(n) ¡ · · · :
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Therefore, by de=nition (2.1) of u,

u(K∗
1 ; n; �2)6 u(K∗

1 + 1; n; �2) ¡u(K∗
1 + 2; n; �2) ¡u(K∗

1 + 3; n; �2) ¡ · · · : (2.32)

Since K∗
2 is the smallest global solution to the problem P(n; �2) de=ned by (2.1)–(2.4) with � there

being replaced by �2, we have

u(K∗
2 ; n; �2)6 u(K∗

1 ; n; �2): (2.33)

At last, by (2.32) and (2.33) and Lemma 2.1, (2.19) is obtained.
Now we are in a position to prove the conclusion that K∗(n; �) is nonincreasing with respect to

�∈ [2;∞). Since K∗(·; �) is right-continuous, we only need to show K∗(n; �) is nonincreasing with
respect to �∈ (2;∞). This can be proved by contradiction. In fact, suppose that K∗(n; �) is not
nonincreasing with respect to �, i.e. there exist R�¿�¿ 2 such that

K∗(n; �) ¡K∗(n; R�): (2.34)

Since K∗(n; �) is an integer function with respect to �, the above inequality implies

K∗(n; �) + 16K∗(n; R�): (2.35)

De=ne I0 =[�; R�] and denote the left and right boundary points of I0 as �̃l(I0) and �̃r(I0) respectively.
According to (2.35), the interval I0 has the property

K∗(n; �̃l(I0)) + 16K∗(n; �̃r(I0)): (2.36)

Now we de=ne an interval sequence {Ik} (k = 0; 1; : : :) starting from I0 by

Ik+1 =

{
[�̃l(Ik); 1

2 (�̃l(Ik) + �̃r(Ik))] if K∗(n; �̃l(Ik)) ¡K∗(n; 1
2 (�̃l(Ik) + �̃r(Ik)));

1
2 (�̃l(Ik) + �̃r(Ik)); �̃r(Ik) otherwise;

(2.37)

where �̃l(Ik) and �̃r(Ik) are the left and right boundary points of Ik , respectively. It is not di%cult
to prove, by induction, that the sequence {Ik} has the following properties:

(a) Ik+1 ⊆ Ik ; k = 0; 1; : : : :
(b) limk→∞ (�̃r(Ik) − �̃l(Ik)) = limk→∞ 1=2k ( R� − �) = 0.
(c) K∗(n; �̃l(Ik)) + 16K∗(n; �̃r(Ik)); k = 0; 1; : : : :

Therefore, there exists a unique �̃¿ 2 satisfying

�̃l(Ik)6 �̃6 �̃r(Ik); k = 0; 1; : : : (2.38)

and

lim
k→∞

�̃r(Ik) = lim
k→∞

�̃l(Ik) = �̃: (2.39)

Since K∗(n; �) is an integer function and is right continuous with respect to �, there exists an integer
N ¿ 0 such that

K∗(n; �̃r(Ik)) = K∗(n; �̃) for all k ¿N: (2.40)
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By property (c) and (2.40), we have

K∗(n; �̃l(Ik)) + 16K∗(n; �̃) for all k ¿N

or

K∗(n; �̃l(Ik)) ¡K∗(n; �̃) for all k ¿N:

By (2.39), we know that the above inequality contradicts conclusion (2.19) with �2 there being
replaced by �̃. So the lemma is proved.

Lemma 2.4. If K∗ = K∗(n; �) is the smallest global solution to the problem P(n; �); then for any
�¿ 2; we have

u(K∗; n; R�)6 u(K∗ + 1; n; R�) ¡u(K∗ + 2; n; R�) ¡ · · · when R�¿ � (2.41)

and

u(0; n; �) ¿u(1; n; �) ¿ · · ·¿u(K∗; n; �) when 26 �¡�: (2.42)

Proof. Denote by RK∗ the smallest global solution to the problem P(n; R�) de=ned by (2.1)–(2.4)
with � there being replaced by R�. By Lemma 2.1

u( RK∗; n; R�)6 u( RK∗ + 1; n; R�) ¡u( RK∗ + 2; n; R�) ¡ · · · : (2.43)

On the other hand; for R�¿ �; by Lemma 2.3; we have

RK∗6K∗: (2.44)

Combining (2.43) and (2.44) yields (2.41). The proof of (2.42) is similar and omitted.

Lemma 2.5. If a positive integer j and two scalars � and R� (26 �¡ R�) satisfy

u(j; n; �) ¿u(j + 1; n; �)

and

u(j; n; R�)6 u(j + 1; n; R�);

then there exists a scalar such that

b = min{� | �¿ 2; u(j; n; �)6 u(j + 1; n; �)}: (2.45)

Proof. We prove the conclusion by the following two steps.
First, we de=ne a sequence of ["k; #k] (k = 0; 1; : : :) as follows: Set �1 = (� + R�)=2. If

u(j; n; �1)6 u(j + 1; n; �1);

then denote by ["0; #0] the interval [�; �1]; otherwise denote by ["0; #0] the interval [�1; R�]. Set
�2 = ("0 + #0)=2. If

u(j; n; �2)6 u(j + 1; n; �2);
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then denote by ["1; #1] the interval ["0; �2]; otherwise denote by ["1; #1] the interval [�2; #0]. Repeating
the above process, the sequence of ["k; #k] (k = 0; 1; : : :) is de=ned. Obviously, it has the following
properties:

(1) "k 6 "k+1 ¡#k+16 #k ; k = 0; 1; : : : :
(2) #k − "k = 1=2k+1( R� − �).
(3) u(j; n; "k) ¿u(j + 1; n; "k) and u(j; n; #k)6 u(j + 1; n; #k).
(4) limk→∞ #k = limk→∞ "k .

Second, we de=ne b = limk→∞ #k . From the above properties (1)–(4) and Lemma 2.2, we have

"k 6 b6 #k ; k = 0; 1; : : : (2.46)

and

u(j; n; b)6 u(j + 1; n; b): (2.47)

So the conclusion is proved.

3. The analytic expression

Next theorem gives an analytic expression of the solution to problem (2.1)–(2.4).

Theorem 3.1. Consider the problem P(n; �) (2.1)–(2.4) with a 3xed positive integer n. If �¿ 2;
then there exists the smallest global solution K∗(n; �). Furthermore; setting q = K∗(n; 2); there are
q + 1 scalars

b0 = b0(n)¿ b1 = b1(n)¿ · · ·¿ bq = bq(n) = 2 (3.1)

such that K∗(n; �); as a function of �; can be expressed as

K∗(n; �) =




0 when �∈ [b0(n);∞);
1 when �∈ [b1(n); b0(n));
· · ·
q when �∈ [bq(n); bq−1(n));

(3.2)

where the interval [bj; bj−1) is empty if bj = bj−1; j = 1; : : : ; q.

Proof. The conclusion is proved by induction. As its =rst step; we show that there exists a scalar
b0 such that

K∗(n; �)
{

=0 when �∈ [b0;∞);
¿ 0 when �∈ [2; b0):

(3.3)

First; let us prove the existence of b0 de=ned by

b0 = b0(n) = min{� | �¿ 2; u(0; n; �)6 u(1; n; �)}: (3.4)

Comparing u(0; n; 2) with u(1; n; 2); there are two cases: either

u(0; n; 2)6 u(1; n; 2) (3.5)
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or

u(0; n; 2) ¿u(1; n; 2): (3.6)

For the former case; b0 = 2 obviously satis=es (3.4). As for the latter case; it is easy to =nd a
su%ciently large �̃ such that

u(0; n; �̃)6 u(1; n; �̃): (3.7)

According to (3.6) and (3.7); the existence of the scalar b0 de=ned by (3.4) follows from Lemma
2.5.

Next we show that the scalar b0 yields (3.3). From (3.4)

u(0; n; b0)6 u(1; n; b0):

Hence, by Lemma 2.1, we get

K∗(n; b0) = 0: (3.8)

Furthermore, by (3.8) and Lemma 2.4, we conclude that when �∈ [b0;∞)

u(0; n; �)6 u(1; n; �);

which implies that

K∗(n; �) = 0: (3.9)

On the other hand, by (3.4), we conclude that when �∈ [2; b0),

u(0; n; �) ¿u(1; n; �);

which implies that

K∗(n; �) ¿ 0: (3.10)

Combining (3.9) and (3.10) yields the validity of (3.3). The =rst step of the induction is completed.
The second step begins with assuming that there exist j + 1 scalars

bi = min{� | �¿ 2; u(i; n; �)6 u(i + 1; n; �)}; i = 0; : : : ; j (3.11)

such that

2 ¡bj6 bj−16 · · ·6 b16 b0 (3.12)

and

K∗(n; �)




=0 when �∈ [b0;∞);
=1 when �∈ [b1; b0);
· · · · · ·
=j when �∈ [bj; bj−1);
¿ j when �∈ [2; bj):

(3.13)

Let us show that there exists a scalar

bj+1 = min{� | �¿ 2; u(j + 1; n; �)6 u(j + 2; n; �)} (3.14)
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such that

26 bj+16 bj6 · · ·6 b16 b0 (3.15)

and

K∗(n; �)




=0 when �∈ [b0;∞);
=1 when �∈ [b1; b0);
· · · · · ·
=j when �∈ [bj; bj−1);
=j + 1 when �∈ [bj+1; bj);
¿ j + 1 when �∈ [2; bj+1):

(3.16)

To show the existence of the scalar bj+1 de=ned by (3.14), consider the two cases

u(j + 1; n; 2)6 u(j + 2; n; 2) (3.17)

and

u(j + 1; n; 2) ¿u(j + 2; n; 2); (3.18)

respectively. For case (3.17), bj+1 is obviously 2. For case (3.18), by (3.13), we have

K∗(n; bj) = j: (3.19)

Therefore, by Lemma 2.1,

u(j + 1; n; bj) ¡u(j + 2; n; bj): (3.20)

According to (3.18) and (3.20), the existence of the scalar bj+1 de=ned by (3.14) follows from
Lemma 2.5. In addition, by de=nition (3.14), we have

26 bj+16 bj: (3.21)

At last, we show by (3.16) or by (3.13) that when bj+1 ¡bj

K∗(n; �) = j + 1 when �∈ [bj+1; bj) (3.22)

and when 2 ¡bj+1

K∗(n; �) ¿j + 1 when �∈ [2; bj+1): (3.23)

In fact, to show (3.23), on one hand, noticing (3.19), Lemma 2.4 and (3.11), when �¡bj, we have

u(0; n; �) ¿ · · ·¿u(j; n; �) ¿u(j + 1; n; �): (3.24)

Particularly, (3.24) with � = bj+1 yields that

u(0; n; bj+1) ¿ · · ·¿u(j + 1; n; bj+1): (3.25)

On the other hand, de=nition (3.14) implies that

u(j + 1; n; bj+1)6 u(j + 2; n; bj+1): (3.26)

By Lemma 2.1, combining (3.25) and (3.26) leads to

K∗(n; bj+1) = j + 1; (3.27)
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which implies, by Lemma 2.4, that when �¿ bj+1

u(j + 1; n; �)6 u(j + 2; n; �): (3.28)

Thus combining (3.24) and (3.28) yields that, when �∈ [bj+1; bj)

u(0; n; �) ¿ · · ·¿u(j + 1; n; �)6 u(j + 2; n; �): (3.29)

Therefore, by Lemma 2.1, we conclude the validity of (3.22). To show (3.23), noticing that (3.27),
Lemma 2.4 and (3.14) lead to when �¡bj+1

u(0; n; �) ¿ · · ·¿u(j + 1; n; �) ¿u(j + 2; n; �): (3.30)

Hence, the validity of (3.23) follows.
Noting that in induction hypothesis (3.12), it is assumed that 2 ¡bj. However, in its conclu-

sion (3.15), we get 26 bj+16 bj. So the sequence b0; b1; : : : is nonincreasing. Furthermore, we claim
that its last element must be bq, due to de=nition (3.14) with j + 1 there being replaced by q =
K∗(n; 2).

For problem (2.1)–(2.4), Theorem 3.1 not only shows the existence of the analytic expression
(3.2) of the solution, but also provides an approach by which the parameters q and b0; b1; : : : ; bq in
(3.2) can be speci=ed via =nding a number of the smallest global solutions K∗(n; �) to (2.1)–(2.4)
with di>erent �. In fact, for a given dimension n, by Theorem 3.1, q=K∗(n; 2) and bq = 2. In order
to specify b0; : : : ; bq−1, suppose that the precision % is given, which means that bc

j (j = 0; : : : ; q− 1)
are acceptable as approximates if

|bc
j − bj|6 %:

Thus b0 is speci=ed by the following steps:

Step 0: Set bl = 2 and br = 4.
Step 1: Let Rb = (bl + br)=2 and obtain K∗(n; Rb). If K∗(n; Rb) = 0, then br = Rb and go to Step 3.
Step 2: Set bl = Rb. If K∗(n; br)¿ 1, then br = 2br .
Step 3: If br − bl6 %, then b0 = Rb and stop. Otherwise, go to Step 1.

As for specifying of bi, i = 1; 2; : : : ; q − 1, we only need to modify the above steps slightly as
follows: In Step 0, br =4 is replaced by br =bi−1; In Step 1, K∗(n; Rb)=0 is replaced by K∗(n; Rb)= i;
In Step 2, “if K∗(n; br)¿ 1, then br = 2br” is deleted.

As an example, for n = 200 with the precision % = 0:01, we get the expression

K∗(200; �) =




0 when �∈ [4:66;∞);
1 when �∈ [2:61; 4:66);
2 when �∈ [2; 2:61):

(3.31)

Note that Theorem 3.1 is useful to show the advantage of the corresponding Newton-PCG method
where expression (3.2) is incorporated. For example, consider the case n=200; �∈ [�l; �h]=[2; 2:60]
and compare the e%ciency of Newton-PCG method with that of Newton’s method by Ostrovskii’s
de=nition [6].
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De!nition 3.1. E%ciency & (Ostrovskii). Suppose that the sequence {x0; x1; : : : ; xk ; : : :} generated by
an algorithm converges to the solution x∗ with q-order %; and the computation cost; required to
compute xk+1 from xk ; is Q. Then the e%ciency & of the algorithm is

& =
ln %
Q

: (3.32)

Obviously, here the q-order of Newton’s method is at most �h =2:60. On the other hand, it can be
shown that the average q-order of Newton-PCG method in (1 +K∗) steps at least is �l = 2. Now let
us turn to the computation cost. For simplicity, we neglect the cost to compute the Hessian and the
gradient, and consider only the numbers of the multiplication operations involved in solving Newton
equations. For Newton’s method, the cost in every step is

QN(n) =
1
6

n3 +
3
2

n2 − 2
3

n: (3.33)

For Newton-PCG method , its average cost in 1 + K∗ steps is

QN-PCG(n; K∗; �) =
QN(n) +

∑K∗

m=1 ’(�; m)QSUB(n)
1 + K∗ ; (3.34)

where ’(·; ·) is de=ned in (2.3), and QSUB(n) = 2n2 + 6n + 2 is the multiplicative operations in each
PCG subiteration.

Denote &N and &N-PCG as the e%ciency of Newton’s method and Newton-PCG method, respec-
tively. Noticing n= 200; �∈ [�l; �h] = [2; 2:60], and by (3.31), K∗ = 2, it is easy to get the estimates

&N6
ln 2:60

QN(200)
(3.35)

and

&N-PCG¿
ln 2

QN-PCG(200; 2; 2:60)
: (3.36)

So, by (3.33)–(3.36), we have

&N=&N-PCG ¡ 0:89;

which shows that Newton-PCG method is more e%cient than Newton’s method.
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