
Stochastic Processes and their Applications 33 (1989) 163-173 
North-Holland 

163 

A NOTE ON LIMIT THEOREMS FOR PERTURBED 

EMPIRICAL PROCESSES 

J.E. YUKICH 

Department qf Mathematics, Lehigh University, Bethlehem, PA 1801.5, USA 

Received 5 May 1988 

Revised 16 December 1988 

Let X,, in 1, be a sequence of i.i.d. [W“-valued random variables with common distribution P. Let 

H,,, n 2 1, be a sequence of distribution functions (d.f.) such that e,, s H,,, where H,, is the d.f. 
of the unit mass at zero. The perturbed empirical d.f. is defined by F,,(x):= n-’ 1,. ,I H,,(x- X,); 

F,, denotes the associated perturbed empirical probability measure. Strong laws of large numbers 

and weak invariance principles are obtained for the perturbed empirical processes ( p,, - P)(J’), 

,f t 9, where 9 denotes a class of functions on Iw”. The results extend and generalize those of 

Winter and Yamato and have applications to non-parametric density estimation. 
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1. Introduction 

Let X,, i > 1, be a sequence of i.i.d. Rk-valued random variables with common law 

P P is assumed to be a probability measure on 22, the usual Bore1 g-algebra. The 

nth empirical measure for P is 

P,:= n-‘@,,+. . .+6X,,), 

where S, denotes the unit mass at x. Let .F be a class of real-valued measurable 

functions on [Wk. The empirical process indexed by 9 is denoted by 

(P,P)(j):=lf(dP,,-dP), fe% 

Let H,, n 3 1, be a sequence of distribution functions; assume that H,, 3 Ho (i.e., 

IfdH, --f(O) whenever f: Rk -j R is continuous and bounded), where H,, is the 

distribution for 8,. As in Winter (1973) and Yamato (1973), define for all x E Rk 

the perturbed empirical distribution function 

Qx) := .-’ C Hn(x-Xi), (1.1) 
i c ,I 
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The estimator fi,, differs from the usual empirical distribution function 

F,,(x):= n-’ 1 &(x - X, 1 
i- ,1 

in that the mass 6’ IS no longer concentrated at X,, but is distributed around X, 

according to H,,. The assumption H,, : H,, helps insure that the asymptotic behavior 

of F,;, -F will be close to that of F,, -F, where F is the distribution function of X. 

Winter (1973) and Yamato (1973) have shown that if P is continuous then F,;, 

has the “Glivenko-Cantelli property”, that is, 

11 F,;, - FII -+ 0 a.s., (1.2) 

where here and elsewhere i/fll d enotes the essential supremum of the function f: 

This note considers limit theorems for the general perturbed empirical process 

where pn denotes the perturbed probability measure associated with i,, and 9 a 

general class of measurable functions not necessarily of the form { 1, x,,l: x E R} as 

required in (1.2). Sufficient conditions on 9, P and I’,,, are found such that the 

following strong law of large numbers (SLLN) holds: 

((I’,,-P)(f)I,,=If,f(d~,,-dP)l,,--,O a.s. as n+m, 

where 1 . I.+ denotes supremum norm over .F. Here and elsewhere the a.~. convergence 

is with respect to Pr*, the usual outer measure associated to Pr:= P‘, the infinite 

product measure on the infinite product of R” with itself. (See Dudley, 1984, for 

details.) The results, which are linked to non-parametric density estimation, extend 

and generalize those of Winter (1973) and Yamato (1973) and have a variety of 

applications. In addition to the SLLN we also obtain an invariance principle for 

the perturbed empirical process. 

The perturbed empirical process is studied by placing it within the standard 

framework of empirical processes (see Dudley, 1984; Gaenssler, 1983; and Pollard, 

1984, for extensive treatments of the subject; see also Gin6 and Zinn, 1984, 1987, 

for more recent developments). Limit theorems for perturbed empirical processes 

essentially amount to limit theorems for empirical processes indexed by a sequence 

of function classes varying with n, the sample size. 

The following definition will be useful (Dudley, 1984); %(R”) denotes the con- 

tinuous functions on R“. 

Definition 1.1. Given ,f, h E %(R”) let [J h] := {g: [w” + R such that fs g 4 h point- 

wise}. Given a class of functions 3 and a probability measure P on Rh, let 

Nt ‘(E, 9, P):=min{m: 3,f,, . . ,.f, in 5?‘(R”, %I, P) such that s~lJy=, {[.f;,.f;]: 

1‘(J; -J) dP< E}. log N’ ‘(F, 9, P) is called metric entropy with bracketing; the usual 

definition, however, does not require continuity of the bracket functions (Dudley, 

1984). 
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Starting with (1.1) it is natural to define the associated perturbed empirical measures 

by P,, := pL, * P,,, where pL, is a sequence of probability measures on Rh. We assume 

once and for all that /lm s S,] and that the p,, are independent of the P,,. It is easier * 
and more convenient to work with the measures P, instead of the distribution 

functions F,l ; working with I’,,, permits application of the standard theory of empirical 

processes and also yields results of greater generality. 

If 9 denotes a class of real-valued functions on [w’ then write 9~ SLLN( P, P,,) _ 
(resp. 9~ SLLN( P, P,,)) iff 

IJ 
f(dP,, -dP) --$ 0 a.s. (resp. f(dP,, -dP) - 0 a.~.). 

.i II .i 

Throughout, f,(y) and f(x+~s) are used interchangeably and .@ denotes the class 

of translates of all elements of 3, i.e. 4:= {,f,: x E R“,.~E 9}. 

Notice that for all f E 9, 

I 
,f(d&-dW= fdb.,, * P,,)- 

i I 
.fdJ-' 

= 
II 

f(x+Y)dP,,(y)dpn(x)- fb)Wy)dpL,,(xh 

The triangle inequality yields 

where 

and 

V(n):= .f(.x+Y) dP,,(y) dwu,,(x) - f(x+Y)df'(.v)dpn(-Y) 

B(n):= f(x+y)Wy)dpu(x)- f(y)Wy)dpL,,(x). 

V(n) and B(n) are the stochastic and non-stochastic (bias) components, respectively. 

If 8, SLLN( P, P,) then 1 V( n)l.+ + 0 a.s.; if, in addition 

IB(n)l, = 1 j j .f(x+Y)-f(4')dP(y)d~u,(x) +O, (2.1) 
.Y 

then 9~ SLLN(P, Pn). In fact, since 

.f& -dP) =IV(~)+~(~)l~~IlV(~)l.~-I~(~)l.~l, .2 
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it follows that if .@E SLLN(P, P,) and SE SLLN(P, r’,,,) then IB(n)l,,+O, i.e. (2.1) 

is necessary as well as sufficient for 9~ SLLN( P, Fe’,,. 

Proposition 2.1. Let 9, 4 and p,, be as above; suppose @E SLLN( P, P,,). Then 

,f(dl?,, -dP) +O a..~. e 
.F 

(A -f) dP dr*,,(x) + 0. 
.i 

This simple proposition is especially useful when 9 is closed under translations. 

For example, we easily deduce the Winter-Yawato version of the Glivenko-Cantelli 

theorem for perturbed empirical measures. 

Corollary 2.2 (Winter, 1973; Yamato, 1973). Let 9:= {I~~_~,\-,: x E R}. Then 

.f(dk -dP) ,i = II(k - F)(x)11 +O a.s. (2.2) 

for any continuous probabilit~~ measure P on R. 

This results implies that if F has a density and jH is a “typical” non-parametric 

density estimator and p,;,(x) := Ir,i,( t) dt, then F,, converges uniformly to F a.s. 

Actually, we prove later that (2.2) holds in higher dimensions. For the moment we 

sketch the proof of (2.2). 

Proof. Since 3~ SLLN(P, P,,) it suffices to show convergence of the bias term (2.1). 

By continuity of P, VF > 0 36 > 0 such that P{[a, b]} < ie whenever b -a < 6. Find 

no:= n,,(6) such that Vn Z= n,,, p,,{x: 1x1) S}<$E. Then Vn 2 n,, 

le(nh =yp 1 p{(y, x+yll dpn(x) 

I 
8 

s Sup p{(y, X+y]} d/.&,,(x)+& G F. 0 
-6 ’ 

We easily deduce two additional corollaries. Let BL(l) := {f:R” +R such that 

If(x) -f(y)1 Sz IIX -Y II v.7 Y E II+ and 1l.f 11 G 1). BL( 1) is the set of bounded Lipschitz 

functions on Rh. 

Corollary 2.3. BL( 1) E SLLN( P, p,,). 

Proof. Since N’ ‘(8, BL( I), P) < CO V/F > 0 it follows that BL( 1) E SLLN( P, P,,) (see 

e.g. Dudley, 1984, Theorem 6.1.5). Since BL(l) is translation invariant it suffices to 
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show le( n)l,- + 0. We have 
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< I llxll dp,,(x)+2pn{X: llxll > ‘I ,,r,,~-F 

for n large enough. 0 

Corollary 2.4. Let f: Rk -;r R be uniformly continuous, llfll < a3 and S:= {f,: x E R}. 

Then 9~ SLLN( P, P,,). 

Proof. Since SE SLLN(P, P,) it suffices to show convergence of the bias term (2.1). 

Let 0 < E < 1 be arbitrary. By the uniform continuity of .f; 36 > 0 such that Vx, J 

with [Ix -yll < 6 we have If(x) -f(y)1 < ;E. Al so, 3n,:= n,,( 6) such that for all n 2 n,,, 

/1,(x: llxll s 61~ I- ~l(WIIL where llfll IS assumed positive, else there is nothing 

to prove. Therefore 

IB(n)l., c sup 1” 11 fi(x+y)-f,(y)1 dP(y) d/&(x)+&. 
, -8 

The uniform continuity off implies that the integrand is at most $F, showing that 

IB(n)l,, S E. 0 

3. Metric entropy and the SLLN for perturbed empirical processes 

In this section we provide sufficient conditions guaranteeing .FE SLLN( P, p,,); it is 

assumed throughout that the elements of 9 are bounded by one in the supremum 

norm. 

Recall that Blum (1955), DeHardt (1971) and Dudley (1984) have shown that if 

N’ ‘(F, .F, P) (00 VF > 0 then .F/“r SLLN(P, P,,). (Actually, this was proved without 

any continuity assumption on the bracket functions.) The following theorem shows 

that the condition N’ ‘(E, 9, P) < 00 VE > 0, together with the implicit hypothesis 

p,, z &, which cannot be removed in general, implies SE SLLN( P, p,,). This result 

should be considered as the analog of the Blum-DeHardt-Dudley theorem for the 

perturbed case. 

Theorem 3.1. Let N’ I( F, 9, P) <cc V’F > 0. Then 

f(dp,, -dP) +O a.s. 
.% 

(3.1) 
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Proof. Let F > 0. Clearly, P,, * pcL, & P * 6,, as. since P,~ 4 6,, and P,, 5 P as. Thus 

for each bounded and continuous .f‘ on Rh, 

e 

f(dP,, -dP) +O a.s. 

Without loss of generality we may assume that each bracket function is bounded 

by one in the sup norm. Thus, if m := N’ ‘(a, 9, P) then 3n,:= no(e) such that for 

all n 3 n,,, 

max .f;(dP,, -dP) <F, (3.2) 
I- VI I5 

except on a set with probability less than F. 

Next, for each j’~ 5 find a bracket [f;,,f;] such that f; <fsf;. Then by (3.2) and 

the definition of a bracket we have on a set with probability greater than 1 -F 

(Dudley, 1984), 

I(6, - P)(f’)l s l(k, - PM-X)1+ I(& - W.fJ 
~I(~,,+P)(.f;-,t)l+F~I(~,-P)(J;-.f;)I+3&~5&. 

This holds for all fr 9 and thus (3.1) holds as desired. 0 

Applications 

Theorem 3.1 applies to a variety of classes of functions. For example, if 9:= 

{x+e’“:I I } h f t s 1 , t en or any P, N’ ‘(E, 9, P) < ~0 VE > 0 (smooth the brackets of 

Yukich, 1985), implying a SLLN for the perturbed empirical characteristic function: 

lim sup 
II 

ei”(dpm -dP) =0 a.s. 
??-I ~1~~. I 

Next, let +Z := {(-CO, x]: -00, x E R”}, 9:= {l,,: C E %‘} and P a probability 

measure on [WA satisfying the following “continuity” condition (6A denotes the 

boundary of the set A): 

WCE %, P(K)=O. (3.3) 

Note that (3.3) is satisfied iff for all hyperplanes H perpendicular to the axes 

P{ H} = 0. Under (3.3) it can be shown that N’ I( F, 9, P) < ~0 VE > 0 (use the results 

of Blum, 1955; DeHardt, 1971; together with standard smoothing operations to 

generate a finite number of continuous brackets). This implies a SLLN for the 

multidimensional perturbed empirical distribution function. This readily extends 

the Winter-Yamato results to higher dimensions; their methods are tied to the 

properties of distribution functions on R and do not easily admit an extension. We 

have thus obtained a generalization of Corollary 2.2. 

Corollary 3.2. Let F,, denote the perturbed empirical 

R,{( -a, xl], x E Rh, where P satisfies condition (3.3). 

/IF,;, - FIl -+ 0 a.s. 

distribution function g,,(x) := 

Then 
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4. Weak invariance principles for perturbed empirical processes 
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Extensions of the above methods yield a weak invariance principle (abbreviated 

WI) for (r’, - P)(f), f E .F. Say that 9~ WI( P, P,,) iff 9 is GpBUC and there exist 

processes y(f), J‘E 9, where Y, are independent copies of a suitable Gaussian 

process Gp, such that VF > 0, 

lim Pr” max 
,I-Lm 1 ,?I- ,1 

or, equivalently 

lim Pr* max 
n-z. 1 m c ,1 

n-“*,Tm (f(x,)-p(f)- y,(f)) 

n~“‘[m(P,,(f)-P(f))- 1 y,(f)] 
,c m 

This condition is equivalent to .F having the P-Donsker property (see Dudley, 1984; 

Dudley and Philipp, 1983; Gaenssler, 1983; Gin6 and Zinn, 1984, 1987; Pollard, 

1984; Talagrand, 1988, for notation, details and sufficient conditions implying weak 

invariance principles). Note that the Y, as. have values in the Banach space B of 

bounded functions on 5 equipped with the supremum norm / . I.+-. Say that 9~ 

WI( P, F,,) iff VE > 0, 

n-l” ,Fm (L(X,) - P(f) - Y,(f))dpU,(x) 
I I 

> & =O, 
.Y 

or, equivalently, 

lim Pr” max 
n-r 1 I 

n-l’* [m(Prn * Pu,(.f)-w-))- c r;(f)1 > & =o. 
m -. n ;- m I I .3 

One could also say that 5Fc WI(P, p,,) if p,, in the above condition is replaced by 

pm!, but this approach leads to technically more complicated arguments in what 

follows and will not be pursued here. The following is most useful when 9 is 

translation invariant; formally speaking, it may be considered as a weak invariance 

principle analog of Proposition 2.1. 

Proposition 4.1. Let 9, @, Pand F,, be as above; r’, := t_~,, * P,,. Suppose .@E WI( P, P,,) 

and 

A, := max 
II 

n-l’* ;& (r;(f) - y,(L)) Gt(x) z 0. 
m= n .i 

Then 9;~ WI(P, p,,) ifSn”21B(n)l,F+0, that is, ifs 

n l/2 (f-fx) dP dp,,(x) + 0 as n + a. 
.F 
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Proof (sufficiency). Denote by D, the quantity 

D, := max .~“2,X~ (A($) - U”) - Y(f)) dpCL,(x) . 
m- n .F 

We need to show D, % 0. The triangle inequality yields 

D, c max n-l” C (.f,(X,)-P(A)- Y(A)) dpL,(x) +A,, 
m- ,1 ,‘ ,n .F 

+max K” 
II 

C P(L-f) dpL,,(x) . 
m _- ,I , _ m .y 

The second and third terms in this inequality converge to zero by hypothesis. 

Applying the Dudley-Philipp invariance principle (Dudley and Philipp, 1983, 

Theorem 1.3) to the P-Donsker class .@, it follows that the first term converges to 

zero, concluding sufficiency. Necessity follows approximately as in the proof of 

Proposition 2.1. 0 

The following theorem provides a weak invariance principle for the perturbed 

empirical process. Letting ep(A g) := (I (.f- g)’ dP)“‘, assume from now on that 9 

satisfies the following regularity condition for P: 

Vs>O 30<n<a such that Yf’tS Vllxli<v, ep(f;fY)<s. (4.1) 

Theorem 4.2. Let 9 be P-Donsker; assume that 9 is translation invariant and satisfies 

(4.1) for P Ifn”‘/B(n)l,,+O, that is, if 

n I/2 

IN 
(.f-.L) dP G,,(x) + 0 as n -+ a, 

F 

then 9”~ WI( P, r’,) 

It is now a simple matter to obtain a weak invariance principle for the perturbed 

empirical distribution function on [WA, k 2 1 (cf. Puri and Ralescu, 1986, for a 

pointwise version of a similar result). This result, like Corollary 2.2, is of interest 

in density estimation and implies a weak invariance principle for the normalized 

distribution function of a “typical” non-parametric density estimator. We are 

unaware of similar multidimensional results. 

Corollary 4.3. Let 9:= {l,_,,,,: x E OX”} and Pa probability measure on [w’ satisfying 

(4.1). If 

n ‘I’ sup 
II 

1 
Ic~lW” 

c,,r+,~(~) dP(y) h(x) + 0 as n + a, 

then 9~ WI( P, p,,). It ,foliows that for all F > 0, 

lim Pr* sup n[Fn(x)-F(x)]-n-“’ 1 Y;(l,_,,,,) >F =O. 
n-J: ( I x I- n I I 
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Proof qf Theorem 4.2 

By Proposition 4.1 it suffices to show that A, Pr* 0; this will follow from well-known 

properties of Gaussian processes, Levy’s maximal inequality and the regularity 

condition (4.1). 

First, notice that max,,, n IH-“~ 1;. m Y,(f)l,$ is stochastically bounded 

Lemma 4.4. For all p > 0 3 C < 00 such that for all n > 1, 

Proof. This follows from the generalized Levy maximal inequality for symmetric 

Banach space valued random variables (Dudley and Philipp, 1983, Lemmas 2.5 and 

2.9) Markov’s inequality, the Fernique-Slepian lemma (Gin6 and Zinn, 1984, 

Theorem 2.17(a)) and El Y,(f)\,, < ~0. 0 

Next, let F > 0 and n := T(F) be defined by (4.1). For small E it will be shown that 

max sup rr-‘l’ 
m-n IIYIIC TJ 

;_cm ( y,(f) - WL)) 
.+ 

is small with high probability. The precise statement actually shows a little more. 

Lemma 4.5. There exists D:= D(&)J,O as ~10 such that for all n 3 1, 

lim Pr* 
1 

max sup n-‘12 c (Y(f)-Y(g)) >D(E) =O. 
?_lO ,?I~* /;n:r,>(/J,--F I’m I I 

Proof. Given F > 0, let H( F, 9, ep) denote the logarithm of the covering number of 

9 with respect to the pseudo-metric ep (Dudley, 1984). Find D := D(s) 40 such 

that the quantity 

C(E):= 4E” 
{ 

r ;u~,~ 1 y,(f) - Y,k)l+ 13&ff”%a, 9, ep> D(E) 
. c II 

converges to zero as” &JO. (To see that this is possible, use [El Y,(f)l,F<oo, 

lim FlO suP/;g:e,.( f,,q)-‘> I y,(f) - Y,(g)1 = 0 a.s., d ominated convergence on the first term 
and Sudakov’s minorization on the second term.) 

Note that Markov’s inequality and Fernique’s comparison theorem (Fernique, 

1985, Corollaire 1.6) applied to the Gaussian processes Y, and m-“* C,_ “, Y, imply 

that 
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The generalized Levy maximal inequality (Dudley and Philipp, 1983, Lemmas 2.5 

and 2.7) applied to the random variables X,(f; g):= Y,(f) - Y,(g), Markov’s 

inequality and a second application of Fernique’s comparison theorem therefore 

imply that 

Since c(E) converges to zero as E J 0 the proof of Lemma 4.5 is complete. 0 

To complete the proof of Theorem 4.2 combine Lemmas 4.4 and 4.5 as follows. 

Given p > 0 it suffices to show Pr*{d,, > 2p) < 2/3 for n sufficiently large. Choose 

E>O small enough so that D(E)c/~ and (l-c(F))~‘~c(F)<~; let n:=n(E) be 

defined by condition (4.1). 

By the assumed convergence /*,, 1 &, there is an n,,:= n,,(P) such that for all 

n 2 no, 

&ix: IIXII > 771 d Pl(2C)* (4.2) 

C as in Lemma 4.4. For all n 2 n,,, Lemma 4.4 and inequality (4.2) imply that 

max n 
-l/2 T 

L ( Y,(f) - y,(L)) @L,,(x) 
,,1 _ ,I IIYI! -7) ,- ,,I ./ 

s J max c”’ C ( Y,(f) - Y(f)) dp,,(x) 
IJ.xI/ “) *- )1 I‘ m .i 

except perhaps on a set with probability smaller than p. 

Additionally, since D(E) G /3, Lemma 4.5 implies that for all n a 1, 

Pr* max 
i II 

nm"2 C (Y(f)- Y,(L)) G.,(x) >P 

m .- I, ll~ll- 'I j- m I I .z 

(4.3) 

<4C(E)/(1-C(F)). (4.4) 

Combining (4.3) and (4.4) gives for n 2 n,, Pr*{d,>2P}SP+4C(E)/(1-c(&))< 

2p, as desired. 0 
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