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a b s t r a c t

In this work, we consider a generalized nonlinear variational-like inequality problem,
in topological vector spaces, and, by using the KKM technique, we prove an existence
theorem. Our result extends a theorem of Ahmad and Irfan [R. Ahmad, S.S. Irfan, On the
generalized nonlinear variational-like inequality problems, Appl. Math. Lett. 19 (2006)
294–297].

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Variational inequalities were introduced and considered by Stampacchia [1] in the early sixties. It has been shown that
a wide class of linear and nonlinear problems arising in various branches of mathematical and engineering sciences can be
studied within the unified and general framework of variational inequalities. Variational inequalities have been generalized
and extended in several directions using novel techniques. The variational-like inequality, also known as the pre-variational
inequality, is one of the generalized forms of variational inequalities; see [2,3] and the references therein. Variational-like
inequalities and generalized variational-like inequalities are powerful tools for studying nonconvex optimization problems
and nonconvex and nondifferentiable optimization problems, respectively; see, for example, [4,5,2,6] and the references
therein.
In this work, we consider a generalized nonlinear variational-like inequality problem, in the setting of topological vector

spaces, and we prove an existence theorem concerning its solution.
Let 〈X, X∗〉 be a dual system of Hausdorff topological vector spaces and K a nonempty convex subset of X . Given single-

valued mappings f , g, p : X∗ → X∗, a bifunction η : K × K → X , multivalued maps M, S, T : K → 2X
∗

, and a map
h : K × K → R, we consider the following generalized nonlinear variational-like inequality problem (GNVLIP):{Find x ∈ Ksuch that ∀y ∈ K

∃u ∈ M(x), v ∈ S(x), andw ∈ T (x) satisfying (GNVLIP)
〈p(u)− (f (v)− g(w)), η(y, x)〉 ≥ h(x, y).

Examples of (GNVLIP):
(1) If h(x, y) = φ(x)− φ(y), where φ : K → R and (x, y) ∈ K × K ,, then (GNVLIP) collapses to the problem studied by

Ahmad and Irfan [7].
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(2) If h(u, u) = 0, η(v, u) = v−u, f (v) = g(v) = 0, for all u, v ∈ K andM(u) = {F(u)},where F : K → X∗, u ∈ K , then
(GNVLIP) collapses to the mixed quasi-variational inequality problem (for short, MQVIP) which consists of finding u ∈ K
such that

〈F(u), v − u〉 + h(v, u) ≥ 0, ∀v ∈ K .

Note that MQVIP was studied in [2,3,12].
In [7] the authors studied (GNVLIP) for h(x, y) = φ(x) − φ(y), where φ : K → R and (x, y) ∈ K × K , in the setting

of locally convex spaces. They obtained an existence result for the solution of (GNVLIP) but the proof of their main result
seems to be incomplete since in [7] the authors claim that the set A = {xλ} ∪ {x∗} is compact, where the net {xλ} converges
to x∗, but this is incorrect in general.
In the rest of this section, we recall some definitions and results which are needed in the sequel.

Definition 1.1. Let X and Y be two topological spaces. A set-valued mapping T : X → 2Y is called:

(i) upper semicontinuous (u.s.c.) at x ∈ X if for each open set V containing T (x), there is an open set U containing x such
that for each t ∈ U , T (t) ⊆ V ; T is said to be u.s.c. on X if it is u.s.c. for each x ∈ X ,

(ii) compact if cl(T (X)) is a compact subset of Y ,
(iii) closed if the graph of T , denoted by Gr(T ), i.e., the set Gr(T ) = {(x, y) : x ∈ X, y ∈ T (x)}, is a closed set in X × Y .

Lemma 1.2 ([8]). Let X and Y be two topological spaces. If T : X → 2Y is a set-valued mapping, then:

(i) T is closed if and only if for any net {xα}, xα → x, and any net {yα}, yα ∈ T (xα), yα → y, one has y ∈ T (x),
(ii) if Y is compact and T (x) is closed for each x ∈ X, then T is upper semicontinuous if and only if T is closed,
(iii) if for any x ∈ X, T (x) is compact, and T is upper semicontinuous on X, then for any net {xα} ⊆ X such that xα → x ∈ X

and for every yα ∈ T (xα), there exists y ∈ T (x) and a subnet {yβ} of yα such that {yβ} → y.

Definition 1.3. Let X be a nonempty subset of a topological vector space E. A multifunction F : X → 2E is said to be a KKM
mapping if for each nonempty finite set {x1, . . . , xn} ⊆ X , we have

conv{x1, . . . , xn} ⊆
n⋃
j=1

F(xj).

The following version of the KKM principle is a special case of the Fan KKM principle [9].

Lemma 1.4. Let X be a nonempty subset of a topological vector space E and F : X → 2E be a KKM mapping with closed values.
Assume that there exists a nonempty compact convex subset B of X such that D =

⋂
x∈B F(x) is compact. Then⋂

x∈X

F(x) 6= ∅.

2. Main results

In this section we provide an existence theorem for (GNVLIP), in topological vector spaces. Throughout this work, we
assume that the pairing 〈., .〉 is upper semicontinuous.
Notation:

ψΩ(x) = {y ∈ Ω : ∀u ∈ M(x), v ∈ S(x) andw ∈ T (x) s.t. 〈p(u)− (f (v)− g(w)), η(y, x)〉 < h(x, y)}

whereΩ ⊆ K and x ∈ K .

Theorem 2.1. Let X be a Hausdorff topological vector space and K be a nonempty convex subset of X . Let M, S, T : K → 2X
∗

,
be upper semicontinuous mappings with nonempty compact values, h : K × K → R, and f , g, p : X∗ → X∗ be continuous.
Suppose the following conditions hold:

(i) the map x→ h(x, y) is lower semicontinuous with h(y, y) = 0, for all y ∈ K;
(ii) η : K × K → X is continuous in the second argument such that η(x, x) = 0, ∀x ∈ K ;
(iii) the set ψK (x) is convex, for all x ∈ K ;
(iv) there exist a nonempty compact and convex subset B of K and a nonempty compact subset D of K such that ψB(x) 6= ∅ for

all x ∈ K \ D.

Then the solution set of (GNVLIP) is nonempty and compact.
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Proof. We define Γ : K → 2K as follows:

Γ (y) = {x ∈ K : ∃u ∈ M(x), v ∈ S(x), w ∈ T (x) such that 〈p(u)− (f (v)− g(w)), η(y, x)〉 ≥ h(x, y)}.

We first show that Γ is a KKM mapping. Suppose the contrary, i.e. suppose there exist y1, y2, . . . , yn ∈ K and z ∈
conv{y1, y2, . . . , yn} such that z 6∈ ∪ni=1 Γ (yi). Hence, for all u ∈ M(yi), for all v ∈ S(yi), and for allw ∈ T (yi),we have

〈p(u)− (f (v)− g(w)), η(yi, x)〉 < h(z, yi).

Hence by (iii) and η(z, z) = 0 (note that h(z, z) = 0), we deduce that 0 < 0 which is a contradiction. Next we show that
Γ (y) is a closed subset of X for each y ∈ K . To see this, let (xα) be a net in Γ (y)which converges to x0 ∈ X . Since xα ∈ Γ (y),
by the definition of Γ (y), there exist nets (uα), (vα), and (wα)with uα ∈ M(xα), vα ∈ S(xα) andwα ∈ T (xα) such that

〈p(uα)− (f (vα)− g(wα)), η(y, xα)〉 ≥ h(xα, y). (1)

Since the multivalued mapsM, S and T are upper semicontinuous with compact values, then by Lemma 1.2, (uα), (vα) and
(wα) have convergent subnets with limits, say u0, v0 andw0. Without loss of generality wemay assume that (uα) converges
to u0, (vα) converges to v0, and (wα) converges tow0. Then by the upper semicontinuity ofM , S and T , we have u0 ∈ M(x0),
v0 ∈ S(x0) andw0 ∈ T (x0) (note thatM, S, T are closedmaps sinceM, S, T are u.s.c. with compact values andX is Hausdorff).
The continuity of f , g, p and the upper semicontinuity of 〈., .〉 and (1) yield

〈p(u0)− (f (v0)− g(w0)), η(y, x0)〉 ≥ lim sup
α

〈p(uα)− (f (vα)− g(wα)), η(y, xα)〉

≥ lim inf h(xα, y) ≥ h(x0, y)

(note that the last inequality follows from (i)). Consequently x0 ∈ Γ (y). Hence Γ (y) is closed in K for all y ∈ K . By (iv) the
set

⋂
x∈B Γ (x) is compact. Therefore Γ satisfies all the assumptions of Lemma 1.4. Hence by Lemma 1.4, there exists ȳ ∈ K

such that ȳ ∈ ∩x∈K Γ (x) and so ȳ is a solution of (GNVLIP) (note that the solution set of (GNVLIP) is equal to ∩x∈K Γ (x)).
Hence the solution set of (GNVLIP) is nonempty. By (iv) it is clear that the solution set of (GNVLIP)is a closed subset of the
compact set D. This completes the proof. �

As an application of Theorem 2.1, we establish an existence theorem for the following problemwhich consists of finding
x ∈ K , u ∈ M(x) and v ∈ S(x), such that

〈u− v, y− x〉 ≥ 0 for all y ∈ K . (2)

This problem was studied by Verma [10], in the setting of a real Hilbert spaces. For the next result we need the following
lemma.

Lemma 2.2 ([11]). Let D be a convex, compact set and K be a convex set. Let f : D×K → R be concave and upper semicontinuous
in the first variable, and convex in the second variable. Assume that

max
x∈D
f (x, y) ≥ 0 ∀y ∈ K .

Then there exists x̄ ∈ D such that f (x̄, y) ≥ 0 ∀y ∈ K .

Theorem 2.3. Let X be a Hausdorff topological vector space and K be a nonempty convex subset of X . Let M, S : K → 2X
∗

,with
nonempty compact convex values, be such that:

(a) there exist a nonempty compact and convex subset B of K and a nonempty compact subset D of K such that for all x ∈ K \ D
there exists y ∈ B satisfying

〈u− v, y− x〉 < 0, ∀u ∈ M(x), ∀v ∈ S(x).

Then the solution set of (2) is nonempty.

Proof. One can easily see that the mappingsM, S, T : K → 2X
∗

, p, f , g : X∗ → X∗, h : K × K → R, and η : K × K → X
defined by p(u) = u, f (v) = v, g(w) = 0, η(y, x) = y− x, h(x, y) = 0 and T (x) = {0}, for each (u, v, w) ∈ X∗ × X∗ × X∗
and (x, y) ∈ K × K , satisfy all the hypotheses of Theorem 2.1. Then by Theorem 2.1 there exists x̄ ∈ K such that

∀y ∈ K , ∃(u, v) ∈ M(x̄)× S(x̄) with 〈u− v, y− x̄〉 ≥ 0. (3)

We now define a mapping P : (M(x̄)× S(x̄))× K → R by

P(u, v, y) = 〈u− v, y− x̄〉,

for each (u, v, y) ∈ M(x̄)× S(x̄)× K .We now show:
(i) for each y ∈ K , the mapping (u, v)→ P(u, v, y) is concave and upper semicontinuous (even continuous),
(ii) for each (u, v) ∈ M(x̄)× S(x̄), the mapping y→ P(u, v, y) is convex,
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(iii) max(u,v,y)∈M(x̄)×S(x̄)×K P(u, v, y) ≥ 0.
To see (i), let (uj, vj) ∈ M(x̄)× S(x̄), for j = 1, 2, λ ∈]0, 1[, and fixed y ∈ K . Thus we have

P(λu1 + (1− λ)u2, λv1 + (1− λ)v2, y) = 〈λu1 + (1− λ)u2 − (λv1 + (1− λ)v2), y− x̄〉
= λ〈u1 − v1, y− x̄〉 + (1− λ)〈u2 − v2, y− x̄〉 = λP(u1, v1, y)+ (1− λ)P(u2, v2, y).

Hence the mapping (u, v) → P(u, v, y) is concave. It is clear that the mapping (u, v) → P(u, v, y) = 〈u − v, y − x̄〉 is
continuous and hence upper semicontinuous. The following equality:

〈u− v, λy1 + (1− λ)y2 − x̄〉 = λ〈u− v, y1 − x̄〉 + (1− λ)〈u− v, y2 − x̄〉,

where (y1, y2) ∈ K×K , λ ∈]0, 1[ and (u, v) ∈ M(x̄)×S(x̄), shows that (ii) holds. Now (3) guarantees (iii). Thus themapping
P satisfies all the assumptions of Lemma 2.2 and so there exists (u, v) ∈ M(x̄)×S(x̄) such that P(u, v, y) = 〈u−v, y− x̄〉 ≥ 0
for all y ∈ K . This completes the proof. �
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