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The prefrontal cortex (PFC) provides top-down regulation of behavior, cognition, and emotion, including
spatial working memory. However, these PFC abilities are greatly impaired by exposure to acute or
chronic stress. Chronic stress exposure in rats induces atrophy of PFC dendrites and spines that correlates
with working memory impairment. As similar PFC grey matter loss appears to occur in mental illness, the
mechanisms underlying these changes need to be better understood. Acute stress exposure impairs PFC
cognition by activating feedforward cAMP-calcium- K* channel signaling, which weakens synaptic in-
puts and reduces PFC neuronal firing. Spine loss with chronic stress has been shown to involve calcium-
protein kinase C signaling, but it is not known if inhibiting cAMP signaling would similarly prevent the
atrophy induced by repeated stress. The current study examined whether inhibiting cAMP signaling
through alpha-2A-adrenoceptor stimulation with chronic guanfacine treatment would protect PFC spines
and working memory performance during chronic stress exposure. Guanfacine was selected due to 1) its
established effects on cAMP signaling at post-synaptic alpha-2A receptors on spines in PFC, and 2) its
increasing clinical use for the treatment of pediatric stress disorders. Daily guanfacine treatment
compared to vehicle control was found to prevent dendritic spine loss in layer II/IIl pyramidal neurons of
prelimbic PFC in rats exposed to chronic restraint stress. Guanfacine also protected working memory
performance; cognitive performance correlated with dendritic spine density. These findings suggest that
chronic guanfacine use may have clinical utility by protecting PFC gray matter from the detrimental

effects of stress.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

goals must be held “in mind” and used to guide choice of action.
Understanding these PFC mechanisms has particular clinical sig-

The highly evolved prefrontal cortex (PFC) generates the mental
representations needed to provide top-down regulation of
behavior, thought and emotion (Arnsten, 2009a). These abilities are
often tested in working memory tasks where representations of
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nificance, as deficits in PFC structure and function are common in
mental illness. For example, patients with schizophrenia perform-
ing a working memory task show reduced activity in the dIPFC that
correlates with symptoms of thought disorder (Perlstein et al.,
2001). The onset of schizophrenia is accompanied by waves of
gray matter loss in PFC (Cannon et al., 2014), and reduced PFC gray
matter is a distinguishing characteristic of the illness (Cannon et al.,
2002). Post-mortem studies of the brains of patients with schizo-
phrenia have revealed that neuronal cell bodies are retained, but
there is an extensive loss of dendrites and spines from layers Il and
V PFC pyramidal cells (Selemon and Goldman-Rakic, 1999; Glantz
and Lewis, 2000; Black et al., 2004; Glausier and Lewis, 2013). In
contrast, cortical areas such as the primary visual cortex show more
subtle changes (Selemon and Goldman-Rakic, 1999; Glantz and
Lewis, 2000).

2352-2895/© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Studies of nonhuman primate dorsolateral PFC have shown that
layer III pyramidal cells form microcircuits that generate the mental
representations of visual space needed for spatial working memory
(Goldman-Rakic, 1995; Arnsten, 2013). These networks intercon-
nect via glutamatergic stimulation of NMDA receptor synapses on
dendritic spines (Wang et al., 2013). Research in rodents has shown
that exposure to chronic stress induces a marked loss of layer II-III
dendritic spines that correlates with impaired working memory
(Hains et al., 2009), emphasizing the importance of these synaptic
connections to cognitive function.

Understanding the effects of stress on brain physiology has
immediate clinical relevance, as mental illnesses such as schizo-
phrenia are precipitated and/or exacerbated by stress exposure
(Breier et al., 1991; Mazure, 1995). The PFC is particularly sensitive
to stress exposure: acute stress exposure rapidly takes PFC “off-
line” through neurochemical actions, while repeated stress expo-
sure leads to additional architectural changes (Arnsten, 2009b).
Acute, uncontrollable stress has been shown to rapidly impair PFC
function in monkeys (Arnsten and Goldman-Rakic, 1998), rodents
(Murphy et al., 1996) and humans (Qin et al., 2009). In contrast,
acute stress exposure often enhances the functioning of subcortical
structures, allowing control of behavior to switch from slow,
thoughtful PFC regulation to more rapid, reflexive and habitual
responses (reviewed in Arnsten (2009a)). Acute stress rapidly im-
pairs PFC function through a cascade of intracellular signaling
events (Arnsten, 2009b): high levels of stress-induced catechol-
amine release in the PFC engage dopamine D1 and noradrenergic
alpha-1 and beta receptors, which activate feedforward cAMP-
calcium signaling in spines, which in turn open nearby K chan-
nels that weaken NMDAR synaptic connections. This series of
events reduces PFC neuronal firing and impairs working memory
abilities. The effects of stress exposure can be mimicked by acti-
vating calcium-protein kinase C (PKC) (Birnbaum et al., 2004) or
cAMP-protein kinase A (PKA) signaling (Taylor et al., 1999; Wang
et al., 2007) in the PFC. Conversely, inhibiting cAMP signaling via
post-synaptic alpha-2A receptors on PFC spines, strengthens con-
nectivity and improves cognition through rapid closure of K*
channels (Wang et al., 2007).

With repeated stress exposure, the noradrenergic system grows
stronger (Nestler and Alreja, 1999; Miner et al., 2006; Fan et al.,
2013), while there is dendritic atrophy in PFC. Studies of pyrami-
dal cells in layer II/IIl of rat medial PFC have found that repeated
stress exposure produces a circuit-specific retraction of dendrites,
and a marked loss of spines that is particularly evident in the distal
apical tree (Hains et al., 2009; Seib and Wellman, 2003; Radley
et al, 2006, 2008; Shansky et al., 2009). These dendritic and
spine changes are associated with impaired attentional set-shifting
(Liston et al., 2006), and impairment in working memory (Hains
et al., 2009), emphasizing their functional significance. In young
rats, dendritic atrophy is reversible if the stress exposure is stopped
(Radley et al., 2005; Bloss et al., 2011), suggesting that plasticity
remains. Similar architectural changes in PFC have been seen in
humans, where brain imaging has revealed that repeated stress is
associated with reduced PFC gray matter (Ansell et al., 2012) and
weaker PFC connections (Liston et al., 2009).

What is causing spine loss in the PFC with repeated stress
exposure? Given the immediate clinical relevance of this question,
it is important to uncover the mechanisms that contribute to spine
loss, and thus develop informed strategies for treatment. Previous
research has shown that inhibiting calcium-PKC signaling rescues
spine density and working memory from the effects of repeated
stress exposure (Hains et al., 2009). Thus, it is possible that inhi-
bition of cAMP signaling via alpha-2A receptor stimulation might
also be protective. In vitro studies have shown that the application
of alpha-2A-adrenoceptor agonists such as guanfacine enrich

spinophilin at the cell surface (Brady et al., 2005) and promote
spine growth (Hu et al., 2008; Ren et al., 2011) in cell cultures,
suggesting that guanfacine may enhance or protect connections
in vivo as well.

The current study utilized the chronic restraint stress paradigm
previously shown to induce spine loss and cognitive impairment in
rats (Hains et al., 2009; Radley et al., 2006), and examined whether
chronic treatment with the alpha-2A-adrenoceptor agonist, guan-
facine, prior to daily stress would protect PFC cognition and spine
density from the detrimental effects of chronic stress exposure.

2. Methods
2.1. Overall experimental design

The research was approved by the Yale IACUC in accordance with
the National Institute of Health guidelines for animal care. Male
Sprague Dawley rats (n = 24, 250—350 g from Harlan, Indianapolis,
IN), were pretrained on a spatial working memory delayed alter-
nation task in a T maze to an equivalent level of baseline perfor-
mance (overall mean of 74.3% + 3% correct). They were then tested
prior to drug/stress treatment each day in order to detect the
accumulating effects of chronic stress exposure (schematically
illustrated in Fig. 1). Rats were exposed to either a restraint stress
paradigm (6 h/day) or control handling procedures for 21 days, and
received either vehicle or guanfacine (0.1 mg/kg, s.c.), daily, prior to
stress or control procedures. Thus, there were four treatment
groups: no-stress + vehicle (n = 7), no-stress + guanfacine (n = 5),
stress + vehicle (n = 7), or stress + guanfacine (n = 5). Rats were
assessed for cognitive ability 10 times over the 21 days, and were
rapidly anesthetized and sacrificed following the last test session.
The prelimbic cortex was dissected and processed using the Rapid
Golgi technique for analysis of dendritic morphology and spine
density in layer II/IIl pyramidal cells.

2.2. Cognitive assessment

Rats were singly housed in ventilated cages with corncob
bedding (Harlan Labs Teklad, 1/8”). They were maintained on a
food-regulated diet of 16 g/day (Harlan Teklad Global Diets: 2018S
18% protein), which was sufficient to maintain a healthy growth
curve. Rats were weighed on a weekly basis. Rats were trained and
tested on the spatial delayed alternation task in a T maze during the
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Fig. 1. The experimental design. Rats were trained on the delayed alternation task and
divided into 4 groups with equivalent baseline performance. They then commenced 21
days of restraint stress or control treatment with vehicle or guanfacine pretreatment.
Rats were assessed on the delayed alternation task prior to drug or vehicle treatment,
which preceded 6/hr day of restraint stress or control treatment. Thus, cognitive as-
sessments were performed ~23hr after the last drug treatment, and ~18.5 h after the
last stress session in order to assess the effects of chronic treatment rather than acute
exposure. At the end of the 21 days animals were sacrificed and the brains removed for
assessment of layer II/IIl pyramidal cells in the prelimbic PFC.
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animals’ light cycle as described previously (Birnbaum et al., 2004).
This task requires the animal to remember its previous choice of left
or right arm, and choose the opposite direction on the ensuing trial.
The task demands working memory as well as behavioral inhibi-
tion, and the ability to overcome distraction, and necessitates an
intact medial prefrontal cortical function in rats (Dalley et al.,
2004). After achieving a two-day (two test session) average of
68—78% correct, rats were separated into four groups with equiv-
alent mean baseline performance.

Training and testing were conducted within the same 2-h time
frame by a blinded experimenter. Food rewards were miniature
chocolate chips. In the spatial delayed alternation task, rats were
rewarded for entering either arm of the T maze on the first trial.
Thereafter, for a total of 12 trials per session, rats were rewarded
only if they entered the maze arm that was not previously chosen.
Thus the animal had to maintain the previous selection “online”
over a delay in order to guide the next choice. Four delay lengths (2,
5,10, 15 s) were quasi-randomly distributed over the 12 trials to
prevent ceiling effects. Consecutive errors were defined as the
highest number of consecutive entries into one choice arm in a test
session. The choice point of the maze was wiped with alcohol be-
tween trials to remove any olfactory clues. Testing occurred prior to
daily stress to dissociate sustained from acute effects of the stress.
Rats were tested 10 times (~every two to three days) throughout
the 21-day stress period. The last two days of testing followed the
20th and 21st day of stress. Performance was evaluated as number
of trials correct out of 12. Group differences were compared using
one-way repeated measures ANOVAs, with test session as the
repeated measure. Significant effects were evaluated with Tukey
HSD post-hoc tests and performance over two consecutive test
sessions was averaged and fit to a quadratic curve to illustrate
performance over time. Correlations were analyzed with Pearson's
correlation tests. P < 0.05 was considered statistically significant.

2.3. Chronic stress

Rats in the stress group were restrained in Plexiglas tubes daily,
following testing and drug treatment, for 6 h (10:00AM—4:00PM)
for 21 consecutive days, a paradigm known to reliably produce
dendritic atrophy and spine loss in the prelimbic cortex (Radley
et al., 2006). Animals were monitored to prevent undue distress.
Animals in the no-stress group were handled daily. All animals
were maintained on a restricted diet where food was offered after
the cessation of stress to control for motivational effects.

2.4. Guanfacine treatment

Guanfacine (0.1 mg/kg; Tocris) was diluted in sterile saline and
was administered by subcutaneous (s.c.) injection 20 min prior to
stress onset. Injections occurred after behavioral testing, thus
eliminating the confound of acute drug or stress treatment influ-
encing task performance.

2.5. Morphological analyses

Immediately following the last spatial delayed alternation test
session, rats were decapitated under isoflurane anesthesia. Tissue
was prepared using the Rapid- Golgi kit (FD Neurotechnologies,
Ellicott City, MD) according to manufacturer's instructions.
Following a 14 day incubation period, tissue was sliced coronally
(200 pm) and mounted on gelatin coated slides.

Pyramidal cell bodies (n = 5/rat) lying in layer II/III of prelimbic
cortex (were reconstructed in three dimensions at 80—100x
magnification (40—60x objective lens, with 1.0—2.0 turret magni-
fication) using a microscope equipped with a motorized stage,

video camera system, and Neurolucida morphometry software
(MicroBrightField, Williston, VT). Neurons were reconstructed and
spines were quantified by one of two blinded experimenters. The
two experimenters achieved >90% reliability on spine number and
dendrite reconstruction on reliability tests administered three
times throughout the 18 months of reconstruction. In order for a
neuron to be included in the analysis, it had to satisfy the following
criteria: (1) have a cell body located within layer II/III of the pre-
limbic region as defined by cytoarchitectural characteristics; (2)
demonstrate complete filling of dendritic tree, as evidenced by
well-defined endings and dark and consistent filling; (3) demon-
strate intact primary and secondary branches; (4) have an apical
extent of at least 300 um and a secondary branch emanating from
the apical trunk between 20 and 70 pm from the soma; (5) have
regions for spine quantification unobscured by neighboring
branches.

Spines were quantified in four locations in each reconstructed
neuron: (1) apical branch(es) lying 200 um from the soma (30 pm
segment, mean density was obtained if more than one branch met
this criterion); (2) proximal apical spines on the first apical branch
longer than 30 pm emanating from the apical trunk 20—70 um from
the soma (the first 30 um segment of this branch); (3) proximal
basal branch (first 30 um segment from edge of soma); and (4)
distal basal branch (30—60 pm the edge of the soma). All pro-
trusions that were in direct continuity with the dendritic shaft, or
spine heads located within 1.5 pm from the dendritic shaft, were
identified as a spine. Spine density was expressed as number of
spines per micron of dendrite. One animal in the vehicle control
group and one animal in the vehicle stress group had only 4 neu-
rons reconstructed for spine density. Dendritic length and branch
intersections were evaluated by performing sholl analyses in 30 pm
bins, as described in earlier studies (Radley et al., 2006). Total
dendritic length and branch intersections represent the sum of the
sholl output up to 300 um radial distance from the soma, which was
the greatest extent of the apical dendrite achieved by all neurons
included in the analyses.

2.6. Statistical analyses

Group differences in spine density, dendritic length and den-
dritic branch intersections were compared using a mixed ANOVA
design, with Neurons as the repeated, within-subject measure, and
Group as the between subjects measure. Significant effects were
evaluated with Tukey HSD post-hoc tests and a targeted model to
test for differences between stressed animals with and without
drug treatment. Apical dendritic length measurements were also
analyzed with a fully between subjects analysis of variance to
replicate methods used by earlier studies (Liston et al., 2006).

Correlations were analyzed with Pearson's correlation tests
comparing mean spine density (the average of the 5 neurons within
each animal), and mean performance over the last two days of
testing. P < 0.05 was considered statistically significant.

3. Results
3.1. Changes in weight

Exposure to either repeated stress or guanfacine treatment
significantly reduced weight gain over the 3 week study (Fig. 2A;
significant main effect of stress F(1,20) = 5.43, p = 0.03; significant
main effect of guanfacine F(1,20) = 6.153, p = 0.022; no significant
stress by guanfacine interaction F(1,20) = 0.78, p = 0.783). The
reduction in weight gain with chronic stress exposure is similar to
that seen in previous studies of restraint stress in rats (Radley et al.,
2006).
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Fig. 2. Guanfacine treatment ameliorates stress-induced working memory impairment, but not weight loss. A. Changes in weight from baseline compared to the end of the 3-week
study. Vehicle-treated control rats gained weight, but exposure to repeated stress or guanfacine treatment lessened weight gain. B. Mean spatial delayed alternation (working
memory) performance over the 3 weeks of chronic daily restraint stress. All groups showed similar performance at baseline, and vehicle control animals (black diamonds)
maintained stable performance. In contrast, vehicle stress animals (red triangles) showed a progressive impairment in performance over time. Daily guanfacine treatment (purple
squares) prevented impairment in working memory performance. Please note that the guanfacine control group is not shown for the sake of clarity. C. Average performance on the
delayed alternation task for the total session, or for the last 2 days was significantly impaired by daily restraint stress; guanfacine treatment significantly protected performance
from stress. Different from nonstress + vehicle: **p < 0.0001; different from stress + vehicle: t p < 0.05; tt p < 0.006, error bars denote s.e.m. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)

3.2. Performance of the spatial working memory task

Replicating our previous results (Hains et al., 2009), exposure to
stress induced a dramatic and progressive loss of delayed alterna-
tion performance in vehicle-treated rats, growing more pro-
nounced as the 3 weeks of stress exposure proceeded (Fig. 2B). The
groups showed similar performance at baseline, but diverged as the
stress sessions continued. Vehicle-treated stressed animals showed
a progressive impairment in performance over time (significant
effect of group F(3,20) = 6.802, p = 0.002; vehicle control vs. stress
for baseline: F = 0.324, p = 0.81; the first week of testing: F = 3.375,
p = 0.039; the second week of testing: F = 4.07, p = 0.021; the third
week of testing: F = 21.9, p < 0.001). As animals were tested prior to
the daily stress session, these impairments reflect the accumulating
effects of chronic stress rather than an immediate response to an
acute stress. Treatment with daily guanfacine protected delayed
alternation performance in stressed rats compared to vehicle con-
trols (F = 5.81, p < 0.05). Average performance for the entire study
and for just the last 2 days of cognitive testing were both signifi-
cantly greater for guanfacine-treated than vehicle-treated stressed
rats (Fig. 2C; whole study: p < 0.03; last 2 days: p < 0.006). It should
be remembered that guanfacine was administered immediately
before the stress session, i.e. approximately 23 h before delayed
alternation assessment; thus it is unlikely that drug was present
during cognitive testing. There was no correlation between cogni-
tive performance and weight of the animal (r = 0.16, p = 0.45).

3.3. Morphological assessments

Spine density (Fig. 3) and dendritic morphology (Fig. 4) were
evaluated in five layer II/Ill pyramidal neurons from the prelimbic
cortex of each cognitively characterized animal. The apical and
basal dendrites were completely reconstructed to allow for mea-
surements of dendritic length and branching. Dendritic spines
were quantified in four regions of the dendrites —the distal and
proximal portions of the apical dendrite, and the distal and
proximal portions of a basal dendrite-as illustrated in Fig. 4A—D.
The effects of chronic stress in vehicle-treated groups replicated
previous studies, with reductions in both spine density and den-
dritic length being particularly prominent for the distal portion of
the apical dendritic tree (Fig. 3A—D; (Hains et al., 2009; Radley
et al, 2006; Liston et al., 2006; Radley et al., 2005; Cook and
Wellman, 2004).

3.3.1. The effects of chronic stress and guanfacine on spine density

Comparisons of spine density across all four groups indicated a
highly significant effect of group for distal apical spines
(F(3,18) = 20.14, p < 0.001). Repeated restraint stress significantly
reduced spine density on the distal apical tree in vehicle-treated
animals (Fig. 3D; vehicle control vs. stress: p = 0.016). Daily
guanfacine treatment protected spine density: guanfacine-treated
stressed rats had a significantly higher density of distal apical
dendritic spines 200 pm from the center of the soma than did
vehicle-treated stressed rats (Fig. 3D; p < 0.001). Unexpectedly,
guanfacine also increased distal apical spine density in nonstressed
rats compared to vehicle controls (Fig. 3D; p = 0.004).

Similar to previous studies, stress did not alter spine density in
the proximal portion of the apical dendrite (Fig. 3C; F(3,18) = 1.36,
p = 0.287), and had only subtle effects on the spine density of basal
dendrites, producing very small, nonsignificant reductions
(Fig. 3A—B; p > 0.5). However, guanfacine treatment increased
spine density on basal dendrites in stressed rats compared to their
vehicle-treated counterparts for both the proximal region of basal
dendrites (Fig. 3A; effect of group on basal proximal spine density:
F(3,18) = 7.559, p = 0.002; guanfacine stress vs. vehicle stress:
p = 0.004), and the distal region of basal dendrites (Fig. 3B; effect of
group on basal distal spine density: F(3,18) = 12.904, p < 0.001;
guanfacine stress vs. vehicle stress: p = 0.022). Guanfacine also
significantly increased spine density in the distal portion of basal
dendrites in nonstressed rats compared to vehicle-treated control
animals (p = 0.001).

3.3.2. The effects of chronic stress and guanfacine on dendritic
morphology

The main analysis of apical dendritic length showed a borderline
effect of group (F(3,20) = 3.046, p = 0.053), whereby stressed,
vehicle-treated animals tended to have reduced apical dendritic
length compared to vehicle control animals (Fig. 4A). If a between
subjects analysis was used, with each neuron as an independent
entity as done in previous studies (Liston et al., 2006), the reduction
in dendritic length following stress in vehicle-treated rats was
significant, replicating earlier results (significant effect of group:
F(3,115) = 3.705, p = 0.014; vehicle control vs. vehicle stress
p = 0.015). Guanfacine treatment partially normalized apical den-
dritic length in stressed rats; i.e. dendritic length in guanfacine-
treated stressed rats was not statistically different from either
vehicle-treated controls (p > 0.4) or vehicle-treated stressed rats
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Fig. 3. The effects of chronic restraint stress and/or daily guanfacine treatment on the spine density of layer II/Ill pyramidal cells from the prelimbic cortex. As seen in previous
studies, chronic stress had no significant effect on spine density in the proximal (A) or distal (B) portion of the basal dendritic tree, nor in the proximal portion of the apical tree (C),
but significantly reduced spine density in the distal apical dendritic tree (D). Daily guanfacine treatment significantly protected distal apical dendritic spine density from the
detrimental effects of stress, as well as increasing distal apical spine density in nonstressed animals. Guanfacine also increased spine density in nonstressed animals in distal basal
dendrites. Different from nonstress + vehicle: *p < 0.05, **p < 0.001; different from stress + vehicle: +t p < 0.001, error bars denote s.e.m.

(p > 0.6). Stress effects on apical dendritic branching was not sig-
nificant (Fig. 4B; F(3,20) = 2.824, p = 0.065).

Consistent with previous findings (Liston et al., 2006; Radley
et al., 2005), chronic restraint stress did not alter the length.or
branching of basal dendrites in vehicle-treated rats (Fig. 4C—D;
p > 0.5). However, guanfacine produced an unexpected and striking
increase in basal dendritic length (Fig. 4C; effect of group:
F(3,20) = 4.79, p = 0.011; guanfacine control vs. vehicle control:
p = 0.02) and branching (Fig. 4D; effect of group: F(3,20) = 4.94,
p = 0.01; guanfacine control vs. vehicle control: p = 0.02) in non-
stressed rats.

3.3.3. Correlations between cognitive performance and spine
density in PFC

Pearson's tests were used to determine whether there was a
correlation between spine density and cognitive performance.
We observed a significant correlation between mean apical
dendritic spine density (averaged across all 5 neurons, within
one animal) and mean delayed alternation performance over the
last two days of the study (Fig. 5A; r = 0.4908, p = 0.015).
Stressed rats with the lowest spine density had the worst
cognitive performance, while those receiving guanfacine and the
non-stressed rats had higher spine density and better cognitive
performance. Proximal basal spine density also showed a sig-
nificant, albeit weaker relationship with spatial delayed alter-
nation performance (Fig. 5B; r = 0.4293, p = 0.039). These
correlations are similar to what was seen in our previous study,

suggesting these two dendritic regions have particular relevance
to cognitive performance.

4. Discussion
4.1. Summary and evaluation of data

The current study replicated previous research showing that
exposure to repeated restraint stress caused a progressive impair-
ment in spatial working memory performance and a loss of den-
dritic spines in the distal apical dendritic tree of layer II-III
pyramidal cells in the prelimbic PFC of rats (Hains et al., 2009;
Liston et al., 2006). Daily administration of the alpha-2A adreno-
ceptor agonist, guanfacine, prior to stress exposure protected both
working memory performance and spine density from the detri-
mental effects of stress exposure. There was a significant correla-
tion between cognitive performance and spine density on the distal
apical and proximal basal portions of the dendritic trees, support-
ing a relationship between dendritic integrity in the PFC and
cognitive abilities. There was no correlation with weight, suggest-
ing that alterations in motivation for food reward was not a factor in
protecting cognitive performance. As guanfacine is FDA-approved
for safe use in humans (the immediate release formulation for
treating hypertension in adults, and the extended release formu-
lation, Intuniv™, for the treatment of pediatric ADHD), these data
suggest it may be especially useful in treating stress-related PFC
clinical disorders.
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Fig. 4. The effects of chronic restraint stress and/or daily guanfacine treatment on the dendritic morphology of layer II/Ill pyramidal cells from the prelimbic cortex. Results
represent mean + S.E.M. A. The effects of chronic stress and guanfacine treatment on the average total length of the apical dendrite. B. The effects of chronic stress and guanfacine
treatment on the average number of intersections (measure of dendritic branching) of the apical dendrite. C. The effects of chronic stress and guanfacine treatment on the average
total length of the basal dendrites. D. The effects of chronic stress and guanfacine treatment on the average number of intersections (measure of dendritic branching) of the basal
dendrites. Similar to that seen in previous studies, chronic stress reduced the length of apical dendrites, but did not significantly alter basal dendritic length in vehicle-treated

animals. Guanfacine treatment produced an unexpected increase in basal dendritic length and branching in control animals.

*

significantly different from vehicle controls,

p < 0.05; 1 significantly different from vehicle stressed rats, p < 0.05; § significantly different from vehicle controls using a fully between subjects analysis, p = 0.015.

Although guanfacine treatment significantly improved cognitive
performance compared to vehicle-treated stressed animals, it did
not completely normalize performance, especially as stress pro-
gressed over the 21 days. It may be that a higher dose or repeated
dosing would be needed to optimize performance as stress expo-
sure accumulated. It is important to remember that guanfacine was
administered 23 h prior to cognitive testing each day, and given the
rapid metabolism of the drug in young rats (Kiechel, 1980), it was
likely eliminated from the system by the time of testing each day;
indeed, rats may even have been in drug withdrawal at this time. As
alpha-2A-adrenoceptors can desensitize by reducing their expres-
sion in the membrane in response to chronic agonist stimulation
(Heck and Bylund, 1998), and as alpha-2A-adrenoceptor stimulation
on spines plays a large role in permitting network connectivity
(Wang et al., 2007), it is possible that some spines were rendered
ineffective at the time of cognitive testing due to reduced alpha-2A-
adrenoceptor expression in the spine membrane, leading to sub-
optimal behavioral performance. Thus, a superior dose regimen
would likely be more effective for clinical use, e.g. multiple daily
dosing to maintain a higher level of receptor stimulation. However,
the current study shows that even under suboptimal guanfacine
dosing conditions (once daily administration of a modest dose,

cognitive performance tested 23 h after administration during
likely drug withdrawal), the treatment still demonstrated signifi-
cant protection of PFC spine density and cognitive performance.
Combination with other mechanisms, e.g. inhibition of PKC
signaling or stimulation of growth factors (see below), may maxi-
mize protection, especially as the stress accumulates.
Interestingly, there was an unexpected, small but significant
increase in dendritic extensions and spine density in control rats
treated with guanfacine. However, these animals did not perform
better than vehicle controls. It is possible that the new dendritic
spines were not useful, or at least not within the short timeframe
(21 days) of this study. If this is true, guanfacine may serve to
protect and optimize cognition, but may not be a cognitive
enhancer, i.e. that at least with this dose regimen it does not pro-
duce supranormal performance in otherwise healthy and engaged
young animals. Alternatively, it may be that as cognitive perfor-
mance was assessed 23 h after last guanfacine treatment when rats
were in “drug withdrawal”, the new spines may have been less
effective due to reduced alpha-2A receptor expression at the time
of cognitive assessment as described above. Thus, their cognitive
performance may not have been a true reflection of their capabil-
ities. Either way, cognitive performance in stressed animals
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Fig. 5. Performance of the delayed alternation task (mean of the last 2 testing sessions) showed a significant correlation with distal apical spine density (A) and to a lesser extent,
with proximal basal spine density (B). Vehicle control = black diamonds; vehicle stress = red triangles; guanfacine control = blue circles; guanfacine stress = purple squares.

receiving guanfacine was significantly better than stressed animals
receiving vehicle.

4.2. Speculation on mechanisms

Guanfacine likely acts through a number of inter-related
mechanisms to reduce the detrimental effects of stress exposure.
Stimulation of post-synaptic alpha-2A-adrenoceptors strengthens
PFC connectivity by inhibiting cAMP opening of K' channels
(Wang et al., 2007). Alpha-2A adrenoceptor stimulation also
weakens amygdala function (DeBock et al., 2003), reduces stress-
induced DA release in the PFC (Morrow et al., 2004), and re-
duces the tonic firing of LC neurons and related NE release (Nestler
and Alreja, 1999; Cedarbaum and Aghajanian, 1977; Quintin et al.,
1986; Engberg and Eriksson, 1991). As the noradrenergic system
sensitizes with repeated stress (Miner et al., 2006; Finlay et al.,
1995; Jedema and Grace, 2003), these regulatory actions on NE
neurons may be especially helpful under conditions of chronic
stress exposure. Guanfacine may also prevent spine loss by
reducing inflammation in brain. Evidence suggests that synapses
can be phagocytized by reactive astroctyes and activated microglia
(Stephan et al., 2012; Chung et al., 2013). Microglia and astroctyes
are activated by beta adrenoceptor stimulation (Sutin and Griffith,
1993; Gyoneva and Traynelis, 2013), and activated microglia are
deactivated by alpha-2A-adrenoceptor stimulation (Gyoneva and
Traynelis, 2013). Guanfacine may also reduce inflammation by
inhibiting cAMP signaling in spines, providing “replacement
therapy” for the reduced actions of the phosphodiesterase
PDE4A5, whose activity and proper anchoring by DISC1 are
weakened by the inflammatory mitogen-activated protein kinase
signaling cascade (MacKenzie et al., 2011). Thus, guanfacine may
protect PFC gray matter by reducing the neurochemical and in-
flammatory stress response, and by strengthening PFC
connectivity.

In addition to PKA and PKC intracellular signaling, mTor
signaling plays an important role (Ota et al., 2014), where stress
increases the expression of REDD1, reducing mTor signaling and
reducing synaptogenesis. Interestingly, in the immune system,
adrenergic stimulation of beta receptor-cAMP signaling increases
the expression of REDD1 in macrophages (Yanagawa et al., 2014).
Similar events in PFC neurons could provide a bridge between
current catecholamine cAMP mechanisms and the mTor signaling
pathway. REDD1 is induced by hypoxic stress (Katiyar et al., 2009),
whereas guanfacine protects PFC dendritic spines and cognitive

performance from the detrimental effects of hypoxia (Kauser et al.,
2013), suggesting that this may be a fruitful arena for future
research. Taken together, these data suggest that guanfacine pro-
tects the PFC from both physiological (hypoxia) and psychological
(restraint) stressors.

4.3. Clinical implications

Many mental disorders are associated with both a loss of PFC
synapses and increased signs of neuroinflammation e.g. (Pace and
Heim, 2011; Raison and Miller, 2013; Yoshiyama et al.,, 2007;
Schizophrenia Working Gro, 2014; Sharma et al., 2014; Riedel
et al., 2014; Masi et al., 2014). Given that guanfacine can protect
working memory (Birnbaum et al., 2000) and PFC dendritic spines,
as well as reducing inflammation, it may be helpful across a wide
spectrum of mental disorders. Indeed, guanfacine is already in
widespread use (off-label) to treat trauma in children and adoles-
cents, where signs of PFC dysfunction such as impaired regulation
of emotion (e.g. impulsive aggression) and attention are common
and problematic (Connor et al., 2013; Arnsten et al., 2015). Two
studies of guanfacine in adults with long-established PTSD (i.e. for
many decades) have not shown benefit (Neylan et al., 2006; Davis
et al., 2008); the spine substrate for guanfacine actions may be
lost under these conditions. Guanfacine has also been shown to be
helpful in treating patients with traumatic brain injury (McAllister
et al., 2011), stroke and encephalitis (Malhotra et al., 2006; Singh-
Curry et al.,, 2011), and substance abuse (Fox and Sinha, 2014;
McKee et al., 2014). The current results suggest that guanfacine
might also be useful in the treatment of prodromal schizophrenia,
as it is FDA-approved for the treatment of adolescents, and might
lessen the wave of PFC gray matter loss and inflammatory response
that are associated with the descent into illness (Cannon et al.,
2014).

5. Conclusion

Daily treatment with the alpha-2A agonist, guanfacine, was
shown to protect cognitive performance and PFC spine density in
rats exposed to chronic restraint stress. As guanfacine has been
shown to be safe for long-term use in humans, it may be a helpful
treatment for a variety of stress-related cognitive disorders.
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