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Abstract

Differential operatorsϕ(∆θ,ω), whereϕ is an exponential type entire function of a single complex
variable and∆θ,ω = (θ + ωz)D + zD2, D = ∂/∂z, z ∈ C, θ � 0, ω ∈ R, acting in the spaces of
exponential type entire function are studied. It is shown that, forω � 0, such operators preserve the
set of Laguerre entire functions provided the functionϕ also belongs to this set. The latter consists
of the polynomials possessing real nonpositive zeros only and of their uniform limits on compact
subsets of the complex planeC. The operator exp(a∆θ,ω), a � 0 is studied in more details. In
particular, it is shown that it preserves the set of Laguerre entire functions for allω ∈R. An integral
representation of exp(a∆θ,ω), a > 0 is obtained. These results are used to obtain the solutions to
certain Cauchy problems employing∆θ,ω.
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1. Introduction

Differential operators of infinite order naturally appear in many applications (in a certain
sense they constitute a total set of linear operators acting between spaces of differentiable
functions [3]). As usual, such operators are constructed by means of finite order differential
expressions substituted in the arguments of appropriate functions. If such a function
admits power series expansion, the operator may be defined by imposing corresponding
convergence conditions. In this article we consider differentiation with respect to a
single complex variablez ∈ C and the operators constructed by means of the following
differential expression

∆θ,ω =∆θ +ωzD
def= (θ + zD)D +ωzD, (1.1)

whereD = ∂/∂z andθ � 0, ω ∈ R are parameters. Given entire functionsϕ,f :C→ C,
we set

(
ϕ(∆θ,ω)f

)
(z)=

∞∑
k=1

1

k!ϕ
(k)(0)

(
∆k
θ,ωf

)
(z). (1.2)

In order for the above series to converge to an entire function, we impose growth restric-
tions on the functionsϕ andf by placing them into certain spaces of exponential type
entire function. These spaces were introduced and studied in our recent work [4] where we
used them to describe the operatorsϕ(∆θ), θ � 0. Our present research is mainly based on
the results of that paper.

In Section 2 below we give definitions and a number of facts regarding the operators
ϕ(∆θ), θ � 0. Our main results are presented in Section 3 in a sequence of theorems
characterizing the properties ofϕ(∆θ,ω). Theorem 3.1 describes the operator exp(a∆θ,ω).
In particular, we prove that this operator obeys the decomposition rule

exp(a∆θ,ω)= exp(aωzD) · exp
{
ω−1(eaω − 1)∆θ

}
, (1.3)

which is then used to describe the operatorϕ(∆θ,ω) with an arbitrary exponential type
entire functionϕ (Theorem 3.2). A special role in our study is played by Laguerre entire
functions being the polynomials of a single complex variable possessing real nonpositive
zeros only or the limits of sequences of such polynomials taken in the topology of uniform
convergence on compact subsets ofC. It turns out that these functions are of exponential
type and possess corresponding infinite product representations. We prove (Theorem 3.3)
that if bothϕ andf are Laguerre entire functions and ifω � 0, theϕ(∆θ,ω)f is also
a Laguerre entire function. The above theorems extend the results of [4] to nonzero
values ofω. Then we consider again the operator exp(a∆θ,ω), a � 0, for which the
decomposition (1.3) implies that it preserves the set of Laguerre entire functionsfor
all real ω. Further, (1.3) is used to obtain (Theorem 3.5) an integral representation of
exp(a∆θ,ω), a > 0. The latter result allows us to extend this operator to a wider class of
functions. Theorem 3.6 gives additional information regarding the action of exp(a∆θ,ω) on
the functions of the type of exp(uz)g(z). In Section 4 we use the above results to describe
the solutions to the Cauchy problem
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∂f (t, z)

∂t
= (θ +ωz)

∂f (t, z)

∂z
+ z

∂2f (t, z)

∂z2
, t > 0,

f (0, z)= g(z)

(Theorem 4.1). It enables us to describe (Theorem 4.2) the solutions also to the Cauchy
problem of the following type (heat equation with a drift)

∂F (t, x)

∂t
= (

∆+ b(x,∇))F(t, x), t > 0,

F (0, x)=G(x), x ∈R
N, N ∈N,

with the initial functionG belonging to the class of isotropic (i.e.,O(N)-invariant) analytic
functions. Here∆ and∇ stand for theN -dimensional Laplacian and gradient, respectively.

All propositions are given without proofs since either they are taken from other sources
or the proofs are evident.

2. Preliminaria

Let E stand for the set of all entire functionsf :C→C equipped with the topologyTC

of uniform convergence on compact subsets ofC. Thus,(E,TC) is a Fréchet space. For
b > 0, we set

Bb =
{
f ∈ E | ‖f ‖b <∞

}
,

where

‖f ‖b = sup
k∈N0

{
b−k

∣∣f (k)(0)
∣∣}, f (k)(0)= (Dkf )(0), (2.1)

andN0 stands for the set of all nonnegative integers. Every(Bb,‖ · ‖b) is a Banach space.
Fora � 0, let

Aa =
⋂
b>a

Bb =
{
f ∈ E | (∀b > a) ‖f ‖b <∞

}
. (2.2)

Equipped with the topologyTa defined by the family of norms{‖ · ‖b, b > a}, this set
becomes a Fréchet space. To shorten our notation we writeE , Aa , Bb instead of(E,TC),
(Aa,Ta), (Bb,‖ · ‖b), respectively.

Definition 2.1. A family L (respectivelyL0, L+, L−) consists of the entire functions pos-
sessing the representation

f (z)= Czm exp(αz)
∞∏
j=1

(1+ βjz),

C ∈C, m ∈N0, βj � βj+1 � 0,
∞∑
j=1

βj <∞, (2.3)

with α ∈R (respectivelyα = 0, α � 0, andα < 0).
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The elements ofL+ are known as Laguerre entire functions [1,4]. LetP+ stand for the
set of polynomials belonging toL+. By Laguerre and Pólya (see, e.g., [1,5]),

Proposition 2.1. The familyL+ is exactly the closure ofP+ in TC.

It is worth to note that everyf being of the form (2.3) may be writtenf (z)= exp(αz)×
h(z), whereh is an entire function of order less than one or equal to one and, in the latter
case, of minimal type. Consider the families

La
def= L ∩Aa, L±a

def= L± ∩Aa. (2.4)

Obviously,P andP+ are dense respectively in the setsAa andL+a equipped with the
topologies induced on them byTC. However, the setP is not dense in any spaceBb.
Thus, a priori it is not obvious whether or not the setsP andP+ are dense respectively
in Aa (in its standard topology) and inL+a in the topology induced fromAa . Fortunately,
this density property holds in both cases. The following two statements, which we borrow
from [4], give information regarding the topological properties ofAa andL+a .

Proposition 2.2. For every a � 0, the relative topology on a bounded subset ofAa

coincides with the topology induced on it byTC.

Proposition 2.3. For everya � 0,

(i) the set of all polynomialsP ⊂ E is dense inAa ;
(ii) the setP+ is dense inL+a in the topology induced byTa .

Below unless explicitly stated we considerL+a , a � 0 as a topological space equipped
with the topology induced byTa .

For θ � 0, let∆θ :E→ E be as in (1.1), that is∆θ =∆θ,0= (θ + zD)D. Given entire
functionsϕ andf , we defineϕ(∆θ)f (z) by (1.2). Further, one has

∆k
θz

m = q
(m,k)
θ zm−k, q

(m,k)
θ =

{
0, k > m,

γθ (m)/γθ (m− k), 0 � k �m,
(2.5)

where

γθ (m)=m!Γ (θ +m).

Applying this in (1.2) one may prove the following statement [4].

Proposition 2.4. For all θ � 0 and for arbitrary a > 0 and b > 0, such thatab < 1,
(ϕ,f ) �→ ϕ(∆θ)f is a continuous bilinear map fromBa ×Bb (respectively fromAa ×Ab

with a � 0, b � 0) into Bc (respectivelyAc), wherec= b(1− ab)−1. Moreover,∥∥ϕ(∆θ)f
∥∥
c
� (1− ab)−θ‖ϕ‖a‖f ‖b.

The action ofϕ(∆θ) on the Laguerre entire functions is described by the following
statement, which was proven in [4].
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Proposition 2.5. For all θ � 0 and for arbitrary a � 0 and b � 0, such thatab < 1,
(ϕ,f ) �→ ϕ(∆θ)f is a continuous map fromL+a ×L+b into L+c , wherec= b(1− ab)−1.

Givenω ∈R andf ∈ E , we set

exp(ωzD)f (z)=
∞∑
k=0

ωk

k!
(
(zD)kf

)
(z),

which readily yields

exp(ωzD)f (z)= f (eωz). (2.6)

Proposition 2.6. For anyω ∈R, exp(ωzD) is a continuous linear map fromBc with c > 0
(respectively fromAc with c � 0) into Bd (respectivelyAd ), whered = eωc.

The identity (2.6) also implies that

Proposition 2.7. For any ω ∈ R and c � 0, exp(ωzD) is a continuous map fromL+c
(respectively fromL−c ) into L+d (respectivelyL−d ), whered = eωc.

The following representation of exp(a∆θ) was obtained in [4].

Proposition 2.8. For everyθ � 0, for arbitrary a > 0, b � 0, such thatab < 1, and for all
f ∈Ab,

(
exp(a∆θ)f

)
(z) = exp

(
− z

a

) +∞∫
0

wθ

(
sz

a

)
f (as)sθ−1e−s ds

def=
+∞∫
0

Kθ

(
z

a
, s

)
f (as)sθ−1e−s ds, (2.7)

where

Kθ(z, s)= e−zwθ (zs), wθ (ξ)
def=

∞∑
k=0

ξk

γθ(k)
. (2.8)

This representation may be used for extending the operator exp(a∆θ). The assertion
below, also taken from [4], describes a property of such an extended operator.

Proposition 2.9. Givena > 0 andu ∈ R, let b ∈ [0,−u+ 1/a). Then, for everyg ∈Ab,
the operator(2.7)may be applied to the function

f (z)= exp(uz)g(z), (2.9)

yielding(
exp(a∆θ)f

)
(z)= (1− ua)−θ exp

(
uz

1− ua

)
h(z), (2.10)
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where

h(z)=
[
exp

(
a

1− ua
∆θ

)
g

](
z

(1− ua)2

)
= exp

[
a(1− ua)∆θ

]
g

(
z

(1− ua)2

)
.

(2.11)

Moreover,h ∈Ac with c= b(1− ua)−1[1− a(u+ b)]−1.

The extensions of exp(a∆θ) on the base of the integral representation (2.7) to the spaces
of integrable functions are given in [2].

3. Main results

Theorem 3.1. For all θ � 0, for arbitrary ω ∈ R, a � 0, andb > 0, obeying the condition
bω−1[eaω − 1] < 1, the series expansion(1.2) defines a continuous linear operator
exp(a∆θ,ω) acting from the spaceBb (respectively fromAb with b � 0) into the space
Bc (respectivelyAc), where

c= c(b)
def= beaω

(
1− bω−1[eaω − 1])−1

. (3.1)

This operator obeys the decomposition rule(1.3).

Remark 3.1. This theorem holds also forω = 0, since limω→0[eaω − 1]ω−1 = a, where
it coincides with a partial case of Proposition 2.4. In the sequel the caseω = 0 will be
understood in this sense.

Theorem 3.2. For all θ � 0, for arbitrary a > 0, ω ∈ R, b > 0, obeying the condition
bω−1[eaω − 1] < 1, (ϕ,f ) �→ ϕ(∆θ,ω)f , is a continuous bilinear map fromBa × Bb

(respectively fromAa × Ab with a � 0 and b � 0) into the spaceBc (respectivelyAc),
wherec= c(b) is given by(3.1). Moreover,∥∥ϕ(∆θ,ω)f

∥∥
c
�

(
1− bω−1[eaω − 1])−θ‖ϕ‖a‖f ‖b.

Theorem 3.3. For all θ � 0, for arbitrary ω � 0, a � 0, b � 0, obeying the condition
bω−1[eaω − 1] < 1, (ϕ,f ) �→ ϕ(∆θ,ω)f is a continuous map fromL+a × L+b into L+c ,
wherec= c(b) is given by(3.1).

Theorem 3.4. For all θ � 0, for arbitrary ω ∈ R, a � 0, b � 0, obeying the condition
bω−1[eaω − 1]< 1, exp(a∆θ,ω) is a continuous map fromL+b into L+c , wherec = c(b) is
given by(3.1).

Theorem 3.5. For all θ � 0, for arbitrary ω ∈ R, a > 0, andb � 0, obeying the condition
bω−1[eaω − 1]< 1, and for anyf ∈Ab,

(
exp(a∆θ,ω)f

)
(z)= exp(−νz)

+∞∫
0

wθ(νsz)f
(
ω−1[eaω − 1]s)sθ−1e−s ds
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=
+∞∫
0

Kθ(νz, s)f
(
ω−1[eaω − 1]s)sθ−1e−s ds, (3.2)

where

ν = ν(a,ω)
def= ωeaω

eaω − 1
, (3.3)

andwθ andKθ are defined by(2.8).

The above theorem allows us to extend the operator exp(a∆θ,ω) to the functions for
which the integrals in the right-hand side of (3.2) converge. In the sequel we understand
this operator in such an extended (integral) version.

Theorem 3.6. Given a � 0, ω ∈ R, u ∈ R, and b � 0, obeying the conditionbω−1×
[eaω − 1]< 1− uω−1[eaω − 1], the operatorexp(a∆θ,ω) may be applied to the function

f (z)= exp(uz)g(z), (3.4)

with arbitrary g ∈Ab, yielding

(
exp(a∆θ,ω)f

)
(z)= (

1− uω−1[eaω − 1])−θ exp

(
ueaωz

1− uω−1[eaω − 1]
)
h(z), (3.5)

where

h(z)=
[
exp

(
aω

ω− u[eaω − 1]∆θ + aωzD

)
g

](
ω2z

(ω− u[eaω − 1])2
)

=
[
exp

(
eaω − 1

ω− u[eaω − 1]∆θ

)
g

](
ω2eaωz

(ω− u[eaω − 1])2
)
. (3.6)

Moreover, the latter function belongs toAc with

c= beaω
(
1− uω−1[eaω − 1])−1(

1− (u+ b)ω−1[eaω − 1])−1
.

Corollary 3.1. For all θ � 0, ω ∈ R, a � 0, and b � 0, the operatorexp(a∆θ,ω) is a
continuous map from

(i) L+b into L+c , wherea, b, andω satisfy the conditionbω−1[eaω − 1]< 1, andc= c(b)

is given by(3.1),
(ii) L−b into L−d , whered = beaω(1+ bω−1[eaω − 1])−1.

The proof of the above theorems will be based on the properties of exp(a∆θ,ω), which
may be studied on the base of (1.3) and the properties of exp(aωzD) and exp(bω−1×
[eaω − 1]∆θ), given by Propositions 2.4–2.9. Clearly, the operator exp(a∆θ,ω) defined
by (1.2) may be applied to anyf ∈ P , furthermore, exp(a∆θ,ω) :P→ P . Similarly, for
any realb andc, exp(bzD) :P→P and exp(c∆θ) :P→P .

Lemma 3.1. For every polynomialf ∈P and anya ∈R, the operatorexp(a∆θ,ω) defined
by the series expansion(1.2)obeys(1.3).
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Proof. Obviously, it is enough to prove the lemma only forfm(z)= zm,m ∈N. Sincea∆θ

andaωzD do not commute (except fora orω being zero), one has to apply an appropriate
decomposition technique. It will be based on the Trotter–Kato product formula, which, for
our aims, may be written as follows (for more details on this item see [7] and references
therein):

exp(A+B)f = lim
n→∞

(
exp

(
1

n
A

)
exp

(
1

n
B

))n

f, (3.7)

whereA andB are linear continuous operators on a topological vector space and the con-
vergence is understood in the topology of the range space.

In what follows, givenm ∈N, one has

exp(a∆θ,ω)fm(z)= lim
n→∞

(
exp

(
a

n
∆θ

)
exp

(
aω

n
zD

))n

fm(z), (3.8)

where the convergence is inTC. By (2.6) and (2.5),

exp(a∆θ)z
m =

m∑
k=0

ak

k! q
(m,k)
θ zm−k,

which yields, together with (2.6), that for anyn,m ∈N,(
exp

(
a

n
∆θ

)
exp

(
aω

n
zD

))n

zm =
m∑

k1=0

m−k1∑
k2=0

. . .

m−k1−···−kn−1∑
kn=0

1

k1!k2! . . . kn!

×
(
a

n

)k1+k2+···+kn
q
(m,k1)
θ q

(m−k1,k2)
θ . . . q

(m−k1−···−kn−1,kn)

θ

× exp

{
aω

n
(m+m− k1+ · · · +m− k1− · · · − kn−1)

}
zm−k1−···−kn

=
m∑

k1=0

m−k1∑
k2=0

. . .

m−k1−···−kn−1∑
kn=0

1

k1!k2! . . . kn!
(
a

n

)k1+k2+···+kn
zm−k1−···−kn

× γθ (m)exp
{
aω
n
(nm− (n− 1)k1− · · · − kn−1)

}
γθ (m− k1− · · · − kn)

def=
m∑
k=0

ak
γθ (m)

γθ (m− k)
(eaωz)m−kΨn(k, aω). (3.9)

Here fork ∈N0 andb ∈R, we have set

Ψn(k, b) = 1

nk

k∑
k1,k2,...,kn=0

δk,k1+···+kn
e
b
n (k1+2k2+···+nkn)

k1!k2! . . . kn!

= 1

k!nk
(
eb/n + e2(b/n)+ · · · + en(b/n)

)k = 1

k!
(
eb/n(eb − 1)

n(eb/n − 1)

)k

→ 1

k!
(
eb − 1

b

)k

, (3.10)
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whenn→+∞. By (3.8), (3.9), and (3.10) one obtains

exp(a∆θ,ω)fm(z)= lim
n→∞

(
exp

(
a

n
∆θ

)
exp

(
aω

n
zD

))n

zm

=
m∑
k=0

(ω−1[eaω − 1])k
k! · γθ (m)

γθ (m− k)
(eaωz)m−k

= (
exp

(
ω−1[eaω − 1]∆θ

)
fm

)
(eaωz)

= exp(aωzD)exp
(
ω−1[eaω − 1]∆θ

)
fm(z). ✷

Givenk,n,m ∈N, we set

κn(k,m, θ,ω)=
[
Dn(∆θ,ω)

kzm
]
z=0. (3.11)

After some algebra one obtains

κn(k,m, θ,ω)= n!
(m− n)!q

(m,m−n)
θ ωk+n−m

k∑
l=m−n

(
k

l

)
nk−lα(l)m−n, (3.12)

if m� n, andκn(k,m, θ,ω)= 0 if m< n. Here, forp � s, p, s ∈N,

α(s)p
def=

p∑
k=0

(
p

k

)
(−1)k(p− k)s > 0.

Proof of Theorem 3.1. Givenf ∈ P andb > 0 obeying the conditionbω−1[eaω−1]< 1,
one has from (1.3), (2.6), and Proposition 2.4∥∥exp(a∆θ,ω)f

∥∥
c
= ∥∥exp(aωzD)exp

{
ω−1(eaω − 1)

}
f

∥∥
c

= ∥∥exp
{
ω−1(eaω − 1)

}
f

∥∥
ce−aω

�
(
1− bω−1(eaω − 1)

)−θ‖f ‖b, (3.13)

wherec= c(b) is given by (3.1). Then by claim (i) of Proposition 2.3, exp(a∆θ,ω) may be
continuously extended to the wholeAb. The extension will also obey (1.3). This yields in
turn that the estimate (3.13) holds for anyf ∈ E , provided‖f ‖b <∞. ✷
Proof of Theorem 3.2. According to (1.2) and (3.11),

g(n)(0)
def= (

ϕ(∆θ,ω)f
)(n)

(0)=
∞∑

k,m=0

ϕ(k)(0)

k! · f
(m)(0)

m! κn(k,m, θ,ω), n ∈N0,

(3.14)

which, for given positivea andb, yields

∣∣g(n)(0)∣∣ � ‖ϕ‖a‖f ‖b
∞∑

k,m=0

ak

k! ·
bm

m!
∣∣κn(k,m, θ,ω)∣∣. (3.15)
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By (3.12),∣∣κn(k,m, θ,ω)∣∣ � κn
(
k,m, θ, |ω|).

Therefore, fora andb obeying the conditions of the theorem and forc(b) given by (3.1),
one readily gets from (3.15), (3.14), (3.13), and (2.1)

‖g‖c � ‖ϕ‖a‖f ‖b · sup
n∈N0

{
c−n

∞∑
k,m=0

ak

k! ·
bm

m! κn
(
k,m, θ, |ω|)

}

= ‖ϕ‖a‖f ‖b ·
∥∥exp{a∆θ,|ω|}exp(bz)

∥∥
c

�
(

1− b
ea|ω| − 1

|ω|
)−θ

‖ϕ‖a‖f ‖b =
(

1− b
eaω − 1

ω

)−θ
‖ϕ‖a‖f ‖b. ✷

Lemma 3.2. For all θ � 0, ω � 0 and for arbitraryϕ,f ∈ P+, the polynomialϕ(∆θ,ω)f

also belongs toP+.

This lemma will be proven in several steps below. The proof of Theorem 3.3 readily
follows from it and from claim (ii) of Proposition 2.3 and Theorem 3.2. Set

U = {z ∈C |Rez > 0}. (3.16)

In [4] we have proven the following statement.

Proposition 3.1. LetP , Q, andQ1 be polynomials of a single complex variable. Suppose
thatP does not vanish onU and

Q(u)+P(u)vQ1(u) �= 0, (3.17)

wheneveru,v ∈ U . Then either

S(z)
def= Q(z)+ P(z)DQ1(z) �= 0, (3.18)

wheneverz ∈ U , or elseS(z)≡ 0.

Lemma 3.3. For arbitrary σ � 0, θ � 0, andω � 0, the second order differential operator
σ +∆θ,ω mapsP+ into itself.

Proof. For an arbitrarily chosenp ∈ P+, we have to show that(σ +∆θ,ω)p ∈ P+. The
case of constantp is trivial. For nonconstantp ∈ P+, one may write

p(z)= π0

m∏
j=1

(πj + z), m ∈N, πj � 0, j = 1,2, . . . ,m. (3.19)

First we consider the caseπj = 0, j = 1,2, . . . ,m, that isp(z)= π0z
m. Then

(σ +∆θ,ω)p(z)= zm−1p̃(z) ∈ P+,
since

p̃(z)
def= m(σ +mω)z+m(θ +m− 1) ∈P+.
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Now let at least oneπj in (3.19) do not vanish. Set

q(z)= p(z2)= π0

m∏
j=1

(πj + z2). (3.20)

Then(
(σ +∆θ,ω)p

)
(z2)= (

(σ +Λθ,ω)q
)
(z), (3.21)

where

Λθ,ω
def=

(
θ + z

2
D

)(
1

2z
D

)
+ ω

2
zD. (3.22)

In view of (3.20), the polynomialsq(z), q(−z) do not vanish onU (3.16). The proof will
be done by showing that(

(σ +Λθ,ω)q
)
(z) �= 0, (3.23)

wheneverz ∈U . Taking into account (3.20) we may write

(
(σ +Λθ,ω)q

)
(z)= [

σ + (θ +ωz2)r(z)
]
q(z)+ 1

2
zD

(
q(z)r(z)

)
,

where

r(z)=
m∑
j=1

1

πj + z2 .

Set

Q(z)= [
σ + (θ +ωz2)r(z)

]
q(z), P (z)= z

2
, Q1(z)= q(z)r(z).

By Proposition 3.1, the proof of (3.23) will be done if we show that

R(u, v)
def= Q(u)+ P(u)vQ1(u) �= 0, (3.24)

wheneveru,v ∈U . To this end we rewrite the latter as

R(u, v)= 1

2
q(u) ·R1(u, v) ·R2(u, v), (3.25)

where

R1(u, v)= 2ωu2+ uv + 2θ

and

R2(u, v)= r(u)+ 2σ

2ωu2+ uv + 2θ
. (3.26)

Sinceq(u) �= 0 wheneveru ∈U , to prove (3.24) it remains to show that bothR1 andR2 do
not vanish ifu,v ∈U . Givenu ∈U , let us solve the equationR1(u, v)= 0. The result is

v =− 2θ

|u|2 ū− 2ωu,
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which yields the following implications:(
R1(u, v)= 0

) ⇒ (Rev � 0) ⇒ (v ∈C \U).
Recall that bothθ andω are supposed to be real and nonnegative. ThenR1(u, v) �= 0 if
v ∈ U . By the same arguments we show thatR2(u, v) �= 0 if u,v ∈ U . To this end we
rewrite (3.26) as

R2(u, v)= C(u, v)ū2+B(u, v)v̄ū+A(u,v), (3.27)

where foru,v ∈U , we set

C(u, v)=
m∑
j=1

1

|πj + u2|2 +
4σω

|2ωu2+ vu+ 2θ |2 > 0,

B(u, v)= 2σ

|2ωu2+ vu+ 2θ |2 � 0,

A(u, v)=
m∑
j=1

πj

|πj + u2|2 +
4σθ

|2ωu2+ vu+ 2θ |2 > 0.

We have just shown that|R1(u, v)| = |2ωu2+ vu + 2θ |> 0 if u,v ∈ U . For σ = 0, one
has

R2(u, v)= C(u, v)

[
ū2+ A(u,v)

C(u, v)

]
�= 0,

wheneveru,v ∈ U . For σ �= 0, one hasB(u, v) > 0 and by (3.27) one would get from
R2(u, v)= 0

v̄ =−A(u,v)

B(u, v)
· u− C(u, v)

B(u, v)
· ū,

which yields in turn

(v ∈ U) ⇒ (
R2(u, v) �= 0

)
. ✷

Proof of Lemma 3.2. Similarly to (3.19) one has forϕ ∈ P+

ϕ(∆θ,ω)= ϕ0

m∏
j=1

(σj +∆θ,ω), σj � 0, j = 1,2, . . . ,m, m ∈N.

By Lemma 3.3 each(σj + ∆θ,ω) mapsP+ into itself, hence the wholeϕ(∆θ,ω) does
so. ✷
Proof of Theorem 3.4. By (1.3) the operator exp(a∆θ,ω) is a composition of exp(aωzD)
and exp(γ∆θ) with γ = (eaω − 1)/ω. The latter operator continuously mapsL+b in L+β
(Proposition 2.5), whereβ = b[1− (eaω − 1)(b/ω)]. The former one, also continuously,
mapsL+β into L+

c(b)
, which follows from Proposition 2.7. ✷

In a similar way, the proof of Theorem 3.5 follows from (1.3), (2.6), and Proposition 2.8.
The proof of Theorem 3.6 follows from (1.3), (2.6), and Proposition 2.9. The proof of
Corollary 3.1 follows from (3.5), (3.6), and Theorem 3.4.
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4. Differential equation

Now we may use the operators introduced above to describe the solutions to certain
Cauchy problems. First we consider the following one:

∂f (t, z)

∂t
= (θ +ωz)

∂f (t, z)

∂z
+ z

∂2f (t, z)

∂z2 , ω ∈R, z ∈C, t > 0,

f (0, z)= g(z). (4.1)

Theorem 4.1. For everyθ � 0, ω ∈R, andg ∈ E having the form

g(z)= exp(−εz)h(z), h ∈A0, ε � 0, (4.2)

(i) the problem(4.1)has a unique solution inAε , which may be written as

f (t, z)= (
exp(t∆θ,ω)g

)
(z)

= exp

(
− ωz

1− e−tω

) +∞∫
0

wθ

(
ωzs

1− e−tω

)
g

(
s
etω − 1

ω

)
sθ−1e−s ds;

(4.3)

(ii) if in (4.2)ε > 0, the solution(4.3)converges to zero inAε whent→+∞;
(iii) if in (4.2)h ∈ L0 ⊂A0, the solution(4.3)belongs either toL0, for ε = 0, or to L−,

for ε > 0.

Proof. Let ϕt(z) = exp(tz). The operator valued function[0, t0) � t �→ ϕt(∆θ,ω) is con-
tinuous and differentiable in the norm-topology, and

ϕ′t (∆θ,ω)=∆θ,ωϕt (∆θ,ω).

The functions (4.2), with a givenε and allh ∈ A0, form a subspace ofBb ⊃ Aε , b > ε.
The restrictions ofϕt(∆θ), t ∈ [0, t0) to this subspace is a differentiable semigroup. Then
the problem (4.1) has a unique solution in the mentioned subspace (see, e.g., Theorem 1.4
[8, p. 109]) having the form

f (t, z)= (
exp(t∆θ,ω)g

)
(z).

This proves uniqueness. The representation (4.3) follows from Theorem 3.5. Further, we
substitute in (4.3) the initial condition (4.2) and apply Theorem 3.6 withu = −ε. This
yields

f (t, z) =
(

1+ ε
etω − 1

ω

)−θ
exp

(
− εωz

ωe−tω + ε(1− e−tω)

)

×
[
exp

(
etω − 1

ω+ ε(etω − 1)
∆θ

)
h

](
ω2zetω

(ω+ ε[etω − 1])2
)

def=
(

1+ ε
etω − 1

ω

)−θ
exp

(
− εωz

ωe−tω + ε(1− e−tω)

)
ht (z).
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Sinceh ∈ A0, by Theorem 3.6,ht ∈ A0, and by Corollary 3.1,ht ∈ L0 if h ∈ L0. The
former yields that the solution belongs toAε and the latter does claim (iii). It remains to
prove the convergence stated in (ii). The continuity of the operator exp(t∆θ,ω) yields that
in A0

ht (z) =
[
exp

(
etω − 1

b+ ε(etω − 1)
∆θ

)
h

](
zetω

(1+ εω−1[etω − 1])2
)

→
{

exp

(
1

ε
∆θ

)
h

}
(0),

if ω �= 0. The caseω = 0 may be handled similarly. Therefore, the product in (4.4) tends to
zero inAε whent→+∞. ✷

GivenN ∈ N, let E (N) stand for the set of analytic functionsF :RN → C. For b > 0,
we set

‖F‖b,N def= sup
x∈RN

{∣∣F(x)∣∣exp
(−b|x|2)}, (4.4)

where|x| is the Euclidean norm. Set

A(N)
a

def= {
F ∈ E (N) | ‖F‖b,N <∞, ∀b > a

}
, a � 0. (4.5)

This set equipped with the topology generated by the family of norms{‖ · ‖b,N , b > a}
becomes a Fréchet space. LetO(N) stand for the group of all orthogonal transformations
of RN . A functionF ∈ E (N) is said to be isotropic if for everyU ∈O(N) and allx ∈RN ,
one hasF(Ux) = F(x). The subset ofE (N) consisting of isotropic functions is denoted
by E (N)isot . Let alsoP (N)

isot ⊂ E (N)isot stand for the set of isotropic polynomials. The classical
Study–Weyl theorem (see [6]) implies that there exists a bijection between the set of all
polynomials of a single complex variableP andP (N)

isot established by

P (N)
isot � P(x)= p

(
(x, x)

) ∈P,

where(·, ·) is the scalar product inRN . Obviously, each a functionF having the form

F(x)= f
(
(x, x)

)
, (4.6)

with a certainf ∈ E , belongs toE (N)isot . GivenX ⊂ E , we writeX (RN) for the subset of

E (N)isot consisting of the functions obeying (4.6) withf ∈X . Consider

E (N)isot � F �→
(
∆+

(
d

(x, x)
+ b

)
(x,∇)

)
F ∈ E (N)isot ,

where∆ and∇ are the Laplacian and gradient inRN . ForF andf satisfying (4.6), one
has (

∆+
(

d

(x, x)
+ b

)
(x,∇)

)
F(x)= 4(∆θ,ωf )

(
(x, x)

)
, (4.7)

where∆θ and∆θ,ω are defined by (1.1) with

θ = N + d

2
, ω= b

4
. (4.8)
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Consider the following Cauchy problem

∂F (t, x)

∂t
=

(
∆+

(
d

(x, x)
+ b

)
(x,∇)

)
F(t, x),

F (0, x)=G(x) ∈ E (N)isot , (4.9)

wheret ∈R+ andx ∈RN .

Theorem 4.2. For everyd �−N , b ∈R, andG having the form

G(x)= exp
[−ε(x, x)]h((x, x)), h ∈A0, ε � 0, (4.10)

(i) the problem(4.9)has a unique solution inA(N)
ε , which, fort > 0, may be written as

follows:

F(t, x)= exp

(
− b(x, x)

4(1− e−tb)

)

×
+∞∫
0

wθ

(
bs(x, x)

4(1− e−tb)

)
h

(
4s
etb − 1

b

)
sθ−1

× exp

(
−s

(
1+ 4ε

etb − 1

b

))
ds, (4.11)

whereθ is given by(4.8);
(ii) if in (4.10)ε > 0, the solution(4.11)converges to zero inA(N)

ε whent→+∞;
(iii) if in (4.10)h ∈ L0⊂A0, the solution(4.11)belongs either toL0(R

N), for ε = 0, or
to L−(RN), for ε > 0.

The proof directly follows from Theorem 4.1 on the base of the correspondence formu-
las (4.6) and (4.7).
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