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Abstract

Differential operatorg(Ay ), Wherey is an exponential type entire function of a single complex
variable andAg , = (6 + wz)D + D%, D= 9/dz, z€ C, 0 >0, w € R, acting in the spaces of
exponential type entire function are studied. It is shown thatyfor0, such operators preserve the
set of Laguerre entire functions provided the functipalso belongs to this set. The latter consists
of the polynomials possessing real nonpositive zeros only and of their uniform limits on compact
subsets of the complex plar@. The operator ex@Ag ), a > 0 is studied in more details. In
particular, it is shown that it preserves the set of Laguerre entire functions forslt. An integral
representation of expAg ,,), a > 0 is obtained. These results are used to obtain the solutions to
certain Cauchy problems employing ,,.
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1. Introduction

Differential operators of infinite order naturally appear in many applications (in a certain
sense they constitute a total set of linear operators acting between spaces of differentiable
functions [3]). As usual, such operators are constructed by means of finite order differential
expressions substituted in the arguments of appropriate functions. If such a function
admits power series expansion, the operator may be defined by imposing corresponding
convergence conditions. In this article we consider differentiation with respect to a
single complex variable € C and the operators constructed by means of the following
differential expression

.
Qb= Ag + 02D ¥ (@ + 2D)D + wzD, (1.1)

whereD = 9/dz andd > 0, w € R are parameters. Given entire functignsf : C — C,
we set

9]

1
(9(40.0)f) @) =3 50 O(45 , 1)) (1.2)

k=1"

In order for the above series to converge to an entire function, we impose growth restric-
tions on the functiong and f by placing them into certain spaces of exponential type
entire function. These spaces were introduced and studied in our recent work [4] where we
used them to describe the operatp(ay), 6 > 0. Our present research is mainly based on
the results of that paper.

In Section 2 below we give definitions and a number of facts regarding the operators
@(Ap), 6 > 0. Our main results are presented in Section 3 in a sequence of theorems
characterizing the properties @t Ag ). Theorem 3.1 describes the operator@y ).

In particular, we prove that this operator obeys the decomposition rule

expla o) = explawzD) - explo~ (e — 1) Ag}, (1.3)

which is then used to describe the operatory ,,) with an arbitrary exponential type
entire functiony (Theorem 3.2). A special role in our study is played by Laguerre entire
functions being the polynomials of a single complex variable possessing real nonpositive
zeros only or the limits of sequences of such polynomials taken in the topology of uniform
convergence on compact subset€oflt turns out that these functions are of exponential
type and possess corresponding infinite product representations. We prove (Theorem 3.3)
that if both and f are Laguerre entire functions anddf> 0, the (A4 ) f is also

a Laguerre entire function. The above theorems extend the results of [4] to nonzero
values ofw. Then we consider again the operator @4% ), a > 0, for which the
decomposition (1.3) implies that it preserves the set of Laguerre entire fundtions

all real w. Further, (1.3) is used to obtain (Theorem 3.5) an integral representation of
explady ), a > 0. The latter result allows us to extend this operator to a wider class of
functions. Theorem 3.6 gives additional information regarding the action ¢fexp,) on

the functions of the type of expz)g(z). In Section 4 we use the above results to describe
the solutions to the Cauchy problem
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f(t,2) of (t,2) | 9°f(1,2)
rrane 6+ wz) PP +z 32 > 0,
f0,2)=g(2)

(Theorem 4.1). It enables us to describe (Theorem 4.2) the solutions also to the Cauchy
problem of the following type (heat equation with a drift)
JdF(t,x)
at
F(0,x)=G(x), xeRY NeN,

=(A+bx,V))F(t,x), >0,

with the initial functionG belonging to the class of isotropic (i.€(N)-invariant) analytic
functions. HereA andV stand for theV-dimensional Laplacian and gradient, respectively.

All propositions are given without proofs since either they are taken from other sources
or the proofs are evident.

2. Preliminaria

Let £ stand for the set of all entire functiorfs. C — C equipped with the topolog¥c
of uniform convergence on compact subset€ofThus, (£, 7¢) is a Fréchet space. For
b >0, we set

By={fe&llflp< oo}

where

I £llp = ks%p{b‘k\f‘“m)\ Lo 00 = (D 1)(0), (2.1)
€lNo

andNp stands for the set of all nonnegative integers. EX@&y || - ||») is a Banach space.
Fora >0, let

Ac=(By={f €& (¥b>a) | fllp <oo}. (2.2)

b>a

Equipped with the topology, defined by the family of norm§| - ||, b > a}, this set
becomes a Fréchet space. To shorten our notation we &rite,, B, instead of(&, 7¢),

Definition 2.1. A family £ (respectivelyCo, £1, £7) consists of the entire functions pos-
sessing the representation

f@=C"expa) [ [(1+8;2),

j=1
o
CeC, meNo, Bj>pBj1120, ) Bj <oo, (2.3)
j=1
with o € R (respectivelyx = 0, > 0, andx < 0).
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The elements of + are known as Laguerre entire functions [1,4]. &t stand for the
set of polynomials belonging t6™. By Laguerre and Pdlya (see, e.g., [1,5]),

Proposition 2.1. The familyZ* is exactly the closure @+ in 7¢.

Itis worth to note that every being of the form (2.3) may be writtefi(z) = explaz) x
h(z), whereh is an entire function of order less than one or equal to one and, in the latter
case, of minimal type. Consider the families

Lo¥rnde,  £2EENAL. (2.4)
Obviously,? andP* are dense respectively in the sets and £ equipped with the
topologies induced on them b¥:. However, the sef is not dense in any spads,.

Thus, a priori it is not obvious whether or not the sBtend P+ are dense respectively

in A, (in its standard topology) and ifi;" in the topology induced from,. Fortunately,

this density property holds in both cases. The following two statements, which we borrow
from [4], give information regarding the topological propertiestfand ;.

Proposition 2.2. For everya > 0, the relative topology on a bounded subset.4f
coincides with the topology induced on it By.

Proposition 2.3. For everya > 0,

(i) the set of all polynomial® c £ is dense in4,;
(i) the setPT is denseinC; in the topology induced by, .

Below unless explicitly stated we considé}, a > 0 as a topological space equipped
with the topology induced by,,.

For6 >0, letAg: € — E beasin (1.1), thatigly = Ag.0= (6 + zD)D. Given entire
functionsg and f, we definep(Ag) f (z) by (1.2). Further, one has

0] k>m
Akzm — (m,k)zm—k’ (m,k) _ { s s (25)
e = % Yo (m)/yo(m — k), O<k <m,

where
Yo(m) =m!I" (60 +m).
Applying this in (1.2) one may prove the following statement [4].
Proposition 2.4. For all & > 0 and for arbitrarya > 0 and b > 0, such thatab < 1,

(¢, f) > ¢(Ap) f is a continuous bilinear map froli, x B, (respectively fromd, x A
with @ > 0, b > 0) into B, (respectively4.), wherec = b(1 — ab)~1. Moreover,

leao) f], < @=ab)lellall flls-

The action ofp(Ap) on the Laguerre entire functions is described by the following
statement, which was proven in [4].
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Proposition 2.5. For all & > 0 and for arbitrarya > 0 and b > 0, such thatab < 1,
(. f) > ¢(Ap) f is a continuous map from3; x £ into £, wherec = b(1 — ab)~1.

Givenw e Rand f € &£, we set

OOa)k

exp(zD) f(@) =) _ (D) f) @),
k=0
which readily yields
explwzD) f(z) = f(e“2). (2.6)

Proposition 2.6. For anyw € R, exp(wz D) is a continuous linear map froi. with ¢ > 0
(respectively fromd. with ¢ > 0) into B, (respectively4,), whered = e“c.

The identity (2.6) also implies that

Proposition 2.7. For any w € R and ¢ > 0, explwzD) is a continuous map front}
(respectively fron_") into L:{ (respectivelyC ), whered = e“c.

The following representation of egpAy) was obtained in [4].

Proposition 2.8. For everyd > 0, for arbitrary a > 0, b > 0, such thatub < 1, and for all
f € Ap,

+00
(eX[XaAg)f)(Z) = exp(—é) / wo <2—Z)f(as)s9165 ds
0

+00
def / Ky <§, s)f(as)se_le_s ds, 2.7)
0
where
Ko(z.s) =€ “wp(zs),  wp(£) défi £ (2.8)
= vek)

This representation may be used for extending the operatau ayp. The assertion
below, also taken from [4], describes a property of such an extended operator.

Proposition 2.9. Givena > 0 andu € R, letb € [0, —u + 1/a). Then, for every € A,
the operator(2.7) may be applied to the function

f(2) =expuz)g(z), (2.9)
yielding

(expae) f)(2) = (L —ua)™ exp(lf—zw)h(z), (2.10)
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where

a Zz <
= oo = Jo () o - o= )

(2.11)
Moreoveri € A, with ¢ = b(1 — ua) 1 —a(u +b)]~L.

The extensions of eXp Ag) on the base of the integral representation (2.7) to the spaces
of integrable functions are given in [2].

3. Main results

Theorem 3.1. For all 6 > 0, for arbitrary w € R, a > 0, andb > 0, obeying the condition
b et — 1] < 1, the series expansiofiL.2) defines a continuous linear operator
expla Ay ) acting from the spacé);, (respectively fromA, with b > 0) into the space
B, (respectivelyA.), where

¢ =c(b) ™ (1 — b e —17) . (3.1)
This operator obeys the decomposition r(ll€3).

Remark 3.1. This theorem holds also fas = 0, since lim,_.o[¢?® — 1]Jo~! = a, where
it coincides with a partial case of Proposition 2.4. In the sequel the @as® will be
understood in this sense.

Theorem 3.2. For all & > 0, for arbitrary a > 0, € R, b > 0, obeying the condition
bo e — 1] < 1, (¢, f) — ¥(A¢.0) f, is a continuous bilinear map froms, x By
(respectively fromA, x Ap with a > 0 and b > 0) into the space3, (respectivelyA,),
wherec = ¢(b) is given by(3.1). Moreover,

lo(a6.0) £]l, < (1= b~ e™ = 10) " llgllall £1lb.

Theorem 3.3. For all 6 > 0, for arbitrary w > 0, a > 0, b > 0, obeying the condition
bo e — 1] < 1, (¢, f) > ¢(As,) f is a continuous map fron€} x £; into £,
wherec = ¢(b) is given by(3.1).

Theorem 3.4. For all 6 > 0, for arbitrary w € R, a > 0, b > 0, obeying the condition
bo~ e — 1] < 1, expladp,.) is a continuous map from; into £, wherec = c(b) is
given by(3.1).

Theorem 3.5. For all 6 > 0, for arbitrary w € R, a > 0, andb > 0, obeying the condition
bo~1[e?? — 1] < 1, and for anyf € Ay,

400
(eX[(aAg,w)f) (z) = exp(—vz) / wg(vsz)f(wil[e”‘“ - 1]S)S0716’75 ds
0
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+00
= / Ko(vz, s)f(a)fl[e“w — 1]5)5971675 ds, (3.2)
0
where
v=1v(a,w) def we™ , (3.3)
edv —1

andwy and Ky are defined by2.8).

The above theorem allows us to extend the operatofeexp,,) to the functions for
which the integrals in the right-hand side of (3.2) converge. In the sequel we understand
this operator in such an extended (integral) version.

Theorem 3.6. Givena >0, w € R, u € R, and b > 0, obeying the conditiobw ! x
[¢9© — 1] < 1 — uw 1[e*® — 1], the operatorexp(a Ag,.,) may be applied to the function

f(2) = expuz)g(z), (3.4)
with arbitrary g € A, yielding

-1 aw = ue’’z
(om0 1)) = (1w~ — 1) enp{ 1 M i, @9
where
h(z) = | ex <—““’ Ap + D) < w2 )
: _[ A& —ufeso — 1% 74" g} (@ — u[e® — 1])2
et _ 1 wZeawZ
= [exp(—w T A9>gi| <(w T 1])2>. (3.6)

Moreover, the latter function belongs i), with

¢ =be"(1—uw e — 1) (1 — (u + by e —1]) .
Corollary 3.1. Forall 6 > 0, w € R, a > 0, and b > 0, the operatorexpadg ) is a
continuous map from

(i) £; into £, wherea, b, andw satisfy the conditionw[e?” — 1] < 1, andc = c(b)
is given by(3.1),
(i) £, into £, whered = be®(1+ bo~1[e" — 1])~1.

The proof of the above theorems will be based on the properties ¢f &xp,), which
may be studied on the base of (1.3) and the properties azex) and exgbw 1 x
[e?® — 1]Ap), given by Propositions 2.4-2.9. Clearly, the operator(eXp.,,) defined
by (1.2) may be applied to any € P, furthermore, exuAg ) : P — P. Similarly, for
any realb andc, expbzD) : P — P and exgicAy) : P — P.

Lemma 3.1. For every polynomialf € P and anya € R, the operatoexpla Ay, .,) defined
by the series expansid¢f.2) obeyH1.3).
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Proof. Obviously, itis enough to prove the lemma only fir(z) =z, m € N. Sincea Ag
andawz D do not commute (except faror w being zero), one has to apply an appropriate
decomposition technique. It will be based on the Trotter—Kato product formula, which, for
our aims, may be written as follows (for more details on this item see [7] and references
therein):

exXxpA+B)f = nli_)moo (exp(%A) exp(%B))nf, (3.7)

whereA and B are linear continuous operators on a topological vector space and the con-
vergence is understood in the topology of the range space.
In what follows, giverm € N, one has

exXp(adp,o) fu(2) = lim_ (exp(%@) exp(?zD)) fn (@), (3.8)
where the convergence is#. By (2.6) and (2.5),

m

k
a k —
eX[XaAg)z’" — § :Fqém )Zm k’
k=0

which yields, together with (2.6), that for anym € N,

a aw m m—kq m—ky—--—ky_1 1
expl —A expl —zD E—
(ere( ) e 20 ) = gD 3P DRI DR TR
k1=0 k=0 k=0

a\ ket - ki)
5 (_) B R

n 6 0

X exp{?(m +m—-—ki+---+m—kyg—---— kn_l)}zm_kl_"'_k”

m m—ky — m—ky—-—k,_1 ki+ko+--+ky
XY Y el e

1o !
kim0 ko0 P kilko!. . k' \n
y Vo (m)exp{%2 (nm — (n — Dk — - - — ky—1)}
Yo(m —ki—---—ky)

defz k_yolm) ()" * W, (k, aw). (3.9

=0 Yo(m — k)

Here fork € Ng andb € R, we have set

1 ‘ e o (ka+2kp++-+nky)
Gk b) = 5 Y Skt
K1, k2, ek =0 kalko!. . k!
1, 1 [eb/neb — 1)\*
= /n 2(b/n) n(b/n) e’ = 1)
(2 ) <n(eb/n_1)

b _ k
N k_l'(e . 1) , (3.10)
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whenn — +o00. By (3.8), (3.9), and (3.10) one obtains

expadg.o) fm(z) = lim <exp<EA9> eXp<@ZD>) "

s (@ — 1Dk pe(m)
_Z k!

. aw \m—k
o -1 &

k=0
= (exp(oe" — 114¢) fin) (e““z)
= explawzD) exqa)_l[eaw - 1]A0)fm (2). U

Givenk,n,m € N, we set

in(k,m, 0, ) =[D"(Ap.0)' "] _q- (3.11)
After some algebra one obtains
e ginem S (K k@)
ulhom, 8, 0) = s g 5 <l>n o) (3.12)

l=m—n
if m >n, andk, (k,m,0,w)=0if m <n. Here,forp >s, p,s €N,
p

) def )4 s
ol < Z(k>(—l)k(p—k) > 0.

k=0

Proof of Theorem 3.1. Given f € P andb > 0 obeying the conditiohw1[¢®® — 1] < 1,
one has from (1.3), (2.6), and Proposition 2.4

lexpads.o) f|, = ||expawz D) explw™(e* — D} £],
= ”exp{a)_l(eaw - 1)}fH ce 9@
<(1=bo e = 1) "1 £ lIn, (3.13)

wherec = c(b) is given by (3.1). Then by claim (i) of Proposition 2.3, éxgy ,,) may be
continuously extended to the whalg,. The extension will also obey (1.3). This yields in
turn that the estimate (3.13) holds for afiy: £, provided|| f ||, <oco. O

Proof of Theorem 3.2. According to (1.2) and (3.11),

e £ (0)

Kkn(k,m,0,w), neNp,

¢ 0 E(p20.0)1) O = 3

il k! m!
(3.14)
which, for given positive: andb, yields
>, ak pm
8O <lgllallf s Do o7 —lknhm. 60, 0)]. (3.15)
. m:

k,m=0
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By (3.12),
|k (k,m, 0, )| < kn(k,m, 0, |wl).

Therefore, fotra andb obeying the conditions of the theorem and #ob) given by (3.1),
one readily gets from (3.15), (3.14), (3.13), and (2.1)

X gk pm
lglle <ll@llall flls- supyc™ c—kn(k,m, 0, |o|)

T
neNg k.m=0 k m!

= ll@llall £l - | €xpla g, jw)} eXxpb2) |,

ealol _ 1\~ 04 _ 1\~
<|11-» lellall fllo={1—0b lellall flp- O
|| w

Lemma 3.2. Forall 8 > 0, w > 0 and for arbitrary ¢, f € P*, the polynomialp(Ag ) f
also belongs tP+.

This lemma will be proven in several steps below. The proof of Theorem 3.3 readily
follows from it and from claim (i) of Proposition 2.3 and Theorem 3.2. Set
U={zeC|Rez>0}. (3.16)
In [4] we have proven the following statement.

Proposition 3.1. Let P, Q, and Q1 be polynomials of a single complex variable. Suppose
that P does not vanish oty and

Q(u) + P(u)vQ1 () #0, (3.17)
whenever, v € U. Then either
52 %' 0() + P(2)DO1(2) #0, (3.18)

whenever, € U, or elseS(z) = 0.

Lemma 3.3. For arbitrary o > 0, 6 > 0, andw > 0, the second order differential operator
o + Ag.,, mapsPt into itself.

Proof. For an arbitrarily chosep € P+, we have to show thatr + Ay ,)p € PT. The
case of constant is trivial. For nonconstant € P+, one may write

m
r@=m[]@i+2. meN 7;20, j=12....m (3.19)
j=1
First we consider the casg =0, j =1,2,...,m, thatisp(z) = moz™. Then
(0 + A9g.0)p) =2""1p(z) e PT,
since

p(2) d=efm(a +mw)z+m@®+m—1) e Pt.
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Now let at least one ; in (3.19) do not vanish. Set

9 =pE) =mo [ [(xj +27).
j=1

Then
((0 + 26,0)p) (2% = ((0 + 46,0)q) (2),

where

def z 1 w
A =(606+=D || —D —zD.
0,w < +2 )(ZZ >+ 2Z

433

(3.20)

(3.21)

(3.22)

In view of (3.20), the polynomialg(z), ¢(—z) do not vanish o (3.16). The proof will

be done by showing that

(0 + A9,0)9)(2) #0,
whenever; € U. Taking into account (3.20) we may write

1
((0 + A0,0)q)(2) =[0 + O + wzz)r(z)]q(z) + EzD(q(z)r(z)),
where
m 1
r(Z):ZJTj-l-ZZ'

j=1

Set

0@ =[o+ O+ @D]q@), PR = % 01(z) = q()r(2).

By Proposition 3.1, the proof of (3.23) will be done if we show that

R, v) B Q) + Pyv01(u) £0,

whenevet, v € U. To this end we rewrite the latter as

1
R(u,v) = Eq(u) “R1(u,v) - Ra(u, v),
where
Ri(u, v) = 20u® + uv + 29

and
20

Ro(u,v) = _
20, v) =r(u) + 2wu? + uv + 26

(3.23)

(3.24)

(3.25)

(3.26)

Sinceq (u) # 0 whenever € U, to prove (3.24) it remains to show that bath and R, do
not vanish ifu, v € U. Givenu € U, let us solve the equatiaR(u, v) = 0. The result is

—u — 20wu,
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which yields the following implications:
(Ri(u,v)=0) = (Rev<0) = (@WeC\U).

Recall that botl¥ andw are supposed to be real and nonnegative. TRgm, v) # O if
v € U. By the same arguments we show tat(u, v) £ 0 if u, v € U. To this end we
rewrite (3.26) as

Rz(u,v)=C(u,v)122+B(u,v)t712—i—A(u,v), (3.27)
where foru, v € U, we set
m
Cluv)= ; 7 +1u2|2 * 22 j-k:;:+ 22> %
Blu,v) = |20u? —1—2:14 +20)2 >0,
Aw,v) = i 7; zju2|2 * 2ouZ fiz 202

j=1

We have just shown thaRy(u, v)| = |20u? + vu + 20| > 0 if u,v € U. Foro =0, one
has

. o Au,v)
Rz(u,v)_C(u,v)|:u +7C(u,v)i| #0,

whenevern, v € U. Foro # 0, one hasB(u, v) > 0 and by (3.27) one would get from
Ro(u,v)=0
A(u, v) C(u,v)
—_— . M —_— . u
B(u, v) B(u, v)
which yields in turn
wel) = (Rz(u,v)yéO). |

V=

Proof of Lemma 3.2. Similarly to (3.19) one has fap € P+
m
9(M00) =0 [ [(0j+ Apw). 0;>0.j=12....m meN.
j=1
By Lemma 3.3 eaclio; + Ag.») mapsP™ into itself, hence the whole(As, ) does
so. O

Proof of Theorem 3.4. By (1.3) the operator eXp Ay .,) is a composition of ex@wz D)
and exfly Ap) with y = (e“w — 1)/w. The latter operator continuously magg in [,;
(Proposition 2.5), wherg = b[1 — (¢“w — 1)(b/w)]. The former one, also continuously,
mapsLj into £, , which follows from Proposition 2.7. 0

In a similar way, the proof of Theorem 3.5 follows from (1.3), (2.6), and Proposition 2.8.
The proof of Theorem 3.6 follows from (1.3), (2.6), and Proposition 2.9. The proof of
Corollary 3.1 follows from (3.5), (3.6), and Theorem 3.4.
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4. Differential equation

Now we may use the operators introduced above to describe the solutions to certain
Cauchy problems. First we consider the following one:

2
afét;Z)=(9+wz)8f;2Z)+za ];itz,z)’ weR, zeC. 50,
£(0,2) =g(2). (4.1)

Theorem 4.1. For everyd > 0, w € R, andg € £ having the form
g(z) =exp(—ez)h(z), he Ao, €20, (4.2)
(i) the problem(4.1)has a unique solution i, which may be written as

f(t,2) = (exp(t Ap,0)g) (2)

+00
wz wzs e’ —1\ 41
= eX — N
o) [ (2 e ) e
0

(ii) ifin (4.2)e > 0, the solution(4.3)converges to zero inl, when:r — +o0;
(i) ifin (4.2)h € Lo C Ap, the solution(4.3) belongs either taCg, for e =0, orto £,
fore > 0.

(4.3)

Proof. Let ¢;(z) = exp(rz). The operator valued functidi®, 7o) > ¢ > ¢;(As.») iS CON-
tinuous and differentiable in the norm-topology, and

@1 (A0,0) = 20,091 (Ag,0).

The functions (4.2), with a given and allh € Ap, form a subspace df, D A,, b > ¢.

The restrictions ofy, (Ag), t € [0, fo) to this subspace is a differentiable semigroup. Then

the problem (4.1) has a unique solution in the mentioned subspace (see, e.g., Theorem 1.4
[8, p- 109]) having the form

f(t,2) = (expt Ag,0)g) (2).

This proves unigueness. The representation (4.3) follows from Theorem 3.5. Further, we
substitute in (4.3) the initial condition (4.2) and apply Theorem 3.6 with —e. This
yields

e (1) o)
f@.9 = _— we™1® 4 g(1 — e~ 1)
eXp( el — 1 A )h < a)zze’“’ )
x [ wte®—1)"" } (@ + s[e'® — 1])2

tw -0
def e’ -1 cwz
=(1 expl — h .
( te w ) p( a)e_’“’+8(1—e—’“’)> (@)
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Sinceh € Ag, by Theorem 3.64; € Ap, and by Corollary 3.14; € Lo if h € Lo. The
former yields that the solution belongs.tt and the latter does claim (iii). It remains to
prove the convergence stated in (ii). The continuity of the operatar &yp,) yields that
in Ag

o o =1\,
1(2) = p<b+8(€tw -1 9) ((1+ 80)71[etw_ 1])2>

— {exp(i:LAg)h}(O),

if w # 0. The cas@ = 0 may be handled similarly. Therefore, the product in (4.4) tends to
zero inA, whent — +oco. 0O

GivenN e N, let €™ stand for the set of analytic functios:RY — C. Forb > 0,
we set

1F s L sup{|F )| exp(—blx|2)], (4.4)

xRN

where|x| is the Euclidean norm. Set

AN LY E € g™ |l <00, Yo>a), a>0, 4.9

This set equipped with the topology generated by the family of ndtmdl, n, b > a}
becomes a Fréchet space. I&tN) stand for the group of all orthogonal transformations

of RV. A function F € £™) is said to be isotropic if for everyy € O(N) and allx € RY,

one hasF(Ux) = F(x). The subset of™) consisting of isotropic functions is denoted

by Ei(sjgf. Let aIsoPi(s]Zt) C Ei(s}zt) stand for the set of isotropic polynomials. The classical
Study—Weyl theorem (see [6]) implies that there exists a bijection between the set of all

polynomials of a single complex varialﬂéandPi(s]gg established by

PN 5 P(x)= p((x,x)) eP,

isot

where(-, -) is the scalar product iR" . Obviously, each a functioR having the form
F(x) = f((x,x)), (4.6)

with a certainf € £, belongs ta€y). Given X' C €, we write X (R") for the subset of

LAQY consisting of the functions obeying (4.6) withe X'. Consider

isot
(N)
ot 2F — (A + <(x,x)

whereA andV are the Laplacian and gradientitlY. For F and f satisfying (4.6), one
has

+ b) (x, V)> Fe&l)

d
<A+( +b>(x,V))F(X)=4(A0,wf)((x,X)), 4.7)
(x,x)
whereAy andAg ,, are defined by (1.1) with
pNtd b (4.8)

2 4
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Consider the following Cauchy problem
F
m = (A + <L +b)(x, V))F(t,x),

ot (x, x)
FO,x)=G(x)e &L, (4.9)

wherer € R, andx e RV.

Theorem 4.2. For everyd > —N, b € R, andG having the form

G(x) =exp—e(x, x)]h((x,x)), he Ao, =0, (4.10)
() the problem(4.9) has a unique solution iot™ , which, fors > 0, may be written as
follows
F(t ) —ex M
=R "1

T h_q
X / we s(x, %) n(asE——= )51
41— e h) b
0
th __ 1
x exp(—s(1+ 4 . )) ds, (4.11)

whereé is given by(4.8);

(ii) ifin (4.10)¢ > 0, the solution(4.11)converges to zero il whent — +oo;

(iii) ifin (4.10)h € Lo C Ao, the solution(4.11)belongs either taCo(RY), for e =0, or
to L~ (RY), fore > 0.

The proof directly follows from Theorem 4.1 on the base of the correspondence formu-
las (4.6) and (4.7).
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