JOURNAL OF ALGEBRA 76, 211-213 (1982)

Root Groups

H. Azad

Institut für Mathematik, Ruhr-Universität Bochum, Bochum, West Germany

Communicated by W. Feit

Received May 12, 1981

Let G(k) be a Chevalley group defined over a field k and constructed as in [6] from a faithful representation of a semi-simple Lie algebra whose root system is R.

Let H and U_a $(a \in R)$ be subgroups of G(k) as defined in [6, p. 31]. Let R^+ be a positive system of roots, let $U^+ = \langle U_a : a \in R^+ \rangle$ and let $B = HU^+$. When k is algebraically closed, the subgroup H is a maximal torus and B is a Borel subgroup of G. In this case, it is well known that the groups U_a are the minimal subgroups of G which are normalized but not centralized by H. A question is: What are the minimal subgroups of G(k) which are normalized but not centralized by H, when k is an arbitrary field?

There are several interesting results when k is a finite field [2, 4, 5]. Here we will prove an analogue of one of the results of [4] when the field k has at least five elements.

PROPOSITION. Let G(k), H and U be as above. Assume that k has at least five elements and if k is of characteristic 2, assume that it is perfect. If X is a subgroup of U which is normalized by H then $X = \langle U_a : U_a \subseteq X \rangle$.

The proposition follows from a lemma which is of independent interest.

Let V be a Z-module, R^+ a finite subset of $V - \{0\}$, and S a subset of R^+ such that every element x of R^+ has a unique expression $x = \sum_{s \in S} a_s s$ with $a_s \ge 0$. Define the height of x to be $\sum_{s \in S} a_s$ and denote it by ht(x).

LEMMA. Let G be a group generated by subgroups U_a ($a \in R^+$) and H such that

- (i) $(U_a, U_b) \subseteq \langle U_{ia+ib}: ia+jb \in \mathbb{R}^+, i, j > 0 \rangle$,
- (ii) for all $a \in \mathbb{R}^+$, if $x \in U_a \{e\}$, then $\langle x^H \rangle = U_a$,

(iii) for all $a \neq b \in \mathbb{R}^+$, if $x \in U_a$ and $y \in U_b - \{e\}$, then there exists an element h in H such that

$$hxh^{-1} = x, \qquad hyh^{-1} \neq y.$$

0021-8693/82/050211-03\$02.00/0 Copyright :C. 1982 by Academic Press, Inc. All rights of reproduction in any form reserved. Then any H-invariant subgroup X of $U^+ = \langle U_a : a \in \mathbb{R}^+ \rangle$ is generated by the subgroups U_a which it contains.

Proof. Consider all triples $(G, H, \{U_a\}_{a \in \mathbb{R}^+})$ as above. Let N_G be the number of subgroups $U_a \neq e$. If N_G is 0 or 1, then, in view of condition (ii), there is nothing to prove.

So let $N_G > 1$ and let γ be an element of greatest height such that $U_{\gamma} \neq e$. Now $(U_{\gamma}, U_a) = e$, for all $a \in \mathbb{R}^+$ (by (i)), so U_{γ} is normal in G. Consider the triple $(\overline{G} = G/U_{\gamma}, \overline{H}, \{\overline{U}_a\}_{a \in \mathbb{R}^+})$. Conditions (i) and (ii) clearly hold for \overline{G} . As for (iii), suppose that $\overline{x} \in \overline{U}_a$ and $\overline{y} \in \overline{U}_b - \{\overline{e}\}$, with $x \in U_a, y \in U_b$. By hypothesis, there exists an element $h \in H$ such that $hxh^{-1} = x$ and $hyh^{-1} \neq y$. Suppose $(hyh^{-1})^- = \overline{y}$. Then $(h, y) \in U_b \cap U_{\gamma}$ and $(h, y) \neq e$, so (ii) implies that $U_b = U_{\gamma}$ and therefore $\overline{y} = \overline{e}$, which contradicts the choice of y. So \overline{G} satisfies (i), (ii) and (iii) whence $\overline{X} = \langle \overline{U}_a : \overline{U}_a \subseteq \overline{X}, a \neq \gamma \rangle$ by induction.

Suppose $\overline{U}_a \subseteq \overline{X}$ and $u_a \in U_a - \{e\}$. Then $u_a u_y \in X$ for some $u_y \in U_y$. If $u_y \neq e$, then by (iii), $e \neq hu_y h^{-1} u_y^{-1} \in X \cap U_y$ whence by (ii), we have $U_y \subseteq X$. So $X = \langle U_a, U_y : U_a \subseteq X \rangle$ in this case. And if $U_y \not\subseteq X$, then $X = \langle U_a : \overline{U}_a \subseteq \overline{X} \rangle$. This is what we wanted to prove.

Proof of the proposition. G = G(k) has generators $x_a(\xi) \in U_a$, $h_a(t) \in H$ $(a \in R, \xi \in k, t \in k^*)$ such that

$$(x_{a}(\xi), x_{b}(\eta)) = \prod_{\substack{i,j>0\\ia+jb\in R}} x_{ia+jb} (N_{a,b,i,j}\xi^{i}\eta^{j}),$$

$$h_{a}(t) x_{b}(\xi) h_{a}(t)^{-1} = x_{b}(t^{\langle b,a \rangle}\xi).$$

See, for example, [6, p. 30].

Let u and v be positive roots, and let $R_{u,v}$ be the integral closure of u, v in R. Then $u, v \in R_{u,v} \cap R^+$, so we need only check that (iii) holds in positive systems of rank 2.

If α , β is a basis of $R_{u,v} \cap R^+$, then one can check that (iii) holds with $h = h_{\alpha}(\xi) h_{\beta}(\eta)$ and ξ , η suitable elements of k^* . Hence conditions (i), (ii) and (iii) of the lemma hold. This completes the proof of the proposition.

COROLLARY. Let k be algebraically closed. View G(k) as an algebraic group over k. If X is a connected, nilpotent subgroup normalized by H, then for some subset S_X of R^+ and some $n \in N(H)$, we have

$$X = (X \cap H) \times \langle nU_a n^{-1} : a \in S_X \rangle.$$

This is an immediate consequence which the reader can prove himself, of the proposition, definitions and conjugacy of maximal tori.

Another corollary, which uses the argument in [1, p. 12-07] and which

describes, for examples, the normalizers of elements of finite order in semi-simple groups over $\mathbb C$ is:

COROLLARY. Let k be algebraically closed. View G(k) as an algebraic group over k. Assume that k is not characteristic 2 or 3. If X is a closed subgroup normalized by H, then either X centralizes H, or else for some nonempty closed set of roots, we have $X^0 = \langle T \cap X^0, U_a : a \in S_X \rangle$, where X^0 is the connected component of X. Moreover, $S_X = S_1 \cup S_2$, where $S_1 =$ $\{a \in S_X : -a \in S_X\}$, $S_2 = \{b \in S_X : -b \notin S_X\}$, and S_1 , S_2 are both closed set of roots.

The group $L_x = \langle U_a : a \in S_1 \rangle$ is semi-simple, and the group $U_x = \langle U_a : a \in S_2 \rangle$ is a unipotent normal subgroup of X. Moreover, X/X^0 has representatives in N(H), which induce graph automorphisms on the Dynkin diagram of L_x relative to the subtorus $L_x \cap T$.

One uses the commutator formula and the calculation in [3, p. 295] to show that S_x is a closed set of roots, and therefore that both S_1 and S_2 are also closed. Since $\langle T, X^0 \rangle$ is generated by those of its Borel subgroups which contain T, the previous corollary is applicable to these subgroups; moreover, X normalizes $\langle T, X^0 \rangle$. These facts imply all the assertions.

REFERENCES

- 1. C. CHEVALLEY, Seminaire sur la classification des groupes algébriques, 1956-1958.
- 2. CLINE, PARSHALL, AND SCOTT, Minimal elements of (H, p) and conjugacy of Levi complements, J. Algebra 34 (1975).
- 3. M. DEMAZURE, "Schemas en Groupes, III," Springer-Verlag, Berlin, 1970.
- 4. G. M. SEITZ, Small rank permutation representations of finite Chevalley groups, J. Algebra 28 (1974).
- 5. G. M. SEITZ, Subgroups of groups of Lie type (to appear).
- 6. R. STEINBERG, "Lectures on Chevalley Groups," Yale University Lecture Notes, 1968.