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LABORATORY INVESTIGATION

Distribution of dopamine- and cAMP-dependent
phosphoprotein (DARPP-32) in the developing and mature
kidney
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Distribution of dopamine- and cAMP-dependent phosphoprotein
(DARPP-32) in the developing and the mature kidney. DARPP-32 is a
dopamine- and cAMP-regulated inhibitor of protein phosphatase-1
(PP-1). Dopamine and DARPP-32 regulate sodium reabsorption in renal
tubules by inhibiting the activity of Na*,K*-ATPase. We here report
the pre- and postnatal distributions of DARPP-32 in the kidney as
demonstrated by immunoblotting and immunohistochemistry. With
immunoblotting we examined the abundance of DARPP-32 and the
functionally similar but more widespread inhibitor of PP-1, inhibitor-1
(I-1). We compared their relative abundance in the renal cortex, renal
medulla and neostriatum from the brain, where DARPP-32 is greatly
enriched. DARPP-32 levels in the adult rat were fourfold higher in the
neostriatum than in the renal medulla and 13-fold higher than in the
renal cortex. I-1 levels were approximately the same in the neostriatum
and in the renal medulla and 2.5-fold higher in neostriatum than in the
renal cortex. Between postnatal day 10 (PN10) and 40 (PN40)
DARPP-32 abundance increased 1.3-fold in the neostriatum, 1.4-fold in
the renal cortex and sixfold in the medulla. The abundance of I-1 did not
increase in the striatum from PN 10 to PN40 but increased 1.5-fold in the
renal cortex and threefold in the renal medulla. Thus, during the time of
maturation of tubular transport function, the levels of both PP-1
inhibitors increased in the kidney, the largest increase being found in
the renal medulla. With immunohistochemistry strong DARPP-32-like-
immunoreactivity (DARPP-32-LI) was detected in the ureteral buds
from gestational day 18 and up to postnatal day 8 when nephrogenesis
was completed. No I-1-like immunoreactivity (I-1-LI) was found in the
ureteral buds. From gestational day 21, DARPP-32-LI was identified in
the proximal convoluted tubules. After postnatal day 8, DARPP-32-LI
increased greatly in the medullary tubules of the thick ascending limb of
Henle. These results suggest two separate roles for DARPP-32 in renal
function. During tubulogenesis, DARPP-32 may participate in differen-
tiation/proliferation. In the mature kidney, DARPP-32 participates in
the regulation of sodium excretion.

Reversible protein phosphorylation is one of the major mo-
lecular mechanisms by which extracellular signals produce their
biological response. Target phosphoproteins change their bio-
logical activity when phosphorylated by protein kinases and
they return to the basal state when dephosphorylated by protein
phosphatases [reviewed in 1]. The activity of the widespread
protein phosphatase-1 (PP-1) is regulated by a few phosphopro-
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teins, including DARPP-32 (dopamine- and cAMP-regulated
phosphoprotein with a M, of 32 kDa on SDS-PAGE) and the
similar, but more widespread, inhibitor-1 (I-1). Both are potent
inhibitors of PP-1 when phosphorylated by cAMP-dependent
protein kinase [2, 3].

In renal tubules, dopamine, cAMP and phospho-DARPP-32
inhibit sodium reabsorption by inhibiting the activity of
Na* ,K*-ATPase [4-8]. We have previously shown that dopa-
mine regulation of Na* ,K*-ATPase activity undergoes postna-
tal changes [9, 10]. In this study we investigated, with Western
blotting, the postnatal abundance of DARPP-32 and I-1 in the
renal medulla and cortex and compared the findings with those
in the neostriatum, where both inhibitors are present. The
abundance of both I-1 and DARPP-32 increased postnatally in
the kidney, the most substantial increase of DARPP-32 being
seen in the renal medulla.

Since it has been suggested that neurotransmitters participate
in differentiation/growth [11, 12] and can modulate gene tran-
scription [13-15} we also studied the prenatal distribution of
DARPP-32. With immunohistochemistry we show that
DARPP-32 is present at an early stage of gestation and is
specifically localized to differentiating and proliferating cells
during early renal development.

Methods
Animals

Sprague-Dawley rats (ALAB, Sollentuna, Sweden) were
used for all studies. Adult rats were fed with standard rat chow
and water ad libitum. Pups were kept with their dams until 20
days of age. Rats were anesthetized with inactin (80 mg/kg i.p.;
Byk-Gulden, Constanze, Germany).

Immunohistochemistry

The kidneys from fetuses (gestational age 18, N = 3, and 21,
N = 3), neonatal litter (within 24 hr of birth; N = 3) and from
rats at the age of 3, 5, and 8 days (N = 3) were removed and
immediately fixed by immersion in an ice-cold formalin-picric
acid mixture (4% paraformaldehyde and 0.4% picric acid in 0.16
M phosphate buffer, pH 6.9) [16] for three to four hours. Rats at
the age of 20, 40 and 80 days (N = 3) were retrogradely perfused
via the descending aorta with Ca2*-free Tyrodes solution,
followed by ice-cold fixative (as above). Tissue was rinsed for at
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Fig. 1. Abundance of DARPP-32 and I-1 in corpus striatum (S), renal cortex (C) and renal medulla (M) at postnatal ages of 10 (PN10) and 40 days
(PN40). Tissue samples of 100 ug were separated on SDS-PAGE, transferred to a nitrocellulose membrane and immunoblotted with a DARPP-32
and an I-1 antibody, respectively. After incubation with a secondary antibody, proteins were detected with ECL, recorded on an autoradiography
film and photographed. Tissues from the two ages were separated on the same gel and blotted on the same filter to enable comparisons. This
necessitated an over-exposure of the striatal tissue to envision the much weaker signal from the kidney tissue. This photograph shows

representative blots from six experiments.

least 24 hours in a 0.1 M phosphate buffer (pH 7.4) containing
10% sucrose, 0.02% bacitracin (Sigma Chemical Co., St. Louis,
Missouri, USA) and 0.01% sodium azide (Merck, Darmstadt,
Germany). Sections were cut at 14 um thickness in a cryostat
(Dittes, Heidelberg, Germany) and processed for indirect im-
munofluorescence histochemistry [17]. Kidneys obtained from
pre- and postnatal animals were processed for immunohisto-
chemistry in the same experiment in order to eliminate varia-
tions in fluorescence intensity. Briefly, the sections were incu-
bated with a mixture of three mouse monoclonal antibodies
(C24a-4D7, C24a-5a, and C-24a-6a) raised against purified
DARPP-32 (diluted 1:800) [18, 19] for 24 hours at 4°C, rinsed in
phosphate-buffered saline (PBS), and incubated for 30 minutes
at 37°C with fluorescein isothiocyanate (FITC)-conjugated
sheep anti-mouse secondary antibodies (Amersham Ltd., Am-
ersham, UK), and rinsed again in PBS. For control purpose, the
DARPP-32 antibodies were preabsorbed with purified bovine
brain DARPP-32. For detection of I-1, a rabbit polyclonal
antibody, G187, diluted 1:200 was used as a primary antibody
[20] and an FITC-conjugated goat anti-rabbit antibody (Boeh-
ringer Mannheim, Stockholm, Sweden) was used as a second-
ary antibody. The sections were finally mounted in a mixture of
glycerol and PBS (3:1) containing p-phenylenediamine to re-
duce the fading of immunofluorescence [21, 22], and examined
in a Nikon Microphot-FX epifluorescence microscope equipped
with filter combinations for FITC-induced fluorescence (450 to

490 nm excitation filter, 520 to 560 nm barrier filter and 520 to
550 nm extra barrier filter). Tri-X (Kodak, Rochester, New
York, USA) black-and-white film was used for photography.

Immunoblotting

Kidney and brain were removed from rats at a postnatal age
of 10 days (PN10) and 40 days (PN40). Neostriatum from the
brain, renal medulla and renal cortex were dissected on ice, and
stored at —80°C. Tissue was homogenized by sonication in 1 ml
of boiling SDS 1% (BDH Chemicals Ltd., Poole, UK) and
maintained in a boiling water bath for 10 minutes. Protein
content was determined with Bio-Rad protein assay (Bio-Rad,
Richmond, California, USA) using BSA (Boehringer Mann-
heim, Germany) as a standard. Sample buffer was added to a
final concentration of SDS 1%, Tris-HCL 68 mM, glycerol 10%,
B-mercaptoethanol 5%, trace amounts of Pyronin Y, and sam-
ples were boiled for two minutes.

Samples of equal amounts of protein (100 ug) were separated
by SDS-polyacrylamide gel electrophoresis containing 12%
polyacrylamide, and transferred to a nitrocellulose filter 0.45
(Schleicher and Schrell, Dassel, Germany). In each experiment
samples were used for both I-1 and DARPP-32 detection.
Samples from the two age groups were detected on the same
filter to enable comparisons. Proteins were detected with im-
munoblotting as modified from Girault et al [23]. In brief, filters
were rehydrated in PBS after transfer and incubated in blocking
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Fig. 2. Immunofluorescence photomicrographs of sections of rat kidney on gestational days 18 (a,c) (G18) and 21 (G21) (b,d) after incubation with
monoclonal antibodies to DARPP-32. Rectangles in a and b represent higher magnifications seen in ¢ and d. On G18, strong DARPP-32-L1 is seen
in the ureteral buds (see arrows in ¢). On prenatal day 21, DARPP-32-LI is found in ureteral buds (arrows in d) and in proximal tubule cells in the

inner cortex (b, d). S = S-shaped bodies. Bars = 100 um.

solution [5% dry milk (Semper, Stockholm, Sweden)] and 0.1%
TWEEN (Merck-Schochardt, Hohenbrunn bei Miinchen, Ger-
many) in PBS. After rinsing, filters were incubated with primary
antibody. The DARPP-32 antibody 4D7 was used in a 1/1000
dilution. The I-1 antibody G 187 was a rabbit polyclonal
antibody raised against purified I-1 [20] and used in a 1/500
dilution. Filters were then incubated with secondary antibody
in PBS after thorough rinsing. The secondary antibody was a
horseradish peroxidase (HRP)-linked anti-mouse or anti-rabbit
antibody (Amersham Ltd.). All procedures were performed at
room temperature and with agitation. Detection was performed
with an ECL detection kit (Amersham Ltd.) and electrochem-
ical luminescence was recorded on autoradiography film (Hy-
perfilm, Amersham Ltd.). Films were scanned with a densitom-
eter (LKB Ultrascan XL laser densitometer) using LKB
software. Integrated areas under the appropriate peaks were
calculated using plain film density as a uniform background.
Abundance was compared to that in the striatum from 40-day-
old rats as an internal standard in each experiment. The values
presented are median of six experiments.

All chemicals, unless otherwise stated, were from Sigma
Chemical Co.

Results
Immunoblotting

The monoclonal DARPP-32 antibody detected a protein
migrating at 32 kDa in the neostriatum, as previously described,
and a protein of the same molecular weight in the renal cortex
and medulla (Fig. 1). DARPP-32 levels in the adult rat were
fourfold higher in the neostriatum than in the renal medulla and
13-fold higher than in the renal cortex. The I-1 antibody
detected a protein with a M, of 29 to 30 kDa. This corresponds
well to the M, previously reported for rat I-1 [20, 24]. The
differences in abundance were much less pronounced for I-1
than for DARPP-32. I-1 levels were approximately the same in
the neostriatum and in the renal medulla and 2.5-fold higher in
the neostriatum than in the renal cortex.

In the neostriatum DARPP-32 abundance increased 1.3-fold
from PN10 to PN40. In the renal tissue DARPP-32 was barely



detectable at PN10 with immunoblotting. The levels increased
1.4-fold in the renal cortex and sixfold in the medulla. I-1 was
present in substantial amounts already at PN10. The abundance
of I-1 did not increase in the striatum from PN10 to PN40. In the
renal cortex it increased 1.5-fold, and in the medulla it increased
threefold.

Immunohistochemistry

On gestational age day 18 (G18) (Fig. 2 a and c) strong
DARPP-32-L1 was detected in the ureteral bud, and in the
surrounding undifferentiated mesenchyme. No immunoreactiv-
ity was seen in the PCT.

On gestational day 21 (G21) (Fig. 2 b and d) strong DARPP-
32-LI was localized to the ureteral buds (Fig. 2d). Most of the
ureteral buds were located at the outer border of the cortex. In
the inner cortex, approximately one-half of the proximal con-
voluted tubule (PCT) cells displayed DARPP-32-LI. Surround-
ing PCT showed weaker immunoreactivity.

Around the time of birth (PN1) and postnatal day 3 (PN3)
(Fig. 3 a to ¢) the ureteral buds had uniformly reached the outer
cortex. Strong DARPP-32-LI was localized to the ureteral buds.
Weak immunoreactivity was found in all PCT cells in the cortex
(Fig. 3a).

On postnatal day 8 (PN8) (Fig. 4 a and b), most nephrons had
been induced and no ureteral buds were detected. Weak
DARPP-32-LI was found throughout the cortex in PCT cells,
and in the medulla in TAL cells.

On postnatal day 20 (PN20) (Fig. 5 a and b), postnatal day 40
(PN40) (Fig. 5c) and on day 80 (not shown), strong DARPP-
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Fig. 3. Immunofluorescence
photomicrographs of sections of rat kidney
within 24 hours of birth (a) and on postnatal
day 3 (b,c) after incubation with monoclonal
antibodies against DARPP-32. Strong
DARPP-32-L1 is seen in the ureteral buds
within 24 hours of birth (arrows in a) and on 3
days postnatally (b,c). Proximal tubule cells
display DARPP-32-LI, some of them strongly
(see arrows in b). Bars = 100 um.

32-LI was demonstrated in mTAL tubule cells. Weak immuno-
reactivity was localized to PCT cells. Glomeruli, blood vessels
and inner medulla were devoid of immunoreactivity.

No immunoreactivity was demonstrated after the addition of
purified DARPP-32 (1 uM) to the DARPP-32 antibodies (not
shown).

I-1-like immunoreactivity (I-1-LI) was not found in the ure-
teral buds at PN1, but it was present in PCT cells (Fig. 6 a and
b).

Discussion

In this study we have confirmed, by immunoblotting, the
presence of DARPP-32 in the renal medulla and renal cortex.
We furthermore compared the abundance of DARPP-32 and I-1
to the known abundance in neostriatal tissue and found that
DARPP-32 was approximately fourfold more enriched in the
striatum than in renal medulla and 13-fold more enriched than in
the renal cortex. I-1 had a similar abundance in striatum and
renal medulla but was less abundant in renal cortex, although
the difference was much less pronounced than for DARPP-32.
This is the first time phosphatase inhibitors have been quanti-
tatively studied in the kidney. A general conclusion is that the
renal medulla is more rich in these inhibitors than the cortex.
Over a period of functional maturation of the kidney tubules,
the abundance of both DARPP-32 and I-1 increased, and the
most remarkable increase was seen in the renal medulla. We
furthermore studied the pre- and postnatal distribution of
DARPP-32 with immunohistochemistry and confirmed the post-
natal localization to the PCT and the TAL demonstrated by
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Fig. 4. Immunofluorescence photomicrographs of sections of rat kidney on postnatal day 8 (PN8) (a,b) after incubation with monoclonal
antibodies against DARPP-32. Rectangle in a indicate higher magnifications seen in b. On day 8 DARPP-32-LI is present in tubular cells in the

cortex and medulla. Bars = 100 um.

immunoblotting. In addition, DARPP-32 was localized to the
ureteral bud during the last half of nephrogenesis. This was not
seen for I-1, indicating a specific role for dopamine/DARPP-32
in the ureteral bud.

DARPP-32 has a restricted distribution and is highly enriched
in dopaminoceptive cells in the basal ganglia. It has been
identified in a few peripheral tissues with DA, receptors [3]. I-1
is partially co-localized with DARPP-32, but it has been iden-
tified in high concentrations in several peripheral tissues [24—
26]. DARPP-32 levels in medium spiny neurons in the neostri-
atum have been calculated at 20 to 50 um [19]. The levels in
renal tubular cells from this study can be extrapolated into the
micromolar range. In the neostriatum I-1 levels have been
estimated at more than 1 to 2 uM [20]. The concentration in
renal tissues should be in the same range according to the
present results. The calculated K, for DARPP-32 (2.4 uM) and
for I-1 (5.0 um) for phosphorylation by cAMP-dependent pro-
tein kinase [27] is similar to the approximated concentrations of
DARPP-32 and I-1, making these reactions kinetically possible
in renal tubular cells. In an earlier study [19], DARPP-32 was
not detected in the kidney using an RIA assay. However, the
whole kidney was used in this study and considering the low
content or absence of DARPP-32 in some kidney cells, the
DARPP-32 content was probably diluted below the detection
level in the RIA assay.

Both DARPP-32 and I-1 are transformed to potent inhibitors
of PP-1 activity when phosphorylated by cAMP-dependent
protein kinase [27]. In the renmal mTAL cell, phospho-
DARPP-32 inhibits Na* ,K*-ATPase activity [8]. The proposed
mechanism involves the DA, receptor, activation of adenyl
cyclase, cAMP-dependent protein kinase, and phospho-
DARPP-32 [4, 5, 9]. DARPP-32 is also phosphorylated by
cGMP-dependent protein kinase [27], casein kinase [28] and is
dephosphorylated by Ca?*/calmodulin-regulated protein phos-
phatase 2B (calcineurin) [29]. Since Na™ , K *-ATPase activity is
regulated by several hormones in renal tubules cells, DARPP-32
is a possible regulatory site where different signals could
converge [30].

DARPP-32 levels increase slightly in the neostriatum from
PN10 to PN40, whereas 1-1 levels do not. These results are in
accordance with those of Ehrlich et al [31] and of Hemmings et
al [24] who showed that there was a large increase in DARPP-32
protein and in mRNA levels mainly before two weeks of age,
and that I-1 levels had almost reached adult levels at one week
before birth in the neostriatum. It has been suggested that I-1 is,
phylogenetically and ontogenetically, an earlier occurring phos-
phatase inhibitor and that DARPP-32 is more specialized in
distribution and function [24]. In the renal cortex both
DARPP-32 and I-1 increased slightly during development. In
the renal medulla the increase was more pronounced for both
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proteins, but particularly for DARPP-32. Despite the semiquan-
titative nature of these determinations, the relative abundances
and the large increase in both I-1 and DARPP-32 in the renal
medulla were clearly observed. Many tubular transport func-
tions develop between PN 10 and PN40 [32]. This study suggests
that DARPP-32 postnatally is a marker for differentiated
dopaminoceptive cells in the kidney. The role of the high
concentration of DARPP-32 in adult mTAL remain to be
clarified.

Immunohistochemistry demonstrated that DARPP-32-L1 was
found early during renal development and that it reached its
final adult distribution at PN20. During the intermediate period
the localization of DARPP-32-LI differed partly from that in the
adult. Similar observations have been made in the brain [33]. In
both brain and kidney, DARPP-32 may have a function differing
from that in the adult during development. The nature of this

Fryckstedt et al: DARPP-32 in the developing kidney

Fig. 5. Immunofluorescence
photomicrographs of sections of rat kidney on
postnatal days 20 (a,b) and 40 (¢) after
incubation with monoclonal antibodies
against DARPP-32. Rectangle in (a)
represents higher magnification seen in (b).
On postnatal day 20 DARPP-32-LI can be
seen in mTAL cells in the outer medulla (a,
b). On day 40 strong DARPP-32-LI is
distributed in mTAL cells in the outer medulla
with medullary rays extending into the cortex.
Weak DARPP-32-L1 is present in the proximal
tubules in the cortex at both ages. No
DARPP-32-LI can be seen in the glomeruli (g)
or inner medulla (im). Bars = 100 pm.

proposed developmental role remains unclear. In the brain
DARPP-32 appearance preceded tyrosine hydroxylase by ap-
proximately two days [33], indicating that the appearance of
DARPP-32 was independent of dopaminergic input. This might
not be the case in the kidney since here the appearance of
DARPP-32 coincides with the appearance of AADC in the
proximal tubules, as reported in previous studies from our
laboratory [34]. Dopamine content has been studied from
postnatal age of three days and was seen to increase to day 20
[34]. A tentative conclusion could be that at this time, preceding
birth by a few days, the dopamine system starts to play a role in
the kidney. The low content of DARPP-32 in the PCT at PN10
could possibly explain the previously reported impaired dopa-
mine inhibition of Na* ,K*-ATPase activity in this segment at
this time [9, 10].

During early nephrogenesis the ureteral bud (seen at arrows
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in Figs. 2 a, b, and 3a) grows into a cortical layer of undiffer-
entiated mesenchymal cells. These are induced to proliferate
and differentiate into the first tubular structure, the S-shaped
body (S in Fig. 2a), which further develops into the glomerular
and tubular epithelia. The ureteral bud divides and gives rise to
new nephrons in a centrifugal pattern all through tubulogenesis
from prenatal day 11 to postnatal days 7 to 8 in the rat kidney
[35]. The specific localization of DARPP-32-L1 in the ureteral
bud and the developing structures suggest that DARPP-32 could
be involved in the process of induction and/or early differenti-
ation. Interestingly, I-1 was not localized to the ureteral bud,
indicating a specific role for the dopamine/DARPP-32 system
during nephrogenesis. Dopamine has been shown to influence
the developmental state of the cells in the central nervous
system [12, 11, 36], possibly by modulating gene transcription
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Fig. 6. Immunofluorescence
photomicrographs of sections of rat kidney
within 24 hours of birth after incubation with
rabbit polyclonal antiserum to inhibitor-1. No
immunoreactivity is found in ureteral buds.
Immunoreactivity is found in some tubule
cells in the inner part of the cortex. The
majority of all glomeruli are not
immunoreactive. (b) Represents higher
magnification as indicated by rectangle in (a).
Bars = 100 um.

[13-15]. The role of dopamine for induction/differentiation in
the mammalian kidney is an interesting subject for further
studies.
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