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Abstract Related proteins with similar biological functions
generally share common features, allowing us to extract the
common sequence features. These common features enable us
to build statistical models that can be used to classify proteins,
to predict new members, and to study the sequence^function
relationship of this protein function group. Although evolution
underlies the basis of multiple sequence analysis methods, most
methods ignore phylogenetic relationships and the evolutionary
process in building these statistical models. Previously we have
shown that a phylogenetic tree-based pro¢le hidden Markov
model (T-HMM) is superior in generating a pro¢le for a group
of similar proteins. In this study we used the method to generate
common features of G protein-coupled receptors (GPCRs). The
pro¢le generated by T-HMM gives high accuracy in GPCR
function classi¢cation, both by ligand and by coupled G protein.
) 2003 Published by Elsevier B.V. on behalf of the Federation
of European Biochemical Societies.
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1. Introduction

G protein-coupled receptors (GPCRs) are a large superfam-
ily of receptors, generally consisting of a bundle of seven
transmembrane helices connected by six loops of varying
lengths. Di¡erent GPCRs respond to a wide variety of di¡er-
ent external stimuli and activate a number of di¡erent GTP
binding proteins (G proteins), initiating a broad spectrum of
intracellular responses [1]. GPCRs play important roles in
cellular signalling networks involving such processes as neuro-
transmission, cellular metabolism, secretion, cellular di¡eren-
tiation and growth, in£ammatory and immune responses,
smell, taste and vision. This superfamily of proteins is of
importance in understanding many human diseases, and has
been proved to be one of the most attractive targets for phar-
maceutical intervention. The breadth of physiological activ-
ities involving these receptors is due to the wide range of
ligands that interact with receptors of this class, as well as
the number of di¡erent G proteins to which they can be

coupled. Although there are thousands of GPCR sequences
available [2], only one high-resolution structure has been
solved, that of bovine rhodopsin [3].

GPCRs have been divided into six principal classes gener-
ally based on sequence: class A (rhodopsin-like), class B (se-
cretin-like), class C (metabotropic glutamate/pheromone),
class D (fungal pheromone), class E (cAMP receptors), and
the Frizzled/Smoothened class [2]. Each class is further divid-
ed into families based on their ligand speci¢city, with some
families combined into larger groups based on closely related
ligands. For example, the class A GPCRs include groups such
as amine binders, peptide binders, prostanoid receptors, and
olfactory receptors. The amine binding group, for instance, is
formed by seven families (acetylcholine receptor, adrenocep-
tor, dopamine receptor, histamine receptor, serotonin recep-
tor, octopamine receptor and trace amine receptor). The
G proteins to which GPCRs couple are themselves divided
into four categories (Gi/o, Gq/11, Gs, and G12) based on
structure and function, of which the ¢rst three are the most
abundant [4].

Characterizing the role of any GPCR involves the identi¢-
cation of both the activating ligand and the activated G pro-
tein. This is a di⁄cult problem given the complicated nature
of the interactions, as GPCRs that bind to the same ligand
may couple to di¡erent G proteins and GPCRs that couple to
the same G protein may bind to di¡erent ligands. There are
considerable e¡orts made to predict the placement of new
GPCRs into the appropriate ligand-based classi¢cation.
Some of the work includes the support vector machine
(SVM) method by Karchin et al. [5], a classi¢er based on
principal chemical properties of primary amino acid sequences
developed by Lapinsh et al. [6], the construction of a ‘¢nger-
print’ in the PRINTS database [7] by Attwood et al. [8], and
Daeyaert’s n-tuple method [9]. While it is not always simple to
compare the accuracy of di¡erent methods due to various test
sets used, the highest reported accuracy rate for these various
approaches is 97.4% for GPCR group level classi¢cation by
the method of Lapinsh et al.

Less has been done classifying GPCRs based on the asso-
ciated G protein. Horn et al. [10] used correlated mutation
analysis to study the basis of G protein speci¢city of GPCRs
and found weak sequence signal which determines the speci-
¢city. Mo«ller et al. [11] tried to predict the G protein coupling
speci¢city of a GPCR using a pattern recognition algorithm.
They achieved high prediction accuracy in their study, albeit
with a small test set. Cao et al. [12] used a naive Bayes model
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to predict G protein coupling speci¢city of GPCRs and
achieved a 72% accuracy rate in their study.

In this paper, we describe the construction of a phylogenetic
tree-based hidden Markov model (T-HMM) using a method
described by Qian et al. [13] and evaluate its performance for
GPCR classi¢cation. Our classi¢er achieves an accuracy of
99.9% for ligand group-based classi¢cation (i.e. amine vs. pep-
tide binding), and over 99% for ligand family-based classi¢-
cation. In addition, the G protein coupling speci¢city-based
classi¢cation gives 83% accuracy over a large data set. Some
applications of our model for functional inference are also
discussed.

2. Materials and methods

2.1. Use of the T-HMM for sequence classi¢cation
Many methods for classifying a target protein are based on the

development of statistical models of the various classes, followed by
identifying which statistical model best describes the target protein. Of
the various approaches that have been developed, pro¢le HMMs have
proved to be one of the more sensitive methods [14]. There are, how-
ever, a number of complications in implementing this approach [13]:
b The currently available sequences are biased towards speci¢c taxo-

nomic groups, requiring the use of one of a set of ad-hoc weighting
procedures.

b The limited available data require the use of statistical approaches
[15], which generally do not re£ect the evolutionary relationships
and processes behind the observed sequences.

b Most methods assume that each location in the set of aligned se-
quences evolved independently. The shared phylogenetic relation-
ships between all of the locations in the proteins induce correlations
that can confound the information present in the multiple sequen-
ces.

b Most approaches generate a single statistical model which represent
the entire class. There may be a hierarchical ordering of the mem-
bers of the class, based on the underlying evolutionary process.
More information might be provided by constructing a set of mod-
els, each representing some part of this substructure.
We have developed methods for addressing these problems through

the explicit modeling of the underlying phylogenetic relationships and
the sequence changes that occurred during the evolutionary process
[13], based on the T-HMM method of Mitchison and Durbin [16,17].
The strength of this method is that it naturally incorporates both site
substitutions and indels (including of multiple amino acids) in a con-
sistent framework.

The method of constructing a T-HMM is discussed in more depth
elsewhere [13]. Brie£y, given a set of aligned homologous sequences
and a corresponding phylogenetic tree, we can calculate the proba-
bility of the various amino acids in the ancestral proteins [18]. These
posterior probabilities can be viewed as an amino acid pro¢le of the
protein family at that node. Pro¢les at di¡erent nodes can be viewed
as common features of the protein family at di¡erent evolution stages.
All combined, they can serve as a description of various subclasses of
the protein family. In particular, we can construct a pro¢le HMM at
each node of the phylogenetic tree where the emission probabilities
are given by the posterior probabilities resulting from the phylogenetic
reconstruction of ancestral nodes. Using the T-HMM approach, we
can similarly use a probabilistic reconstruction of the path of the
ancestral sequence through the HMM to calculate the transition prob-
ability between various states of the HMM. We can thus calculate an
HMM for every node in the phylogenetic tree. The score can be
calculated by forward algorithm or Viterbi algorithm [19]. As we do
not know where the putative new member of the family will be on the
existing tree, we can compare each target sequence with the HMM
representing every node, and use the highest score as the classi¢cation
score. If we have derived a number of T-HMM models, each of which
corresponds to one of the known protein classes, we can calculate the
score of a query sequence with each T-HMM, and assign the query
sequence to the class that provides the highest score.

2.2. Ligand-based classi¢cation
Both extracellular loop regions and transmembrane helices are im-

portant in determining a GPCR’s ligand binding speci¢city [20]. This
result suggests that best classi¢cation power will be achieved when the
whole GPCR sequences are used for the ligand-based classi¢cation.

The score of a random protein in the HMM will depend upon the
length of the protein, the composition of the protein, and various
regularities and periodicities in the sequence. In order to account
for these e¡ects in the statistical analysis, we use the reverse HMM
null model introduced by Karplus et al. [21]. In a reverse HMM null
model, an alternative HMM is constructed, the reverse of the model
HMM. The score of the protein sequence in the reversed model is
then used to represent a random sequence of the same length, com-
position, and periodic structure. The logarithm of the ratio of the
probabilities that the sequence aligned with a model and the corre-
sponding null model is used as the score; Score = log [p(sequen-
ceMHMM)/p(sequenceMreverse HMM)]. Conceptually, this score mea-
sures how much more likely it is that a sequence matches the HMM
compared to a random event.

Our analysis is based on the GPCRDB (March 2002 release, http://
www.gpcr.org/7tm/) [2] database, a collection of all the currently
known GPCR sequences, along with putative sequences and frag-
ments. All putative/orphan sequences and fragments are excluded
from our data set, as are all ligand-based families with fewer than
six sequences. This results in 1749 sequences and 57 families. Half of
each family is chosen at random to form group I, while the remaining
sequences form group II.

In group I and II, respectively, a multiple sequence alignment is
constructed for each family using T-Co¡ee [22]. Then PAML (phylo-
genetic analysis by maximum likelihood) [23] is used to construct the
phylogenetic tree for each family. Finally T-HMMs are constructed.
Each of the sequences in group II is compared in turn with the 57
models derived from the group I sequence sets, aligned to each model
using Viterbi algorithm [19] and assigned to the model that yields the
highest score. Similarly, each of the sequences in group I is assigned to
one of the 57 families based on the models derived from group II
sequence sets.

2.3. G protein coupling-based classi¢cation
Much less is known about the basis for G protein coupling speci-

¢city. From the currently known GPCR coupling speci¢city reported
by the latest Trends in Pharmacological Science Nomenclature Supple-
ment [24], we generated a database of 470 GPCRs with an identi¢ed
G protein coupling speci¢city. Each GPCR in the database is assigned
to one of the three G protein coupling categories which correspond to
binding to the three most abundant classes of G proteins: Gio, Gs
and Gq11. Known dual coupling and triple coupling cases are ex-
cluded from this study.

Experimental studies have shown that G proteins bind to GPCRs
mainly through the intracellular loop regions which connect the seven
transmembrane helices. In addition, work by Mo«ller et al. [11] and
Cao et al. [12] suggests that the intracellular loop regions are su⁄cient
to de¢ne the G protein coupling speci¢city. For these reasons, we use
the intracellular parts of the GPCR sequences to build our models for
G protein coupling classi¢cation,

Each of the 470 GPCR sequences is submitted to the TMHMM
server [25] which predicts the location of transmembrane helices in a
given GPCR. Of these, 418 GPCRs are predicted by TMHMM as
having seven transmembrane helices. In these 418 sequences, there are
di¡erent copies of the same protein from di¡erent species. We elimi-
nate those repetitive sequences from our data set based on the Swiss-
Prot protein ID. This procedure left us with 95 protein sequences.
Among them, 54 belong to the Gio coupling category, 27 belong to
the Gq11 category, and 17 belong to the Gs category. From each of
these 95 sequences, intracellular loop region 1 (i1, between helix 1 and
helix 2), region 2 (i2, between helix 3 and helix 4), region 3 (i3,
between helix 5 and helix 6), and the carboxy tail region (tail) are
extracted based on the TMHMM prediction result.

As with the ligand speci¢city classi¢cation, the proteins in each
category are divided randomly and evenly into two subsets, with
one subset from each category combined to form group I and the
remaining sequences forming group II. A multiple sequence alignment
is constructed for each loop region (i1, i2, i3 and tail) in group I of
every G protein coupling category. Phylogenetic trees and T-HMMs
are built based on these alignments using the same methods as in the
ligand-based classi¢cation case. From group I, we construct 12
T-HMMs corresponding to all combinations of the four protein re-
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gions with the three G protein speci¢cities. Every loop or tail region
identi¢ed in the group II receptors is compared in turn with the three
corresponding T-HMMs using the Viterbi algorithm [19].

The results from using the tail region alone were not promising, so
we ¢rst discarded the tail region. Adding the scores of the remaining
elements in various combinations was attempted, with the highest
accuracy achieved by summing the results for loops i2 and i3. A
category score divided by the sum of all category scores gives the
probability that a sequence belongs to a G protein category. Then
the group II sequences are used as a model training set to compute a
similar set of T-HMMs, and the group I sequences are used as test
sequences to perform the same classi¢cation procedure.

3. Results

3.1. Ligand-based classi¢cation performance
For the ligand-based two-fold classi¢cation problem, of the

1749 total sequences, the T-HMM approach yielded a correct
family prediction in all but 17, an error rate of less than 1%.
Only two of the 1749 sequences (0.1%) were misclassi¢ed into
the wrong ligand-based group. Both of these (Q9YHY2 and
Q9YHY3) are classi¢ed in the GPCRDB as olfactory proteins
yet predicted using the T-HMM approach to be serotonin
receptors. Both are listed in the SwissProt database [26] as
‘putative’ odorant receptors, even though GPCRDB does
not assign them to the ‘putative family’.

To ensure the consistency of the estimate of prediction ac-
curacy, another random split of the 1749 sequences was per-
formed and the two-fold classi¢cation was repeated. This time
there were 18 misclassi¢cations at the family level, and the
same two misclassi¢cations at the group level.

Note that in these comparisons, the models are built from
half of the available sequences. We expect to observe better
results if we use all the currently available data to build pro-
¢les and classify the newly discovered proteins.

A GPCR classi¢cation example is shown in Fig. 1. Each of
the 83 adrenoceptor family GPCRs is aligned to each of the
57 T-HMM models. Each protein sequence renders 57 scores,
one score from each model, shown as 57 data points in each
column of the plot. The solid circles correspond to the scores
for the adrenoceptor model. As shown in Fig. 1, all scores

from the adrenoceptor model are higher than scores from the
other models, indicating an accurate assignment of all the
adrenoceptor sequences. As adrenoceptors belong to the
group of amine binders, scores generated with models from
other families belonging to the amine receptor group (open
circles) are generally higher than those scores generated by
families not belonging to the amine receptor group (squares).

In Fig. 1, there is one protein (O96716, indicated by an
arrow) which has an adrenoceptor score only slightly higher
than the score generated from the dopamine receptor family
model. The SwissProt database [26], however, indicates that
this protein is a dual-speci¢city ‘dopamine D1/L-receptor’,
binding both dopamine and adrenaline. For comparison pur-
poses, we also submitted this sequence O96716 to the GPCR
classi¢cation server by Kachin et al. [5]. Their server gave a
score of 0.85 to adrenoceptor, and 30.71 to dopamine recep-
tor, missing the dual speci¢city.

3.2. G protein coupling-based classi¢cation performance
We randomly split the 95 GPCRs used in our G protein

coupling speci¢city classi¢cation experiment and perform a
two-fold validation as described in Section 2. The best perfor-
mance was achieved when we only combined scores for i2 and
i3 loop regions (see Section 2): of the 95 total GPCRs tested,
13 misclassi¢cations were observed. To ensure the consistency
of the estimate of prediction accuracy, a second random split
of the 95 sequences was performed and the two-fold classi¢-
cation was repeated, again using only the i2 and i3 scores.
This time there were 19 misclassi¢cations, yielding an average
success rate of 83%.

The method of G protein coupling speci¢city prediction is
based on a phylogenetic tree of the loop regions, which are
di⁄cult to align. Loop regions 1 and 2 can be aligned with
relative con¢dence as they are rather short (approximately 15
residues), and in particular, loop 2 has a conserved DRY
motif. Loop 3 is more problematic, and the tail region is
particularly di⁄cult. The success of the T-HMM method,
even given the problems with generating accurate align-
ments and phylogenetic trees, indicates that the pro¢les are
still able to represent the common features of those sequence
groups. It is possible that di⁄culties in aligning the tail region
may explain why including this region in the analysis did not
improve the predictions, and this suggests that use of better
alignments and phylogenetic trees could yield even higher ac-
curacies in this and similar phylogenetically based predictive
schemes.

Fig. 2 shows the separation of the three G protein coupling
categories. The probability shown in the plot is the probability
of a GPCR coupled by a speci¢c G protein class. There are
some GPCRs with much higher probability of interacting with
one speci¢c G protein than the other two, as shown by those
data points close to the three corners of the triangle. More
common, however, are the GPCRs with higher probability of
interacting with one speci¢c G protein, and still with substan-
tial probabilities of interacting with the other two classes of
G proteins. This observation agrees with the experimental
results that GPCRs are generally capable of binding with
more than one class of G proteins, and their preference for
G proteins can be changed when the experimental conditions
are changed [27], as well as suggesting that GPCRs with only
one known G protein partner can have higher degrees of
promiscuity. It may be the competitive nature of the binding

Fig. 1. Sequences belonging to the adrenoceptor family (members of
the amine group) are ¢tted to all of the ligand-based family
T-HMMs. Each column of points corresponds to a sequence scored
on the 57 various models. Solid circles: scores generated by adreno-
ceptor family model; open circles: scores generated by amine recep-
tor models other than the adrenoceptor model. Squares: scores gen-
erated by family models not belonging to the amine receptor group.
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that determines the actual G protein coupling speci¢cities of
GPCRs.

3.3. G protein coupling speci¢city-based pro¢le con¢rms crucial
residues in the interaction

In addition to the prediction of the G protein coupling or
ligand binding speci¢city of a newly found GPCR, our models
can also be used to gain insight into the sequence^function
relationship of GPCRs. For example, our models can be used
to identify or con¢rm the crucial residues playing important
roles in G protein^GPCR interaction. Blin et al. [28] analyzed
a set of m2 and m3 type muscarinic receptors and found that
four residues can determine the G protein speci¢city of these
muscarinic receptors. They did an array of point mutations on
these four residues and found it is possible to convert the Gi/
o-coupled m2 type muscarinic receptor to a Gq/11-coupled
receptor. We repeated their mutations in the m2 type musca-
rinic receptor and our classi¢cation result changed from Gio
to Gq11, as observed in the biochemical experiments.

3.4. Comparison with predictions from phylogenomics
An alternative phylogenetic-based approach to protein clas-

si¢cation is the use of a phylogenomics approach, as devel-
oped by Eisen [29]. In this method, a phylogenetic tree of the
sequences is constructed. The assumption is then made that
changes in function are parsimonious, that is, the best model
is the one that minimizes the number of changes in function
consistent with the phylogenetic tree. A standard parsimony
analysis can then be performed on the tree to minimize such
changes. With such an approach, there will be situations
where a number of models are equally parsimonious, and
no clear prediction can be made.

A phylogenetic tree of the training and test protein sequen-
ces was constructed using both the distance-based ClustalW
method [30] and the parsimony-based MEGA method of Nei
and co-workers [31]. Although the unambiguous predictions
were of high accuracy (ligand classi¢cation accuracy 99.6%
and 99.2% with the ClustalW and MEGA trees, respectively;

G protein classi¢cation accuracy 80.6% and 64%, respec-
tively), the percentage of cases where such unambiguous pre-
dictions could be made was not high for the ligand-based
classi¢cation scheme (83.2% and 61.6%, respectively), and
substantially lower for the prediction of coupled G protein
(40.9% and 44.3%, respectively).

3.5. Annotation of the human GPCRs
With the accuracy demonstrated in the above analysis, our

classi¢er can be used to annotate the ligand binding and
G protein coupling speci¢city of GPCR sequences in protein
databases. The International Protein Index (IPI) [32] com-
bines all protein sequences from di¡erent resources, thus is
a good starting point for our annotation e¡ort. We ¢rst
used every sequence in GPCRDB to run a BLAST search
of the IPI human protein sequences, and saved all the resul-
tant sequences with BLAST E-values smaller than 1.0 as pu-
tative GPCRs. Then we used the 57 GPCR ligand family
models to classify these putative GPCRs. Since some of these
putative GPCRs are not GPCRs, we needed a null statistic to
measure the con¢dence that a sequence is indeed a GPCR.

We used the score distribution of all the non-members of
the 57 families as a null statistic. If a sequence achieved a
score larger than 95% of the null statistic scores, i.e.
P6 0.05, then we considered this sequence a signi¢cant hit.
We found 930 sequences from the IPI human protein data-
base with P6 0.05, and 736 of them with P6 0.01. Most of
these signi¢cant hits are known GPCRs. We then annotated
the ligand binding and G protein coupling properties of these
930 sequences using our ligand-based and G protein coupling-
based classi¢er. Not all sequences, however, can be classi¢ed
with G protein coupling speci¢city, since the seven transmem-
brane regions of some of these sequences cannot be correctly
identi¢ed. The annotated results can be obtained from http://
mathbio.nimr.mrc.ac.uk/goldstein/GPCR/.

4. Discussion

In the pharmacological community, it is useful to classify
GPCRs based on their predicted ligand binding properties
[33]. Most sequence classi¢cation methods assume, at some
level, that proteins that are more similar or more closely re-
lated are more likely to share functional attributes. This as-
sumption holds reasonably well for the prediction of the
GPCR ligand speci¢city. (This is not always the case; for
example, most K2-adrenergic receptors show higher sequence
similarity to dopamine type 2 receptors than to K1-adrenergic
receptors.) Such agreement between evolutionary relationships
and ligand speci¢city could explain the high accuracy of com-
putational methods in ligand-based GPCR classi¢cations as
achieved in our study and others’ [5,6]. There is much less
agreement between G protein coupling speci¢city and se-
quence similarity, making the prediction of the coupled
G protein a much more di⁄cult problem, consistent with
the generally lower accuracy achieved by G protein-based
classi¢cation schemes, and in particular, the small percentage
of unambiguous predictions that can be made based on a
phylogenomics approach.

The underlying structural and physiological reasons for the
G protein coupling speci¢city are still not clear. The speci¢city
of a GPCR to di¡erent G proteins could change under di¡er-
ent experimental conditions. Various experimental results

Fig. 2. Classi¢cation of the GPCRs based on G protein coupling
speci¢city. The three coordinates show the probability of a GPCR
interacting with a speci¢c class of G protein. Data points show
GPCRs that speci¢cally couple to a class of G protein: Gs (circles),
Gio (triangles), Gq11 (squares). Internal lines separate regions where
receptors are assigned based on predicted coupling: Gs (lower left),
Gio (lower right), Gq11 (top).
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show that GPCRs are generally capable of binding with di¡er-
ent G proteins. Also, the posttranslational modi¢cation of
GPCRs may play some role in G protein speci¢city [27]. All
these factors further hinder the e⁄ciency of G protein cou-
pling speci¢city-based classi¢cation of GPCRs, and suggest
that new possibilities for GPCR classi¢cation will emerge as
more becomes known about the phenomenology and mecha-
nisms of the binding speci¢city.

There are a number of di¡erent ways to undertake the task
of protein classi¢cation. Based on whether or not we know
the number of classes in our target protein group, these meth-
ods can be categorized into supervised and unsupervised clas-
si¢cation [34]. In this GPCR classi¢cation case, since we know
there are certain numbers of functional groups in our data, we
are performing a supervised classi¢cation. Many di¡erent su-
pervised classi¢cation methods have been used in protein clas-
si¢cation, including Bayesian networks [12], SVMs [5], density
estimation [9,6], etc. Our method can be regarded as along the
lines of density estimation: parametric models of di¡erent
protein families are built, then the probability of each se-
quence given any family model is calculated and these prob-
abilities from di¡erent models are compared. The strength of
our method lies in the way we extract the sequence features,
by incorporating evolutionary information into the sequence
pro¢les.

As mentioned in Section 1, there are many other interesting
works associated with GPCR classi¢cation. Lapinsh et al. [6]
used principal chemical properties of the primary amino acid
sequences to construct a GPCR classi¢er. This method is
promising because the explicit use of chemical/physical prop-
erties of an amino acid sequence can probably reveal more
properties of a protein family, when the pure sequence-based
methods fail to ¢nd some detailed information hiding beyond
the discriminative power of the 20 characters. Lapinsh et al.
were able to achieve a correct ligand group-based assignment
of 521 GPCRs out of a test set of 535 for an error rate of
2.6%, although they did not attempt to apply their approach
to the more di⁄cult problem of ligand family classi¢cation.
Attwood’s PRINTS database incorporates expert knowledge
of the di¡erences between protein families, providing speci¢c
sequence ¢ngerprints for individual GPCR families and for
receptor subtypes [8]. This information can be used to search
the protein database for new members of various GPCR
families. Daeyaert’s n-tuple method [9] considers only the
amino acid composition of protein families and uses various
statistics to adjust the discrimination power of the method.
The prediction accuracies of these last two methods are,
unfortunately, not evaluated. Karchin et al. [5] used a SVM
to process the scores from SAM-T2K, an HMM-based iter-
ative database searching method. The trained SVM is then
used to classify GPCRs. They showed improved perfor-
mance by SVM treatment. In principle, any HMM can poten-
tially be improved by having its scores re¢ned through a dis-
criminant SVM analysis, suggesting that applying such a
method to the T-HMM approach might yield further im-
provements.
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