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Abstract ATP-binding cassette (ABC) transporters represent
one of the largest families of proteins, and transport a variety
of substrates ranging from ions to amphipathic anticancer drugs.
The functional unit of an ABC transporter is comprised of two
transmembrane domains and two cytoplasmic ABC ATPase do-
mains. The energy of the binding and hydrolysis of ATP is used
to transport the substrates across membranes. An ABC domain
consists of conserved regions, the Walker A and B motifs, the
signature (or C) region and the D, H and Q loops. We recently
described the A-loop (Aromatic residue interacting with the Ade-
nine ring of ATP), a highly conserved aromatic residue �25 ami-
no acids upstream of the Walker A motif that is essential for
ATP-binding. Here, we review the mutational analysis of this
subdomain in human P-glycoprotein as well as homology model-
ing, structural and data mining studies that provide evidence for
a functional role of the A-loop in ATP-binding in most members
of the superfamily of ABC transporters.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.

Keywords: ABC transporter; ATP hydrolysis; Nucleotide-
binding domain; Homology modeling; Multidrug resistance;
Sequence alignment
1. Introduction

ATP-binding cassette (ABC) transporters constitute one of

the largest protein families present in all taxonomic groups

[1,2] and play a central role in the transport of a variety of sub-

strates ranging from simple ions to complex toxins and natural

product anticancer agents across cell membranes using the en-

ergy of ATP hydrolysis [3]. It is thus not surprising that 18 of

the 48 human ABC transporters are implicated in the clinical

manifestation of diseases [2]. The basic architecture of an

ABC protein consists of two nucleotide-binding domains

(NBDs) or ABCs and two transmembrane (TM) domains,

which are involved in the transport of substrates. Though there

is little sequence homology between the TM domains of differ-
Abbreviations: ABC, ATP-binding cassette; CFTR, cystic fibrosis
transmembrane regulator; NBD, nucleotide-binding domain; Pgp,
P-glycoprotein; TM, Transmembrane domain
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ent ABC transporters, the NBDs are highly conserved and are

composed of several distinct sequence motifs [4]. A typical

ABC of 200–220 amino acids contains several conserved sub-

domains, including the Walker A and B motifs, the signature

region (also called the LSGGQ motif, linker peptide, or C re-

gion) and the D, H and Q loops [5]. Though these motifs were

initially recognized on the basis of sequence homology, site-

directed mutagenesis and structural studies have elucidated

the role(s) of several residues in these subdomains. Moreover,

the functional ABC appears to be a ‘nucleotide-sandwich di-

mer’ [6] with ATP flanked by the Walker A and B motifs of

one ABC and the signature motif and D-loop of the other.

A schematic showing the functional catalytic site formed by

residues in conserved subdomains in both NBD1 and NBD2

of human P-glycoprotein (Pgp) with ATP at the interphase

of both sites is given in Fig. 1. This schematic was generated

based on MJ0796 E171Q dimer structure, sequence alignment

and the mutational analyses of these residues in NBDs of

mammalian Pgps by several groups [6,7].

Several amino acids in these conserved motifs have been

shown to play a role in ATP binding [7,8], coordination with

Mg2+ [9], ATP hydrolysis [8,10,11] and communication be-

tween the NBDs and the transport substrate sites [12]. In addi-

tion, resolution of structures of some of the ABC proteins by

X-ray crystallography shows that a conserved aromatic residue

stacks against one side of the adenine ring through p–p inter-

actions. It has not, however, been clear whether there is a con-

served subdomain in ABC transporters that facilitates such

interactions. Here we review: (i) the NBD structures of ABC

proteins and the interactions between the aromatic residue

and the adenosine ring of ATP; (ii) recent sequence homology

studies that identify a conserved aromatic residue that repre-

sents a previously unrecognized, well conserved subdomain

in the ABC; (iii) site-directed mutagenesis studies of this aro-

matic acid (‘‘A-loop’’) and biochemical characterization of

these mutants in Pgp (ABCB1).
2. Interactions between aromatic residues of ABC proteins and

the adenine ring of nucleotides

A structure of the NBD domain of histidine permease (HisP)

reported in 1998 was the first high-resolution structure of an

ABC domain [13]. This structure showed that the major con-

tact between the adenosine ring of ATP and HisP occurred

via p–p interactions with a conserved tyrosine residue (Tyr
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Schematic showing residues in conserved subdomains of NBD1 and NBD2 of human Pgp interacting with ATP. ATP is sandwiched between
the Walker A and B, and A, Q and H loops of the NBD1 and the C (signature) region and D-loop of the NBD2 (top) and vice versa (bottom). The
diagram was generated based on the structure of the E171Q mutant MJ0796 NBD dimer [6], sequence alignment, and mutational analyses of a
majority of these residues in mammalian Pgps by several groups (Table 1 in [7]).

1Kim, I.W., Peng, X.H., Sauna, Z.E., FitzGerald, P.C., Xia, D.,
Muller, M., Nandigama, K. and Ambudkar, S.V., submitted for
publication.
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16). This was consistent with previous mutational studies that

demonstrated that transport function and ATP hydrolysis

were abolished when Y16 was substituted with S [14]. Subse-

quently, the crystal structures of both free and nucleotide-

bound NBDs of several ABC transporters have been reported.

It has been shown that in HlyB [15], MsbA [16], MJ0796 [17]

and Tap1 [18] NBDs a tyrosine residue interacts with the ade-

nine ring of ATP. Similarly, structures of MJ1267 [19] and

GlcV [20] show that a phenylalanine residue is involved in

the recognition of the adenine base. Finally, the structure of

the MalK NBD indicates that the adenine base interacts with

a tryptophan residue through van der Waals contacts [21].

Thus, analysis of structures of nucleotide-bound ABCs demon-

strates that the adenine ring of the nucleotide interacts with an

aromatic residue.

Recently Mao and coworkers [22] used a data mining and

quantum chemical approach to identify residues involved in

adenine binding in nucleotide-binding proteins. Their study

identified three principal forms of interaction between the ade-

nine base and the nucleotide-binding pocket: (i) hydrogen

bonding, (ii) p–p stacking and (iii) cation–p interactions. This

study endeavored to quantify the relative importance of these

interactions and determined that on average, there are four

non-bonded intermolecular interactions required for binding

the adenine base to a protein: 2.7 hydrogen bonding interac-

tions, 1.0 p–p stacking interaction, and 0.8 of a cation–p inter-

action between the adenine base and the protein. Most

significant, however, was the conclusion that there is a comple-
mentary relationship between hydrogen bonding and the other

two forms of non-bonded intermolecular interactions. Stacking

interactions that involve aromatic residues from both enzyme

and substrate are thus a critical component of the binding of

nucleotides to ATP-binding proteins. Based on the individual

structures of NBDs and the molecular characteristics for nucle-

otide-binding, it would be reasonable to expect that a conserved

aromatic residue is an integral part of the ABC, and is involved

in the recognition of the adenine ring of ATP.
3. A highly conserved aromatic residue subdomain within the

ABC

Recently we have taken a comprehensive approach to identi-

fying conserved aromatic residues that may have interactions

with the adenine base of ATP in ABC transporters.1 The first

step was to mine the non-redundant protein database for

matches to the pattern characteristic of distinct conserved mo-

tifs for the ATP-binding site. This search identified a total of

18514 domains, and matched regions (�25–30 residues up-

stream of the Walker A motif to �175 residues downstream)

were combined into a multiple alignment. The alignment

showed that 15614 of these domains (84.3%) contain an aro-



Table 1
Sequence alignment of a region 23–27 amino acids up-stream of the
Walker A motif in nucleotide-binding domain of 48 human and
selected plant, fungal, and bacterial ABC transporters

ABC transporter NBD1 NBD2

ABCA sub-family
ABCA1 (ABC1)a K V Y R D K I Y R R
ABCA2 (ABC2) K V Y K D K V Y K S
ABCA3 (ABC3, ABCC) K V F R V K V Y E Q
ABCA4 (ABCR) K I F E P K I Y L G
ABCA5 K T Y R K K E Y D D
ABCA6 K E Y K G K E Y A G
ABCA7 K R F P G K V Y R G
ABCA8 K E Y K G K E Y A G
ABCA9 K E Y A G K E Y A G
ABCA10 K E Y N G K E Y Y E
ABCA12 K I Y G S K T Y Q L
ABCA13 K E Y E G K H Y R R

ABCB sub-family
ABCB1 (MDR1) F S Y P S F N Y P T
ABCB2 (TAP1)b F A Y P N
ABCB3 (TAP2)b F A Y P N
ABCB4 (MDR3) F S Y P S F N Y P T
ABCB5 L S Y S I F F Y P C
ABCB6 (MTABC2)b F S Y A D
ABCB7 (ABC7)b F E Y I E
ABCB8 (MABC1)b F S Y P C
ABCB9b F T Y R T
ABCB10(MABC1)b F A Y P A
ABCB11 (BSEP) F H Y P S F T Y P S

ABCC sub-family
ABCC1 (MRP1) F T W A R L R Y R E
ABCC2 (MRP2) F T W E H V R Y R P
ABCC3 (MRP3) F T W A Q V R Y R P
ABCC4 (MRP4) A F W D K F M Y S P
ABCC5 (MRP5) S P E E E M R Y R E
ABCC6 (MRP6) F A W S Q L R Y R P
ABCC7 (CFTR) L F F S N A K Y T E
ABCC8 (SUR1) F T W T P V R Y D S
ABCC9 (SUR2) F T W T P V R Y D S
ABCC10 (MRP7) F S W D P L A Y R P
ABCC11 (MRP8) G P E E E M K Y R D
ABCC12 (MRP9) G P E E Q M R Y R D

ABCD sub-family
ABCD1 (ALD)b I P I V T
ABCD2 (ALDL1)b V P I I T
ABCD3 (PXMP1)b V P L A T
ABCD4 (PMP69)b V S I S A

ABCE sub-family
ABCE1 (OABP)c H R Y C A Y K Y P G

ABCF sub-family
ABCF1 (ABC50)c E K F S I F G Y Q G
ABCF2c I N L S L F K Y T K
ABCF3c E N F D V F Y Y D P
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matic residue at a position 25 residues upstream of theWalker A

motif and this number rises to 16312 or 88.1% if one includes an

aromatic residue at a position 25 residues upstream of theWalk-

er A and offset ± 2. Similarly, in a subset of eukaryotic proteins,

we identified 3024 domains, 87.6% of which contain an aro-

matic residue at position 25 ± 2 upstream of the Walker A mo-

tif. Though the basic unit of an ABC transporter contains one

NBD and one TM domain, the functional protein consists of

two units that are either part of a single polypeptide chain or

composed of a homo- or hetero-dimer. Table 1 shows the se-

quence alignment of 23–27 residues upstream of the Walker A

motif in the ABCs of all 48 human and selected plant, fungal,

and bacterial ABC transporters. Most of these sequences have

an aromatic residue located at a position 25 amino acids up-

stream of the Walker A motif. Among those ABC transporters

that contain both NBDs on the same polypeptide chain, the

conserved aromatic residue in the C-terminal NBD (NBD2) is

almost always a tyrosine, while the N-terminal NBD (NBD1)

has either tryptophan or phenylalanine residues in addition to

the tyrosine. This is vividly illustrated in a graphical representa-

tion of a motif in the form of a Sequence Logo [24,25] generated

for this region (Fig. 2). The sequence of the region 23–27 amino

acids upstream of theWalker Amotif of theNBD1 from all full-

length transporters and the NBD of half-transporters (total 59)

were grouped together, and the sequence of similar regions from

the NBD2 of 37 full-length transporters were used for the gen-

eration of the Sequence Logo. It is important to note that the

aromatic residues identified as interacting with the adenine moi-

ety of the nucleotide in the X-ray crystallographic studies (see1

for a complete list), are the ones documented as the highly con-

served aromatic residues by large-scale data mining, sequence

alignment, and also the Sequence Logo (Fig. 2). Thus, the aro-

matic residue that stabilizes binding of the adenosine ring of

ATP constitutes a highly conserved subdomain with a loop

structure located at a position 25 residues upstream of the

Walker A motif. This conserved subdomain also appears to

mark the amino terminus boundary of the NBD (Fig. 1). To

emphasize its importance, we named this conserved subdomain

the A-loop (Aromatic residue interacting with Adenine base of

ATP). However, it is important to note that the aromatic acid

upstream of the Walker A domain is not conserved in all

ABC transporters or in nucleotide-binding protein containing

the Walker A (P-loop) motif. Some of the exceptions include

members of the Rad50/SMC and MutS/MSH subfamilies,

which do not exhibit any transport function but are involved

in various DNA repair and maintenance functions [26,27]. In

addition, in the humanABCD subfamily the aromatic acid is re-

placed with either an I or L residue (Table 1). This is not surpris-

ing, as different nucleotide-binding proteins interact with the

ribose and nucleotide base in a different manner [18,22].
ABCG sub-family
ABCG1 (White)b P W W R K
ABCG2 (MXR, BCRP)b S G F L P
ABCG4 (White 2)b P C W R K
ABCG5 (White 3)b P W W D I
ABCG8 (White 4)b M P W T S

Selected plant, fungal and bacterial ABC transporters
AtPGP (A. thaliana) F S Y P S F S Y P S
AtMRP1 (A. thaliana) F S W D S L R Y R P
Ste6 (S. cerevisiae) F S Y P S F A Y P S
Pdr5p (S. cerevisiae)d R K F Q R L C Y E V
Cdr1p (C. albicans)d R H F Q K L T Y Q V

(continued on next page)
4. Mutational studies with tyrosine 401 and 1044 residues in the

A-loop of NBDs of Pgp

The conserved tyrosine or other aromatic residues described

above have not previously been considered as a conserved sub-

domain of the ABC. However, several groups have studied the

biochemical effects of mutating this residue in several ABC

transport proteins. As stated above, the Y16S mutation in

the HisP subunit of the bacterial histidine permease was found

to abolish the binding of ATP and its transport function [14],



Table 1 (continued)

ABC transporter NBD1 NBD2

LmrA (L. lactis)b F A Y D D
MalK (E. coli)e K A W G E
HlyB (E. coli)e F R Y K P
MsbA (E. coli, S. typhimurium)b F T Y P G
HisP (S. typhimurium)e K R Y G G
MJ0796, LoID (M. jannaschii)e K T Y K M

The sequences of 23–27 residues upstream of the Walker A motif in the
NBDs of 48 human and selected plant, fungal, and bacterial ABC
transporters were manually aligned (NBD, PSSM-Id: 5341, cd00267;
http://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?uid=cd00267).
Boldface and underlined letters indicate the residues at the equivalent
position of Y401 in NBD1 and Y1044 in NBD2 of human Pgp.
aThe most common alternate name for human ABC transporters is
given in parentheses. For transporters from other organisms, the
species name is given in italics in parentheses.
bHalf transporter with one TM domain and one NBD.
cLacks TM domains.
dThe sequences at a position �25–29 residues upstream of the Walker
A.
eSubunit containing only one NBD.

Fig. 2. Sequence Logo of 23–27 residues upstream of the Walker A
motif in the nucleotide-binding domain of 48 human and selected
plant, fungal, and bacterial ABC transporters. A graphical represen-
tation of a motif based on alignment of residues 23–27 upstream of the
Walker A in the NBD1 (left) and NBD2 (right) of all (48) human and
selected plant, fungal and bacterial ABC transporters (see Table 1),
was generated using WebLogo software (URL: http://weblogo.berke-
ley.edu/). For the analysis, the sequences of the NBD1 of all full-length
transporters and the NBD of half transporters were grouped together
(total 59). The sequence of the same region of the NBD2 of 37 full-
length transporters was used to generate the Sequence Logo of this site.
Each Sequence Logo consists of stacks of symbols, one stack for each
position in the sequence. The overall height of the stack indicates the
sequence conservation at that position, while the height of symbols
within the stack indicates the relative frequency of each amino acid at
that position [24,25]. Although any one of the aromatic residues (Y, W
or F) can be found in the NBD1, only the Y residue is conserved at this
position in the NBD2 of all full-length ABC transporters.
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biochemical consequences that are consistent with the struc-

ture of HisP described above. We recently carried out a com-

prehensive site-directed mutagenesis of the conserved

tyrosine residue in both NBDs of Pgp.1 In this study, the con-

served tyrosine residues in both NBDs were mutated either sin-

gly or together and the Y was replaced with a W, F, C or A.

The W and F represent alternative aromatic residues, the A

represents a non-conservative mutation and the C represents

a polar substitution. We systematically evaluated the effect of

these mutations on (i) cell-surface expression, (ii) nucleotide

binding, (iii) vanadate-induced trapping of nucleotides, (iv)

ATP hydrolysis, and (iv) drug transport in intact cells. None
of the mutations affected cell-surface expression of the protein,

permitting the characterization of the protein–nucleotide inter-

actions for all these substitutions. Substitution of Y401 and

Y1044 with C and A at either NBD significantly decreases or

abolishes nucleotide binding, trapping and hydrolysis and also

affects transport function. On the other hand, the Y fi F/W

substitutions have no effect on transport function, consistent

with previous results that show that substitution with alterna-

tive aromatic amino acids are tolerated at this location [6].

Consistent with these findings, it has been demonstrated in

wild-type hamster Pgp that the photoaffinity nucleotide,

[a-32P] 8-azido-ADP, was crosslinked to the Y398 and Y1041

residues [28]. When the effect of selected mutations on the

kinetics of nucleotide binding and/or hydrolysis was also deter-

mined, we found that though conservative mutations sup-

ported ATP hydrolysis, the kinetic properties were

significantly affected. For example, the substitution of Y401

with W resulted in an increase in the Km (ATP) during ATP

hydrolysis and an increase in the Kd (TNPATP) in a binding

assay using the fluorescent analog of ATP, TNPATP.1 Similar

results were also reported for the Y477W mutant of bacterial

HlyB-NBD [29]. These studies suggest that the Y401 and

Y1044 residues in each NBD may be replaced with alternative

aromatic residues (F or W) yet continue to retain ATP binding

and hydrolysis and transport function. This is because these

conservative replacements would permit the molecular interac-

tions described above. However, replacement of Y401 or

Y1044 with non-aromatic residues abolishes these interactions,

resulting in loss of ATP binding and hydrolysis. The results are

thus consistent with our findings from the data mining-se-

quence alignments and the molecular determinants for ATP-

binding based on crystallographic structures and provide the

detailed biochemical analysis for the role of a conserved aro-

matic residue in most ABC transport proteins.

The data in the literature, however, also suggest that the

importance of the conserved aromatic residues may also be re-

lated to the role of the NBD in which they are located. For

example, substitution of F430 with S in the NBD1 of human

cystic fibrosis transmembrane regulator (CFTR), does not af-

fect chloride channel function [30]. The tolerance to this muta-

tion may have a structural basis, as F430 does not stack with

the adenine ring of the nucleotide but instead makes an edge-

to-face contact [31]. In the case of ABC transporters that are

ion channels (such as CFTR), the requirement of ATP hydro-

lysis to power the movement of ions is highly controversial,

and recent work suggests that CFTR exhibits adenylate kinase

activity (see [32] for a review and a discussion of the energetics

of the chloride channel). MRP1 (ABCC1) belongs to the same

subfamily (ABCC) as CFTR. Zhao and Chang studied the ef-

fect of mutations of the conserved aromatic residues in both

NBDs of MRP1 on nucleotide binding and LTC4 transport

[33]. They found that like CFTR, the substitution of W653

or Y1302 with C is tolerated in MRP1 but with significant

change in the kinetic properties of ATP hydrolysis.
5. Homology model of the NBDs of Pgp: interactions between

the conserved subdomain, A-loop and ATP

Although a high-resolution structure of the NBDs of Pgp is

currently not available for a verification of the above findings

at the structural level, there is a significant degree of conserva-

http://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?uid=cd00267
http://weblogo.berkeley.edu/
http://weblogo.berkeley.edu/


Fig. 3. Model structure of the dimeric Pgp nucleotide-binding
domain showing conserved residues involved in ATP-binding. The
atomic model of the dimeric NBDs of Pgp was based on the
coordinates from the crystal structure of the MJ0796 E171Q dimer
(PDB code: 1L2T) [6] by mapping the N- and C-terminal NBD
sequence to either subunits, respectively. The model was built with
the program O [38]. The resulting dimeric NBD was subjected to a
few cycles of molecular dynamics in the CNS program to remove
unfavorable interactions present in the initial model and to conform
to the standard stereochemistry values of bond angles, bond lengths,
and dihedral angles and the final dimeric NBD model was checked
with the program PROCHECK. The N-terminal NBD is depicted as
a ribbon diagram in green; and the C-terminal NBD is shown in
gold. Functionally important sequence motifs are highlighted in
different colors. The Walker A motif appears in red, the Walker B
motif blue, the signature motif magenta and the A-loop brown. The
modeled ATP is shown as a ball-and-stick model with carbon atoms
in black, oxygen red, nitrogen blue and phosphorous magenta. The
Mg2+ ion is shown as a metallic ball. The conserved residues that
are part of the ATP-binding environment are shown in the
expanded panel. The Y401 residue of the conserved subdomain,
A-loop (shown in brown) stacks against the adenine ring of ATP.
The figure was created with GLR software (www.convent.
nci.nih.gov/glr).
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tion in the NBD sequence of Pgp and other ABC transporters,

including the following whose crystal structures can be found

in the Protein Data Base: MJ1267 and MJ0796 from M. jann-

aschii, MalK, MsbA, BtuD and HlyB of Escherichia coli,

MalK of T. litoralis, HisP from S. typhimurium, MsbA from

V. cholera, human TAP1, and mouse CFTR [6,13,15,16,

18,19,21,31,34–37]. Conservations in the NBD sequences are

most pronounced for the Walker A and B motifs, and in the

signature LSGGQ motif. These conserved sequence segments

could provide strong constraints for modeling. Since a number

of NBD structures were already available ranging from pro-

karyotes such as E. coli to eukaryotes including humans, these

structures were aligned to generate a more precise, structure-

based sequence alignment, against which the N-and C-terminal

NBDs of Pgp sequences were aligned. With this alignment,

additional conserved sequence motifs such as the A-, Q-, D-,

and the H-motifs could be precisely modeled. By homology

modeling, we mapped the sequence of the Pgp N-and C-termi-

nal NBDs onto the two subunits of the dimeric E171Q mutant

of the MJ0796 ABC [6]. The amino acid sequence of NBD1

and NBD2 of human Pgp is 29.3% and 25.7% identical and

48.9% and 45.1% similar, respectively, to the sequence of the

NBD of MJ0796. The model was then manually adjusted for

side-chain clashes and for accommodation of deletions and

insertions. The resulting dimeric NBD was subjected to a few

cycles of molecular dynamics in the CNS program to remove

unfavorable interactions present in the initial model and to

conform to the standard stereochemistry values of bond an-

gles, bond lengths, and dihedral angles. The final NBD model

was checked with the program PROCHECK. The positions of

ATP molecules and Mg2+ ions were derived from the consen-

sus positions determined by a multiple structure alignment

(although in dimeric structure of E171Q MJ0796 NBD Na+

is present instead of Mg2+, we have modeled Mg2+ based on

biochemical studies with E556/1201Q double mutant of Pgp,

which is similar to E171Q mutant of MJ0796, failed to trap

nucleotide in the presence of Na+; Sauna and Ambudkar,

unpublished data). The atomic model of dimeric NBDs of

Pgp (Fig. 3) was built with the program O [38]. As shown in

Fig. 3, ATP is present at the inter-phase of the nucleotide-

sandwich dimer formed by the Walker A and B motifs of

NBD1 and the signature region and the D-loop in NBD2. It

is important to note that though two bound ATP molecules

are shown to be similar to the E171Q mutant MJ0796 dimer,

convincing experimental evidence for Pgp even with the

E556/1201Q mutation is still lacking. The biochemical evi-

dence supports the binding or occlusion of one molecule of

ATP or ADP in both wild-type and mutant protein. The signa-

ture motif in each NBD of Pgp has been shown to be in close

proximity to the Walker A motif of the other NBD [39]. Anal-

ysis of the conserved residues which form the ATP-binding

pocket (see expanded panel in Fig. 3) clearly indicates that

Y401 in NBD1 stacks against the adenine base of ATP, possi-

bly through p–p interactions. The Y401 residue is stabilized by

T435 in the Walker A motif, most likely through van der

Waals contacts (the distance between OH of Y401 and C of

T435 is 4.1 Å). Consistent with this model, T435 in the Walker

A motif is highly conserved in avian and mammalian Pgps as

well as in other ABC transporters. The adenine ring of ATP on

the other side is in close contact with the Q1175 residue (dis-

tance 3.8–4.2 Å), which is located just upstream of the signa-

ture region of NBD2. Both Q530 in NBD1 and Q1175 in

http://www.convent.nci.nih.gov/glr
http://www.convent.nci.nih.gov/glr
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NBD2, which are located just upstream of the L residue in the

LSGGQ signature region (531–542 and 1176–1187) (Fig. 1),

are highly conserved in avian and mammalian Pgps.
6. Summary

We have described here a conserved, previously undescribed

subdomain of the ABC, which we named the A-loop (Aro-

matic residue interacting with the Adenine ring of ATP). This

aromatic residue, 25 ± 2 residues upstream of the Walker A

motif, is highly conserved in a set of 18514 non-redundant

ABC domains (except for Rad50/SMC and MutS/MSH sub-

family members). Biochemical and site-directed mutagenesis

studies demonstrate that this residue is critical for nucleotide

binding and hydrolysis. The structures of NBDs of ABC pro-

teins in a nucleotide-bound form solved to date all show inter-

action between this conserved aromatic acid and the adenine

moiety of ATP through p–p interactions, hydrogen bonding

or van der Waals contacts. Homology modeling of the NBDs

of Pgp based on the structure of a dimer of the E171Q mutant

MJ0796 NBD supports the view that the tyrosine (or Phe or

Trp in other ABC proteins) residue interacts with the adenine

base of ATP through p–p interactions. Furthermore, this res-

idue lies on a loop – hence the term A-loop – and this subdo-

main marks the consensus boundary at the amino-terminal end

of the NBD.
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