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Abstract-This paper investigates the use of extrapolation for calculating elementary transcendental 
and Bessel functions. Although extrapolation can speed the convergence of series used to calculate 
these functions, it is found that the improvement is not worth the cost computationally. 

EXTRAPOLATION METHODS BASED ON A 

TRANSIENT MODEL OF PARTIAL SERIES 

Shanks [l] h d as eveloped a model of partial series as a sum of “transients.” If a particular series sN 
is given by 

SN = 

n=l 

(1) 

then it is assumed that the behavior of sN is accurately represented by a sum of exponentials, 

sN=B+F ai J-@I. (2) 
i=l 

The constant term B represents the value of the series to which sN will ultimately converge. The 
sum of exponentials represents transients that start at N = 0, and decay ultimately to zero or 
diverge ultimately to infinity as N approaches infinity. The ok terms are, in general, complex, 
and they allow for the series to oscillate about its final value. This model does not accurately 
represent all partial series, but it does cover a broad range. 

The purpose of extrapolation is to take the partial sums si, sg, . . . , sN and produce a new 
series s’i, 52, . . . , i$ that converges faster to the proper limit B in Equation (2). In some sense, 
extrapolation “filters out” the transients of the partial series to produce a smoother and faster- 
converging series. A by-product of this model is that the divergent nature of the partial series is 
also filtered out; extrapolation forces convergence to an “antilimit” of the series [l]. 

Wynn [2] has devised a simple algorithm for calculating the ek(SN) extrapolant. Consider the 
trZtnSfOrIXhiOn cgk(sN) in which 

E--l(SN) = 0, (3) 

h(sN) = SN, (4) 

h+l(sN) = h-l(sN+l) + 
1 

&N+l) -f&N) 
(5) 

E2k+1 (sN) = 
1 

ek(AsN) ’ 

AsN = SN - sN_1. 

(6) 

(7) 
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It is true that 

cZb(sN) = ek(sN). 

For example, consider lc = 1. Equations (4) and (5) produce 

el(SN) = 62(sN) = G(sN+l) + 
1 

fl(As~) 

From Equation (5) PI = l/e,,(ASnr) = (AsN)-‘, SO that 

el(sN) = sN+l + 
(AsN-I)(AsN) 

ASN - AsN+l 

Using Equation (7), 

el(sN) = 
sN+l SN-1 - Sk 

SN+l + SN-1 - 2sN ’ 

(10) 

(11) 

This form will be recognized as simple Aitken extrapolation [3]. Higher orders of transformations 
are more difficult to show [a]. 

As an example of the power of this extrapolation method, Shanks [l] applies it to the slowly 
convergent Leibnitz series, x = C 4(-l)n/(2n+ 1). Using t en terms of the partial series produces 
six figure accuracy compared to 4 x lo7 terms necessary for comparable accuracy in the simple 
sum. 

Considering the dramatic acceleration in series convergence the Shanks transform can pro- 
duce [4], the authors thought it worthwhile to investigate the use of this transform in calculating 
elementary transcendental functions and Bessel functions. The following series forms were used 
with the Shanks transform along with the intervals over which they were calculated: 

sin(27rz) = 2 ( -l)n (%“,Tr;;: [O, 11 
n=O 

PI 11 

(12) 

(13) 

e” = 2% PA 11 (14) 
7X=0 

tan-l 2 (-1)nx2n = 5 
n=-J 2n+l 

10, 101 (15) 

Jo(x) = 2 om (a) 

2m 

m=O (42 
P, 101 (16) 

(17) 

The last series, Equation (17), is used in recursive algorithms to calculate the Bessel function [5]. 
Table 1 summarizes the maximum error of the partial summations for 5, 10, 15, and 20 series 

terms, and the corresponding extrapolant error. The results are disappointing for all but the arc 
tangent series; however, the improvement in the error, even in this case, is not great enough to 
justify using extrapolation. Using a straight polynomial approximation gives better results [6]. 
The failure for the Bessel series is especially disappointing, as the current methods for calculating 
general Bessel series are rather complex [5]. 

CONCLUSIONS 

The use of extrapolation was investigated for calculating elementary transcendental functions. 
It was concluded that extrapolation does not accelerate the covergence of the series used to 
calculate these significantly enough to justify its use. 
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Table 1. Maximum error limits of the Wynn extrapolant and of the partial series for 

several functions. 

1. 

2. 

3. 

4. 

5. 

6. 

n 5 10 

Sine Series 

15 20 5 

Cosine Series 

10 15 20 

Partial 

sum error 12 1 x10-3 1 x 10-s 1 x 10-13 20 5 x 10-a 3 x 10-s 1 x lo-” 

Extrapolated 

sum error 2 1 x 10-Z 1 x 10-10 1 x 10-13 3 5x 10-Z 5 x 10-10 1 x 10-14 

Exponential Series 

n 5 10 15 20 

Partial sum error 0.1 3 x 10-7 5 x 10-13 5 x 10-13 

Extrapolated sum error 4 x 10-13 6 x 10-s 3 x 10-13 5 x 10-13 

Arc Tangent Series 

n 5 10 15 20 

Partial sum error 0.05 0.03 0.015 0.011 

Extrapolated sum error 2 x 10-J 6 x 10-s 4 x 10-12 5 x lo-l5 

n 5 

Bessel Series Bessel Recursion Series 

10 15 20 5 10 15 20 

Partial 

sum error 400 6 5 x 10-4 2 x 10-s 0.6 2.5 x 1O-5 2 x lo-‘0 2 x 10-10 

Extrapolated 

sum error 5 0.2 2 x 1o-5 3 x 10-10 1.1 2.5 x 1O-3 2 x 10-10 2 x 10-10 
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