TRANSFER OF ACETYL-UNITS THROUGH THE MITOCHONDRIAL MEMBRANE: EVIDENCE FOR A PATHWAY DIFFERENT FROM THE CITRATE PATHWAY

Ulrich WALTER* and Hans-Dieter SÖLING
Abteilung für Klin. Biochemie, Medizinische Universitätsklinik, 34 Göttingen, Humboldtallee 1, West Germany

Received 29 January 1976

1. Introduction

The transfer of acetyl-groups of acetyl-CoA from the intramitochondrial to the extramitochondrial space is an obligatory step in the de novo synthesis of fatty acids from glycolytic precursors [1]. Citrate transport is the major form for the transfer of acetyl-units [2–4] involving the mitochondrial citrate synthase and the cytosolic citrate cleavage enzyme. But inhibition of the citrate cleavage enzyme by its competitive inhibitor (−)-hydroxycitrate [2,3] or by an antibody [4] could inhibit fatty acid synthesis or the formation of extramitochondrial acetyl-CoA only up to 80–85% suggesting an additional pathway for the transfer of acetyl groups. Transport in the form of acetate, acetyl-carnitine, or acetyl-CoA has been discussed [5]. All 3 possibilities would not use the citrate synthase and the citrate cleavage reaction. In the citrate synthase reaction a loss of one of the three acetyl-CoA methyl hydrogens occurs. Therefore, a 3H/14C ratio of 1.0 in mitochondrial $[2^{-3}$H, 14C]acetyl-CoA should be lowered to 0.67 in the cytosolic acetyl-CoA if the acetyl-units were transferred via the citrate pathway. Since an isotope effect $k_{H}/k_{D} = 1.4$ had been reported for the citrate synthase reaction with $[2^{-2}$H]acetyl-CoA [6] the drop in the 3H/14C ratio should be somewhat less than the theoretical value of 33%. A similar, but rather complicated approach has been used to establish the citrate transport as a transfer form of acetyl-groups through the mitochondrial membrane [7]. Intramitochondrial $[2^{-3}$H, 14C]acetyl-CoA can be generated from $[3^{-3}$H, 14C]L-alanine or $[3^{-3}$H, 14C]L-lactate in mitochondrial incubations. For the determination of the radioactivity in the extramitochondrial acetyl-CoA, the following model can be used: 4-aminoantipyrine (AAP) is N-acetylated to 4-acetamidoantipyrine (AAAP) by arylamine transacetylase (EC 2.3.1.5) [8] which in liver is located exclusively in the cytosol [9]. Using a combined system consisting of mitochondria and high speed supernatant from rat liver with $[3^{-3}$H, 14C]L-alanine or $[3^{-3}$H/14C]L-lactate as substrate the radioactivity in isolated AAAP represents that in extramitochondrial acetyl-CoA. The following results are expected:

1. Compared to the substrate the 3H/14C ratio in the AAAP produced should be diminished by the extent to which tritium is lost in the citrate synthase reaction.

2. In the presence of (−)-hydroxycitrate no difference in the 3H/14C ratio of AAAP should be observed as compared to the substrate if now the acetyl-unit transfer involves acetate, acetyl-carnitine or acetyl-CoA.

Using this technique it is shown that C₂-units are transported out of the mitochondrial matrix not only in the form of citrate but also in a form not involving the citrate synthase reaction. Free acetate is the most likely candidate for this additional pathway.
2. Materials and methods

2.1. Materials

All radioactive chemicals [3-3H] L-alanine, [3-14C] pyruvate, [1-14C] acetyl-CoA, and [2-3H] acetyl-CoA were obtained from the New England Nuclear Corp., Dreieichenhain/Germany. [3-14C] L-alanine and [3-3H] L-lactate were prepared enzymatically from [3-14C] pyruvate by the use of glutamic pyruvic transaminase resp. [3-aH] L-lactate was prepared from [3-3H] L-alanine by the use of glutamic pyruvic transaminase plus lactate dehydrogenase: [1-14C, 2-3H] citrate from [1-14C, 2-3H] acetyl-CoA by the use of citrate synthase. [3-3H] L-lactate, [3-14C] L-lactate and [1-14C, 2-3H] citrate were purified on a Dowex-1 × 8 column by eluting it with a linear HCl-gradient (0-0.2 N HCl); [3-14C] L-alanine was purified on a Dowex-5OW X 8 column by elution with a linear HCl-gradient (0-3.0 N HCl). 4-Amino-antipyrine and the silica gel thin-layer chromatogram sheets (No. 6060) came from the Eastman-Kodak Company, 4-acetamidoantipyrine from Aldrich, Milwaukee/Wisc., USA, (amino-oxy) acetate and fluorocitrate from Sigma, St. Louis/Mo., USA. (-) Hydroxycitrate was prepared to Lewis [10], phospho-enolbutyrate according to Clark and Kirby [11]. Enzymes and cofactors were obtained from the Boehringer-Mannheim-Co, Mannheim/Germany.

2.2. Experiments with isolated rat liver mitochondria

Rat liver mitochondria and high speed supernatant were prepared according to Watson and Lowenstein [2]. The combined incubations contained 2.5-3.0 mg/ml mitochondrial protein and 8.0-10.0 mg/ml protein from the high speed supernatant.

AAAP was isolated from the incubation as described in detail elsewhere [12]. The isolation procedure consisted of extracting AAAP into chloroform/methanol (2/1; v/v) followed by two preparative steps on silica gel chromatogram sheets. The developing solvent in the first step was dioxane/benzene (9/1; v/v). In the second step water-saturated butanol was used in the first dimension and chloroform/methanol (2/1; v/v) in the second one. AAAP was recovered from the TLC-sheets by scraping off the parts corresponding to AAAP and extraction with methanol. The isolated AAAP was checked by its u.v. spectrum (240-320 nm) in 3.0 ml of methylene chloride, the amount calculated using the extinction coefficient at 280 nm ($e_{280} = 12.2 \text{ mM}^{-1} \cdot \text{cm}^{-1}$) [12]. After evaporating the methylene chloride the sample was counted in 10 ml of Bray's solution [13]. The absolute radioactivity (dpm) was evaluated by internal standardization [14].

2.3. Experiments with citrate synthase

Enzyme activity was assayed under the following conditions (final concentrations): Tris-HCl (pH 7.4) 0.2 M, malate 1.0 mM NAD⁺ 1.0 mM, acetyl-CoA 0.1 mM, and MDH 70 units/ml in a total volume of 3.0 ml. The exchange experiments were performed as described in the legend to table 1. Water, acetate and citrate from the incubation medium were separated from each other by the following procedure: From the incubation mixture 0.1 ml was mixed with 2.0 ml of 6% HClO₄ and brought to pH 10.0 by 2.0 N KOH in order to hydrolyze all remaining acetyl-CoA. After neutralisation the sample was applied to a Dowex-1 × 4 column (1 X 40 cm) which was eluted by a linear HCl-gradient (0-0.2 N HCl); [3-14C] L-alanine was purified on a Dowex-5OW X 8 column by elution with a linear HCl-gradient (0-3.0 N HCl). 4-Amino-antipyrine was prepared to Lewis [10], phosphoenolbutyrate according to Clark and Kirby [11]. Enzymes and cofactors were obtained from the Boehringer-Mannheim-Co, Mannheim/Germany.

2.4. Experiments with citrate cleavage enzyme and aroylamino transacetylase from rat liver high speed supernatant.

Rat liver tissue was homogenized 1/5 (w/v) in 0.1 M Tris-Cl (pH 7.8) containing (final concentrations) 0.01 M EDTA and 0.03 M cysteine, and a high speed supernatant was prepared (100 000 g, 30 min). The exchange experiment was performed as described in the legend to table 2. AAAP was isolated as described for the mitochondrial incubations. Aliquots of the citrate used and of the isolated AAAP were counted to determine the $^{3}H/^{14}C$ ratio.

3. Results

3.1. Exchange experiments with citrate synthase

Table 1 shows the loss of tritium out of the methyl group of [1-14C, 2-3H]acetyl-CoA during
citrate synthesis catalyzed by citrate synthase. Both the total tritium analysis as well as the $^{3}\text{H}/^{14}\text{C}$ ratios in the synthesized citrate compared to that in the starting acetyl-CoA show that there is a 22% loss of tritium from $[1-^{14}\text{C}, 2-^{3}\text{H}]$acetyl-CoA into water during citrate synthesis. The loss after 3 min and after 120 min of incubation with citrate synthase is about the same.

3.2. Acetylation of AAAP by a rat liver high speed supernatant with $[1-^{14}\text{C}, 2-^{3}\text{H}]$ citrate as substrate

Table 2 shows the $^{3}\text{H}/^{14}\text{C}$ ratios in citrate and AAAP. The acetyl-group of AAAP came from the radioactive citrate. Both citrate cleavage enzyme and the arylamine transacetylase are required for the acetylation of AAP with citrate as substrate. There is essentially no loss of tritium during the transfer of

<table>
<thead>
<tr>
<th>Sample</th>
<th>Radioactivity in ^{3}H</th>
<th>$^{3}\text{H}/^{14}\text{C}$</th>
<th>Relative $^{3}\text{H}/^{14}\text{C}$ ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(dpm)</td>
<td>(ratio)</td>
<td>(ratio)</td>
</tr>
<tr>
<td>Acetyl-CoA</td>
<td>11 862</td>
<td>8.80</td>
<td>1.0</td>
</tr>
<tr>
<td>Citrate (3 min)</td>
<td>2818</td>
<td>6.89</td>
<td>0.78</td>
</tr>
<tr>
<td>Citrate (120 min)</td>
<td>3637</td>
<td>6.84</td>
<td>0.78</td>
</tr>
</tbody>
</table>
Table 2

<table>
<thead>
<tr>
<th>Sample</th>
<th>Radioactivity in 3H</th>
<th>3H/14C Ratio</th>
<th>Relative 3H/14C Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrate</td>
<td>1884 256 7.36 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAP</td>
<td>5282 732 7.21 0.98</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The reaction mixture contained (final concentrations) Tris-HCl (pH 7.8) 0.1 M, EDTA 0.01 M, and cysteine 0.03 M, [1-14C, 2-3H] citrate (0.5 uCi 3H, 0.067 uCi/μmole) 1.0 mM: ATP 10.0 mM, MgCl$_2$ 5.0 mM, CoA 2.3 mM, AAP 5.0 mM and high speed supernatant protein 18.4 mg/ml in a total volume of 3.0 ml. The reaction was started by the addition of citrate and the incubation was carried out for 1 h at 37°C. The last column shows the 3H/14C ratio in AAP relatively to that of the substrate citrate taken as 1.0.

3.3. Acetylation of AAP during incubation of mitochondria with a high speed supernatant and with [3-3H, 141C] L-alanine or [3-3H, 141C] L-lactate as substrate

Table 3 shows the loss of tritium out of the methyl group of radioactive L-alanine or L-lactate during conversion into the acetyl group of AAP. As indicated by the 3H/14C ratio the loss of tritium during the conversion of radioactive L-alanine and L-lactate was 95% and 40-50% resp. (Amino-oxy) acetate did not affect the tritium loss from L-lactate. In the presence of (-)-hydroxycitrate the tritium loss was diminished as can be seen from the rise of the 3H/14C ratios and from the rise of the specific 3H-radioactivities in AAP compared to the control experiments without (-)-hydroxycitrate. In Expt.2 the 3H/14C ratio in AAP of the control sample was 0.48/0.55 = 87% of that in the presence of (-)-hydroxycitrate, in Expt.3 this ratio was 0.49/0.57 = 86%, in Expt.4 it was 0.44/0.50 = 85% or 0.43/0.50 = 86%. Similar values can be obtained if one compares the specific 3H-radioactivities in AAP. Table 4 shows the loss of tritium during conversion of [3-3H, 141C] L-lactate into the acetyl group of AAP in the absence of potassium and presence of phosphoenolpyruvate. In the absence of (-)-hydroxycitrate the 3H/14C ratio in AAP dropped to 0.76-0.79 compared to that in L-lactate whereas in the presence of (-)-hydroxycitrate it was essentially the same as compared to the substrate. Similarly, the specific 3H-radioactivity in AAP rose in the presence of (-)-hydroxycitrate.

4. Discussion

During citrate synthesis from [1-14C, 2-3H] acetyl-CoA catalyzed by citrate synthase, 22% of the tritium is lost into water (table 1). Similar results were found by Rognstad and Katz [7]. Under the conditions used the citrate synthase reaction is practically irreversible as is also indicated by the absence of a difference between 3 and 120 min of incubation. No tritium is lost during transfer of radioactivity from [1-14C, 2-3H] citrate into the acetyl-group of AAP catalyzed by citrate cleavage enzyme + aroylamine transacyetylase (table 2). This was a prerequisite for the anticipated investigation.

The high loss of tritium during conversion of [3-3H, 141C] L-alanine into the acetyl group of AAP (table 3) catalyzed by rat liver mitochondria + rat liver high speed supernatant can be explained by recent findings (15,16) of 13-hydrogen exchange during transamination of L-alanine catalyzed by GPT. The loss of tritium from [3-3H, 141C] L-lactate during conversion into the acetyl group of AAP was also bigger than can be attributed to the citrate synthase reaction (table 3). The transaminase inhibitor (amino-oxy) acetate did not lower the tritium loss (table 3) which rules out the possibility that the endogenous GPT still causes this additional tritium loss during conversion of [3-3H, 141C] L-lactate into the acetyl group of AAP. (-)-Hydroxycitrate caused under all conditions tested a rise of about 15-20% in the 3H/14C ratio or in the specific 3H-radioactivity in AAP compared to the values on the absence of (-)-hydroxycitrate. This rise comes close to the value expected to occur in the citrate synthase reaction. Moreover, although the isolation of AAP is not quantitative, clear inhibition of (-)-hydroxycitrate on the formation of AAP was observed.

The experiments with (amino-oxy) acetate suggest...
<table>
<thead>
<tr>
<th>Expt.</th>
<th>Additions</th>
<th>Amount of AAAP isolated (µmole)</th>
<th>Radioactivity in 3H</th>
<th>Specific 3H-radioactivity (dpm · µmole$^{-1}$)</th>
<th>3H/14C</th>
<th>Relative 3H/14C-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GPT, 2 units</td>
<td>not examin.</td>
<td>1092</td>
<td>4061</td>
<td>not examin.</td>
<td>0.27</td>
</tr>
<tr>
<td>2</td>
<td>(−)-hydroxycitrate 1.0 mM</td>
<td>not examin.</td>
<td>18 383</td>
<td>9917</td>
<td>not examin.</td>
<td>1.85</td>
</tr>
<tr>
<td>3</td>
<td>(−)-hydroxycitrate 1.0 mM</td>
<td>not examin.</td>
<td>12 428</td>
<td>5896</td>
<td>not examin.</td>
<td>2.11</td>
</tr>
<tr>
<td>4</td>
<td>(amino-oxy) acetate 1.0 µM</td>
<td>0.142</td>
<td>425</td>
<td>202</td>
<td>2923</td>
<td>2.05</td>
</tr>
<tr>
<td></td>
<td>(amino-oxy) acetate 1.0 µM</td>
<td>0.099</td>
<td>361</td>
<td>155</td>
<td>3649</td>
<td>2.33</td>
</tr>
<tr>
<td></td>
<td>(−)-hydroxycitrate 1.0 mM</td>
<td>0.222</td>
<td>2298</td>
<td>2732</td>
<td>10 325</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>(−)-hydroxycitrate 1.0 mM</td>
<td>0.040</td>
<td>485</td>
<td>483</td>
<td>12 221</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>(amino-oxy) acetate 1.0 µM</td>
<td>0.184</td>
<td>1862</td>
<td>2246</td>
<td>10 091</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td>(amino-oxy) acetate 1.0 µM</td>
<td>0.041</td>
<td>498</td>
<td>523</td>
<td>12 003</td>
<td>0.95</td>
</tr>
</tbody>
</table>

The reaction mixture contained (final concentrations): potassium phosphate (pH 7.2) 20 mM, sucrose 0.25 mM, ATP 10.0 mM, MgCl$_2$ 10.0 mM, malate 5.0 mM, CoA 0.6 mM, fluorocitrate 10.0 µM, AAP 5.0 mM, rat liver mitochondrial protein 2.5–3.0 mg/ml and rat liver high speed supernatant protein 8.0–10.0 mg/ml in a total volume of 10.0 ml. In addition, the incubation with L-lactate as substrate contained L-lactate 5.0 mM and NAD$^+$ 10.0 mM, that with L-alanine as substrate L-alanine 5.0 mM and α-ketoglutarate 5.0 mM. Further additions were as indicated. The incubations were carried out for 1 h at 37°C. The radioactive substrate, its total radioactivity, and its actual 3H/14C ratios as determined by a diluted aliquot were in the following experiments:

Expt. 1: 5.5 µCi 3H and 1.0 µCi 14C, [3-3H, 14C]-L-alanine, 3H/14C = 5.57
Expt. 2: 19.0 µCi 3H and 5.0 µCi 14C, [3-3H, 14C]-L-lactate: 3H/14C = 3.84
Expt. 3: 0.43 µCi 3H and 0.1 µCi 14C, [3-3H, 14C]-L-lactate: 3H/14C = 4.13
Expt. 4: 1.6 µCi 3H and 0.83 µCi 14C, [3-3H, 14C]-L-lactate: 3H/14C = 1.90

The last column shows the 3H/14C ratios in AAAP relatively to that of substrate L-alanine or L-lactate taken as 1.0. Incubations with mitochondria without high speed supernatant did not produce any AAAP.
Table 4
Amount of and radioactivity in 4-acetamidoantipyrine in the presence of (amino-oxy) acetate and phosphoenolbutyrate and absence of monovalent cations

<table>
<thead>
<tr>
<th>Addition</th>
<th>Amount of AAAP isolated (μmole)</th>
<th>Radioactivity in [3H, 14C] (dpm) (× 10^-3)</th>
<th>Specific [3H]-radioactivity (dpm · μmole^-1) (× 10^-2)</th>
<th>Relative [3H]/[14C] ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-)-Hydroxy-citrate 1.0 mM</td>
<td>0.062</td>
<td>8.9</td>
<td>144.1</td>
<td>2.62</td>
</tr>
<tr>
<td>(-)-Hydroxy-citrate 1.0 mM</td>
<td>0.060</td>
<td>8.6</td>
<td>142.9</td>
<td>2.63</td>
</tr>
</tbody>
</table>

The reaction mixture contained (final concentrations): Tris-HCl (pH 7.4) 20.0 mM, sucrose 0.25 mM, ATP 10.0 mM, MgCl₂ 10 mM, malate 5.0 mM, CoA 0.5 mM, fluorocitrate 10.0 mM, AAP 1.0 mM, [3-3H, 14C]L-lactate (1.62 × 10⁸ dpm 3H/μmole, 0.61 × 10⁵ dpm 14C/μmole) 1.0 mM, actual [3H]/[14C] ratio = 2.65, NAD⁺ 10.0 mM, (amino-oxy) acetate 1.0 mM, phosphoenolbutyrate 1.0 mM, rat liver mitochondrial protein 2.7 mg/ml and 9.7 mg/ml protein from rat liver high speed supernatant. Before use the high speed supernatant fraction was desalted on a Sephadex G-25 column. Further additions were as indicated. The incubation was carried for 1 h at 37°C. The last column shows the [3H]/[14C] ratios in AAAP relatively to that in the substrate L-lactate taken as 1.0.

that there is still an additional cause for tritium loss during conversion of [3-3H, 14C]L-lactate into the acetyl-group of AAAP besides the loss occurring in the citrate synthase and GPT reaction. Rose [17] demonstrated that pyruvate kinase catalyzes the detritiation of [3-3H]pyruvate, the exchange being dependent on potassium ion concentration. Therefore, mitochondria were incubated with a high speed supernatant in the absence of potassium. In addition, an inhibitor of pyruvate kinase, phosphoenolpyruvate [18], was used. The results of the incubation (table 4) show that under these conditions the loss of tritium during conversion of [3-3H, 14C]L-lactate into the acetyl-group of AAAP is reduced to that expected to occur in the citrate synthase reaction. In the presence of (-)-hydroxy-citrate the specific [3H]-radioactivity and the [3H]/[14C] ratio in AAAP rose by about 20%, the [3H]/[14C] ratio being now essentially the same as that in the substrate [3-3H, 14C]L-lactate. These results represent additional evidence that a minor pathway for the transfer of acetyl-groups across the mitochondrial membrane exists which differs from the citrate pathway. Whether this occurs in the form of acetate, acetyl-carnitine or acetyl-CoA as discussed [5] cannot be distinguished by this approach. There is little evidence for the transfer form of acetyl-CoA [5,19]. It could be shown, however, that isolated rat liver mitochondria can release free acetate during oxidation of hexanoate (Seufert and Söling, unpublished results). Moreover the formation of free acetate in liver [20,21] and the existence of acetyl-CoA-hydrolase activity in mitochondrial membranes [22] have been reported.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (So 43/14). Part of this work was done while U.W. was an exchange student at the Brandeis University, Mass., USA. U.W. wishes to thank Dr Lowenstein, Brandeis University, for support, many helpful discussions and the generous gift of the (-)-hydroxycitrate acid lactone.
References