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1. INTRODUCTION 

During the past few years there have been a number of linear and 
nonlinear generalizations of the well-known integral ineqality due to 
Gronwall-Bellman and Reid, which play an important role in studying the 
qualitative as well as the quantative properties of solutions of differential and 
integral equations. The two independent variable generalization of this 
inequality was given by Wendroff [2, p. 1541, which is useful in the theory of 
partial differential and integral equations. For various motivations this 
inequality has been further generalised in many directions, e.g., see 
[3-6, 10, 11, 13-211. 

In this paper we establish a number of new integral inequalities in n 
independent variables which are further generalizations of some known 
results. In Section 2 we extend the result of Young [ 2 1 ] to discuss the case 
when an inequality has repeated integrals. A unified result is also presented 
which covers several results of Pachpatte ( 15, 161. Some Wendroff type 
inequalities are also obtained and known results are deduced or compared. In 
Section 3, some nonlinear inequalities are given which are more general than 
those obtained in [4, 121. Some applications are given in Section 4. 
Throughout the paper we shall use the following notations. Let R be an open 
bounded set in R” and let a point (xi , ,..., x:) in Q be denoted by -8. Let .V and 
x (JI ( x) be any two points in R and denote by D the parallelepiped defined 
by JJ ( s < x, that is, yj < sj < xi, 1 < j < n. The 1’: . ds indicates the n-fold 
integral .I’;; .a. Jt; . ds, . +. ds,, and u,(x) denotes F”u(x)/(&, .a. m,). 

In what follows we shall assume that the functions which appear in the 
inequalities are real-valued, nonnegative, continuous and defined in R. 

2. LINEAR INEQUALITIES 

LEMMA 2.1. Let p(s) be a continuous function in R. Then the charac- 
ten’stic initial value problem 
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(- 1 )“Vs(& x) - P(S) +, x) = 0 in s), (2.1) 

u(s, x) = 1 on si=xi, 1 <i<n P-2) 

has u unique solution u(s, x) near to x and satisfies ny=, (xi - si) > 0. This 
solution is continuous and tfp(s) is nonnegative, so is v(s, x). 

Proof The function u(s, X) is the Riemann function relative to point X. 
Problem (2.1), (2.2) is equivalent to the integral equation 

u(s, x) = 1 + ( p(t) v(t, x) dt. 
‘3 

(2.3) 

The existence, uniqueness and nonnegative property of u(s, X) follows by 
successive approximation arguments as given in [ 10, 11, 18, 191 for n = 2 
and systems. An explicit representation of U(S, x) is given in (211. Since 
U(S, x) is continuous and t’ = 1 on si = xi, 1 < i < n there is a domain D + 
containing x on which u > 0 even if p(s) is not nonnegative. 

LEMMA 2.2. Suppose p(x) and q(x) are continuous functions in R. Let 
v(s, x) be the solution of (2.1), (2.2) and let D+ be a connected subdomain of 
R containing x such that v > 0 for all s E D +. If D c D + and 

u,(x) - P(X) u(x) G 4(x), (2.4) 

where u vanishes together with all its mixed derivatives up to order n - 1 on 
xi=~li, 1 <i<n. Then 

u(x) < I-‘q(t) v(t, x) dt. 
-s 

(2.5) 

Proof. The proof of Lemma 2.2 follows from Young’s theorem 1211. 

THEOREM 2.3. Let V(s, x) be the solution of characteristic initial culue 
problem 

(- 1)” VJs, x) - 6 E:(s, b) V(s, x) = 0 
r=, 

in R, P-6) 

V(s, x) = 1 on si = xi, 1 < i < n (2.7) 

and let Di be a connected subdomain of ~2 containing x such that V > 0 for 
ulls~D+.IfDcD~ and 

u(x) < a(x) + b(x) F E’(x, u), 
r=1 

(2.8) 
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where 

E’(x, u) = rfr,(x’) r’ f,,(x’) ... I’I” frr(xr) u(x’)d,u’ ... dx’ (2.9) 
-p -v . ” 

u(x) < a(x) + b(x) fX 5 E:(s, a) V(s, x) ds. 
‘! f-z, 

Proof. Define a function g(x) such that 

9(x) = g E’(X, u); 
r=1 

then we have 

q&(x) = : E:(x. u) 
r-l 

and hence from (2.8) 

Using the nondecreasing nature of q(x) in (2.1 l), we find 

(2.10) 

(2.11) 

where @ vanishes together with all its mixed derivatives up to order n - 1 on 
xi=yi, 1 <i<n. 

Now an application of Lemma 2.2, provides 

(2.12) 

Result (2.10) now follows from (2.12) and u(x) < a(x) + b(x) $(x). 
Some particular cases of Theorem 2.3, n = 2 and m up to 3 have been 

considered recently by Pachpatte [ 15, Theorems 14; 16, Theorems l-21, but 
his results cannot be compared with our result. In the next theorem we shall 
consider a particular case of (2.8); the obtained result unifies all his six 
theorems for the general n. 
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We shall denote CF!=, b(x)f,(x) UF=, gi(x) as the sum of all functions 
except when b(x)fk(x) = g,(x) for some 1 < k < rl, 1 < 1 < rz ; then g,(x) is 
taken to be zero, also Up=, g,(x) = 0. 

THEOREM 2.4. Let Vi@, x), 1 < i < m, be the solutions of characteristic 
initial value problems 

(-l)“Vl,(s,X) - (f b(s)f’(sj mi’ gi(S)) V,(s,X) = 0 in a. 
r=l i-1 

(-l)” vjs(s7 x, - ( mc’ b(sjL(s) yi: gi(sj - gm-j+,(s)) 
r=l 

x Vj(S, x) = 0 in R, 2< j<m, 

Vj(S, x) = 1 on si = xi, 1 < i < n, 1 < j < m 

and let Df be a connected subdomain of fl containing x such that Vi > 0, 
l<j < m for all sED+. ZfDcD+ and(2.8)is satisfied whereLi(x) =fi(x), 
1 < i < m;h+,,i(x) =~+*,i(X) = ..* = f,,i(x) = gi(x), 1 < i < m - 1; then 

U(X) < a(x) + b(x) Pi(x), l<j<m. (2.13) 

where 

P,(x) = r a(x’) 2 f,(x’) V,(x’, x) dx’, 
-)’ r=1 

pjP-J=J: [4x’) m~~‘L(x’)+ P,-j+,(xl~pj-l(x’)] 

X Vj(X1) x) dX’, 2<j<m. 

Proof: Inequality (2.8) with functions&(x) is equivalent to the system 

u,(x) < 44 + KY) 1.’ [f,(s) u,(s) + g,(s) u&)1 ds. 
-, 

(2.14) 

Uj-,(X)= (-1 [&l(s) UI(S) + t?-,(S) u,dS)] ds, 3<j<m. (2.15)j 
-B 

u,(x) = [k@) u,(s) ds. (2.16) 
-Y 

Define 

4,(x) = j-’ [f,(s) u,(s) + g,(s) uh)l& Y 
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Then, from (2.14), (2.15), , (2.16) it follows that 

!u4 G J-,(x)1+) + b(x) @,(x)1 + g,(x) 92(x) (2.17) 

4j-*.Ax) G .f- *(x>la(x) + b(x) 41(x)l + gj- ICx) 4j(x)v 

3 <j< m, (2.18)j 

hlx(x) G fm(x)l4x) + 0) hc-41. 
We add (2.17), (2.18), , 3 < j < m, (2.19) to obtain 

,< 4x) T f,(x) + b(x) -c f,(x) 4,(-y) 
+ r=, ,t, 

(2.19) 

and hence 

Using Lemma 2.2, we find 

and hence 

m-1 
~,(4 < P,(x) - y Q,(x). (2.22) 

r=l 

Adding (2.17), (2.18)j, 3 <j< m, and making use of (2.22), we obtain 
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thus it follows that 

Using again Lemma 2.2, we get 

(2.23) 

or 

#m-,(x) < P2(x) - x h(x). (2.24) 
r=, 

We add (2.17), (2.18)j, 3 <j< m - 1, and use (2.24) to find 

( y2 i,Cxl) 
r=1 x 

- ( y2 b(x)L(x) E3 giCx) - gm-l(x)) (z: $rCx)) 
r=, i=l 

m-2 

G w c f,(x) + &-2(X) P2(x) 
r=1 

and hence from Lemma 2.2, we obtain 

m-2 

z 4,(x) G p3w (2.25) 
r=l 

Continuing in this way, we find 

m-j+1 

C 4rtx) G pj(x)3 4<j<m. (2.26)j 
r=l 

Since u(x) = u,(x) < a(x) + b(x) 4,(x) and 4,(x) < CI”-;‘” #,.(x), 1 < j < m, 
result (2.13) follows from (2.21), (2.23), (2.25), (2.26),. 

For the particular case m = 2, b = 1, f,, = fi, = f,, fi2 = f2 in (2.8), 
estimate (2.13) takes the form 

u(x) < a(x) + j'xf,(x') 
. y 

x u(x’) + 1X u(x’)(f,(x’) + fgx”)) v-,(x2, x’) dx2] dx’, (2.27) 
‘P 

409:86~2 16 
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where V,(s, x) is the solution of characteristic initial value problem 

(-l)“v,s(s.x) - (f,(s) +fi(s)) V,(s. x) = 0 in L?, (2.X) 

V*(s. x) = 1 on si =-xi, 1 < i < n. (2.29) 

In the next result we shall show that estimate (2.27) can be improved 
uniformly. The improved version of Theorem 1 in [ 15 1 is the following (here 
we have taken u = 0 since it does not play any role, the term {g b(s) a(s) ds 
can always be merged in a(x)). 

THEOREM 2.5. Let V,(s,x) be the solution of (2.28), (2.29) and let D.+ 
be a connected subdomain of R containing x such that V, > 0 for all s E D +. 
IfDcD+and(2.8)issatisfiedwherem=2,b=1,f,,=f,,=f,,fiz=fi, 
then 

UP) < 4x1 + fX f,(x’) 
. .I’ 

(2.30) 

X a(x’) + jr’ {a(x’)(f,(x’) + f?(x’)) - c(x’)} V,(x’, x,) dx’] d,u’, 
-)’ 

where 

.+ 
c(x) = f?(x) 1 a(x’)fi(x’) d-x’. 

.y 

ProoJ: Define 

4,(x) = I-’ f,(x’) u(x’) dx’ + I’.’ f,(x’) )II f2(x2) u(x’) d,u’ dx’; (2.31) 
‘Y .?’ ‘J 

then, from (2.8), it follows that 

4,,(.4 G f,(x) a(x) + 4,(x) + I..’ fi(x’)la(x’) + @Ax’)1 dx’ . (2.32) 
-y 1 

Let 

.x 

$2(-d = t&k) + ( fAx’)[a(x’) + @,(x1)1 dx’: (2.33) 

then, it follows that 

42x(-~) = h,(x) + fi(x)la(x) + &(x)1. 
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which is, from (2.32) and (2.33), 

+ f*(x) 
[ 
u(x) + (b*(x) - 1X a(x’)f*(x’) d.Y’ 

‘J I 
Using Lemma 2.2, we obtain 

4,(x> <.I’; ~W)(f,(x’) + f*(x’)) - 0’) t vx’, x) dx’. 

Substituting this in (2.32), we find 

4,(x) q~fdxl) [4x’) +.i” i4x2w-,(x2) + m*N - c(-~*N 

x v,(x*.x’)dx* dx’ 1 
and now result (2.30) follows from u(x) < u(x) + d,(x). 

In our next result we shall obtain a Wendroff type estimate for (2.8). 

THEOREM. 2.6. Let inequulitv (2.8) be satisfied in R, where (i) u(x) is 
positive and nondecreasing and (ii) b(x) > 1. Then 

u(x) < u(x) b(x) exp (2.34) 

Proof. Inequality (2.8) can be written as 

$,(x1 < 1 + 5 E’(x, b&j, 
r=1 

(2.35) 

where 

g*(x) = u(x) 
44 b(x) * 

Let &(x) be the right member of (2.35), then 

$2x(x> < f E:k 64,) < G E:(x, b#,) (2.36) 
r=1 ,Z 

and $2(x1 ,-..v xi-l, yi, Xi+ I...., x,J = 1; all the partial derivatives up to order 
n - 1 vanish when xi = yi, for any i. 1 < i < n. 
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Since O?(S) is nondecreasing. it follows from (2.36) that 

and hence 

Keeping x, ,..., x, _ , fixed in the above inequality and setting x, = s, and 
integrating with respect to s, from y,, to x,, we obtain 

Repeating the above argument for x, _ r, x, -?, to x2, we obtain 

Integrating the above inequality with respect to x, and using 
CY, 3 X?V.., xn) = 1, we find 

#z(x) < exp f E’(x, b)) . 
r= I 

Result (2.34) now follows from g,(x) < &(x) and the definition of 4,(x). 
Estimate (2.34) for n = 2, m = 1 is sharper than that given in [ 2, p. 154 ] 

and the same as that obtained by Kasture and Deo [ 13, Theorem 91. Some 
results are given in [5] for n = 2, b = 1, m up to 2 with different assumptions 
on U(X). In our next result we do not require any condition on a(x) and b(x) 
as in Theorem 2.6, also estimate (2.34) can be reobtained. 

THEOREM 2.1. Let inequality (2.8) be satisfied in R. Then 

u(x) ,< a(x) + b(x) fx f E;(s, a) exp (1.’ 5 E;(t, b) dt) ds. (2.37) 
‘\’ rx, -s r=, 
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Proof. Define 

w(s, x) = exp 
( 

l_r 5 EF(t, b) dt) ; 
-s r=, 

then, it follows that 

(-l)“w,(s, x) - 5 qs, b) w(s, x) > 0, 
r= I 

w(s, x) = 1 on Si = Xj, 1 < i < FL 

551 

(2.38) 

Consequently, w(s, x) satisfies a differential inequality (2.38) of which 
V(s, x) is the exact solution (Theorem 2.3). It follows from [20, pp. 126, 1301 
that w(s, x) > V(s, x), and now (2.37) follows from (2.10). 

In case the conditions on a(x) (can be nonnegative) and b(x) of 
Theorem 2.6 are satisfied then, from (2.37), we get 

.x m 
u(x) < a(x) b(x) 

[ 
1 + j, rT, E:(s, b) exp (1’ fJ E# b) dl) ds] . (2.39) 

s r=1 

We use (2.38) in (2.39), to obtain 

u(x) < u(x) b(x) 
[ 

1 + (-1)” )_I U’JS, x) ds . 1 (2.40) 
‘Y 

Now, using the fact that the partial derivatives of w(s, x) up to order n - 1 
vanishes on si = xi, 1 < i < n, it follows from (2.40) that 

u(x) < u(x) b(x) 
[ 

1 + (-l)+’ IX’ M’,,(S, ) yz )..., Y,, x) ds, 
‘.\‘I 1 

and hence 

u(x) < a(x) b(x)[ 1 + (-l)*“-‘(~J(x,, J’*,..., y,, x) - w(.k x,,] 

or 

which is the same as (2.34). 
Thus to obtain (2.34) in Theorem 2.7, we require a(x) to be nonnegative 

and nondecreasing. 



552 E. THANDAPANI AND RAVI P. ACiAR\VAL. 

3. NONLINEAR INEQUALITIES 

Our first result for the nonlinear case is connected with the inequalit] 

u(x) < u(x) c + c H’ix u) 1 
I r=, I 

(3.1) 

where 

and ari, 1 < i < I, 1 ,< r < M are nonnegative real numbers and the constant 
c > 0. 

In the following result we shall denote a, = JVl- , a,; and 

a = maxI <rcnr a,. -. \ 

THEOREM 3.1. Let inequality (3.1) be satisfied in R. Then 

if a = 1, (3.2) 

1, I-n 

u(x)<a(x) cl-” + (1 -a) [..‘Q(x)ds 
1 

. if a# 1, (3.3) 
-Y 

where 

Q(x) = ?- H:(x, a) car-n 
r= I 

and when a > 1, we assume, c’-~ + (1 - a) .I’: Q(s) ds > 0. 

ProoJ Inequality (3.1) can be written as 

u(x) < 4x)4(x), 

where 

g(x) = c + f H’(x, 24). 
r= I 

Thus, on using the nondecreasing nature of g(x) and (3.4), we find 

(3.4) 
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Since $(x) > c, we get 

Now following the proof of Theorem 2.6, it is easy to show that 

9x,(x) ,< (.X2 ..a 1’” Q(x,, s2 ,..., s,J ds2 ... ds,. 
FYX) -‘y: . Y” 

(3.5) 

Since 4( ~7, , x2 ,..., x,) = c, the result follows on integrating (3.5 j. 
For n = m = 1, a(x) = 1, a,, = 2 Theorem 3.1 reduces to first result in this 

direction by Freedman [91; also for m up to 2 see [ 141. 
For the next result we shall need the following class of functions: 

DEFINITION. A function W: [0, co) -+ (0, co) is said to belong to the 
class S if 

(i) W(U) is positive, nondecreasing, continuous and 
~x,w, ,***1 x,)) > 0 for all 2 < k < n and u > 0, 

(ii) (l/u) W(u) < W(u/u) for all u > 0, 0 > 1. 

This class has been modified here as given and used for n = 1 in [ 7,8] to 
avoid the triviality W(U) = uW( 1); also see [ 11. 

THEOREM 3.2. Let the inequality 

u(x) < a(x) + c E’(x, u) + i g,(x) ix hi(s) W,(u(s)) ds 
i-z I i=l 1 y 

(3.6) 

be satisfied, where 

(i) a(x) > 1 and nondecreasing, 

(ii) gi(x) > 1, 1 < i < I, 

(iii) Wi E S, 1 Q i < 1. 

Then 

4X> G a(X) 44X)4x) n Fi(x>l 
i=l 
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where 

“, 
w(x) = exp x E’(x, e) 

( l-:1 

44 = lt gitx)* 
i=l 

F,Jx) = G;’ Gk( 1) + (‘.Y hk(s) y(s) e(s) ‘e Fj(s) ds , 
-?’ j=l I 

F,(x) = 1, 1 < k < I, 

as long as 

G,(l) + 1.’ hk(s) y(s) e(s) kj Fj(s) ds E Dom(G;‘), l<k<l. 
'Y j-1 

Proof. From inequality (3.6), we have 

-----<a*(x)+ f E’ UC4 
e(x) r=l 

where 

a*(x) = a(x) + ~ (.x hi(s) W,(U(s)) dS. 
[=I-?‘ 

Since a*(x) is nondecreasing, from Theorem 2.6 it follows that 

u(x) - < a*(x) 44.4 0) 

and hence on using the definition of class S 

J’(X) < 1 + ” l.x hi(s) e(s) V(S) wi(y(S)) ds, 
,Fl -y 

where 

Y(X) = 
44 

0) VW 4y) ’ 
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Thus it is sufficient to show that y(x) < nf=, F,(x); this we shall prove by 
finite induction. For I= 1, we have 

Y(X) < 1 + I’.’ h,(s) e(s) u/(s) W,(y(s)) ds. 
-?’ 

Let 4,(x) be the right member of the above inequality; then on using 
nondecreasing nature of W,, we find 

h,(x) G h(x) e(x) VW ff%MxN 

or 

i 
4 LX,...X,JX) 

) W,(!h(x>) X” G h(x) 44 v/(x) 

and hence as in Theorem 2.6 

Q LxL’exn-l(x) < JX” h,(x, ,..., xnpI, sJ e(x, ,..., x, _, , s,) 
W,(!A(x)) - Yn 

x y(x, ,..., x,-, , s,) ds,. 

Repeating the procedure, we obtain 

x y(x, , sz ,..., s,J ds, ..- ds,. 

From the definition of G,, we have 

.rn,(x) ds 
=I - -m*(Y,.x* . ...1 X”) W,(s) 

We use (3.7) in (3.8) to obtain 

(3.7) 

(3.8) 

4,(x) < G;’ G,(l) + ix h,(s) 4s) v(s) ds] = F,(x). 
Y 
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Now assuming that the result is true for some k such that 1 < k < I- I. then 
for k + 1, we are given 

Y(X) < 1 + I’.’ h, + ,(s) e(s) y(s) W, + , ( J*(S)) ds 
-?‘ I 

+ -f I-’ h,(s) e(s) w(s) Wi( y(s)) ds. 
j=, .v 

Since the part inside the bracket is nondecreasing, we find 

x fi F,(s) w 
i=l kf I ( Y(s)/,fr I;(s)) ds 

and from this J’(X) < n:T: F,(x) follows on using the same arguments as for 
the case I= 1. This completes the proof. 

THEOREM 3.3. In addition to the hypothesis of Theorem 3.2 let g,(x). 
1 < i < 1 be nondecreasing. Then 

44 G 0) W,(X) 11 m). 
i-l 

where 

y,(x) = exp x E’(x. 1) , 
( r=, ) 

F/d-d = gk@) Gil G,(l) + I-’ hk(S) w,(s) gk(s) ‘fi Fi(s) ds , 
-?’ i=l I 

1 <k < 1. F,,(x) = 1, 

as long as 

Gk( 1) + l.~r hk(S) w,(s) gk(S) ‘fi’ F,(s) ds E Dom(G; ‘), l<k<l. 
-.v izl 
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THEOREM 3.4. Let the inequality 

u(x) <a(x) + f E’(x, 24) + i E’(x, W(u)) 
r=, i:l 

(3.9) 

be satisfied, where 

(i) a(x) > 1 and nondecreasing, 

(ii) WE S. 

Then 

u(x) < a(x) w,(x) G-’ G( 1) + I..’ 2 Et(s, w,) ds] , (3.10) 
-V i=l 

where w,(x) is same as in Theorem 3.3 and the term inside the bracket of 
(3.10) E Dom(G-‘). 

The proofs of Theorems 3.3 and 3.4 are similar to the proof of 
Theorem 3.2. 

THEOREM 3.5. Let inequality (3.9) be satisfied, where 

(i) a(x) is positive and nondecreasing, 

(ii) W is positive, continuous, nondecreasing, submultiplicative and 
W&(x, ,.a-, x,))>Ofor ail 2<k<n. 

Then 

44 < 44 v,(x) G-’ ‘31) + j -x ;- E; (s, w’,w”) ds], (3.11) 
4’ El 

where v,(x) is the same as that in Theorem 3.3 and the term inside the 
bracket of (3.11) E Dom(G-‘). 

Proof. We apply Theorem 2.6 for inequality (3.9), to obtain 

u(x) < a(x) + t E’(x, W(u)) w,(x) 
[ i=l I 

or 

(3.12) 
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Let 4(x) be the right-hand side of (3.12). then 

Now using the fact that W is nondecreasing and submultiplicative. we get 

Using the same arguments as those in Theorem 3.2, we find 

4(x) < G-’ G(1) + l_i 4 Ef(s, W(aty,)/a) ds] 
-?’ {fz, 

and from this the result follows. 
Some particular cases II = 2, m up to 2 with different assumptions on a(x), 

have been discussed recently in [4]. 

4. SOME APPLICATIONS 

The results obtained in Sections 2 and 3 can be directly used to prove the 
uniqueness and continuous dependence for the solutions of hyperbolic 
differential systems and hyperbolic integrodifferential equations of a more 
general type then those given in [3-5, 10, 11, 13-16, 18-201, since the 
arguments are similar the details are not repeated here. To show the impor- 
tance of our results we shall use our Theorem 2.7 to provide an upper bound 
on the solutions of the nonlinear hyperbolic integrodifferential equation 

u,(x) = fb, u(x), fi k(x, s, u(s)) ds) (4.1) 
-I‘ 

together with the given suitable boundary conditions U(X, ,..., Xi-, , J’i> 
xi+ * 7***7 xJ, 1 < i < n. 

The functions f and k are continuous on their respective domains of 
definitions and 

P-(x, 4x), WI < fi I(X) I4x)l + f,&) I @)I? (4.2) 

I a, sv u(s))l <f?*(s) I +)I? (4.3) 

wheref,, , fiz, f,, are the same as those appearing in (2.8). 
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Any solution u(x) of (4.1) satisfying the boundary conditions is also a 
solution of the Volterra integral equation 

u(x) = u(x) + )_r f(- Y’, 24(x’). 1y k(x’, x2, u(x2)) d<Y2) d,Y’. 
-)’ -?‘ 

where a(x) takes care of the boundary conditions. 
We use (4.2), (4.3) in (4.4), to obtain 

(4.4) 

I4y)l< I @)I + 1X [f, ,(x1) I4e -.\’ 

+ j-,*(x’) jyJx2) I u(x’)l dx2 ] dx’. (4.5) . >’ 

From Theorem 2.7, we find 

x exp f,,(x’) +f,z(x’) I’-“f,,(x’) hi] dx’) dx’] . (4.6) . .” 

If, la(x)1 GM, where M > 0 is a constant, then from (4.6) or (4.5) with 
Theorem 2.6, we get 

IWI Q Mew (lx [f,,(x,) +f,2(x,)jx’f21(.~z) dr2] dxl) . (4.7) 
. 1’ Y 

Further, iff,, = f,* then from (4.7), we obtain 

lu(x>l<Mexp ([S,,(x’) [ 1 +j:‘J22(~~2)d~2] dx’). (4.8) 

Estimate (4.8) is not comparable with 

lu(x)l <A4 1 + \..‘fi,(-x,)exp ([.” [f,,(-Y’) +fiz(x2)] dx’) dx,] (4.9) 
[ -Y -P 

as obtained in [5] for n = 2. 
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In order for lu(x)l to remain bounded in (4.9) it is necessary to have 

I-’ [j-,,(x’, +fiz(x’)] d.x’ < co. 
‘P 

which is the same as 

In (4.8), we require 

(4.10) 

(4.11) 

which is obviously satisfied if (4.10) holds, but in several cases (4.11) is 
more general than (4. lo), for example, let &(x) = exp(x;= , (xi - Jo)) and 
f,,(x) = exp(-2 BOIL (xi - yi)); for this (4.10) is not satisfied, whereas 
(4.11) holds. Thus the results obtained here will be applicable to more 
general situations. 
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