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A space is CDH is any two countable dense sets can be mapped one onto the other by an 

autohomeomorphism of the entire space. The CDH nature of separable manifolds and 5X” is 

examined. 
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0. Introduction 

A separable space X is said to be a CDH (countable dense homogeneous) space, 

if for any two countable dense subsets A and B in X, there is an autohomeomorphism 

h of X such that h(A) = B. In this paper, for any space X, H(X) is always the set 

of all autohomeomorphisms of X. The rationals, the reals, the Cantor set and the 

closed unit interval are denoted by Q, [w, C and I respectively. K, A are cardinals 

and LY, p, y, . _ . are ordinals. c will be the size of [w. b is the least cardinality of an 

unbounded family in ww. The authors would like to thank A. Dow, S. Watson and 

the referee for suggesting various improvements, corrections and better proofs. 

1. Main results 

It is well known that any n-Euclidian space [w” is CDH (see [5]). There are two 

natural questions. 

(A) Is every separable (topological) manifold CDH? A connected space X is 

called an n-manifold for a non-negative integer n, if for any point x E X there is a 

neighbourhood U at x such that U is homeomorphic with iw”. Note that it is true 

that w(X)~c for any separable manifold X, where w(X) means the weight of X. 

(B) Is every product [w” ( K s c) CDH? Similar questions are whether I” or C” are 

CDH for w G K s c. By the Hewitt-Marczewski-Pondiczery Theorem, IF!” is separable 
if and only if K SC. 
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When K = w, the answers to both questions are known, i.e. Bennett [l] (and 

independently Bessaga and Pelczynski, see [2]) showed if the manifold X has weight 

w(X) < w, then X is CDH and Fort [4] showed that the Hilbert cube I” (and W”) 

is CDH. The present paper deals with the case that K > w; the following theorems 

are established. 

Theorem 1. There is a separable, non-CDH manifold with weight c. 

Theorem 2. Every separable manifold of weight <b is CDH. 

Problem 1. Is it consistent that there is a separable, non-CDH manifold of weight 

<c? 

For products, there are: 

Theorem 3. The space [WC (or @‘, I’) is not CDH. 

Theorem 4. It is independent with ZFC that WI (or @“‘I, P) is CDH, i.e. MA, implies 

R” (or @“, I”) is CDH. 

All these results answer questions raised by B. Fitzpatrick or the second author. 

Since Bennett [l] proved every strongly locally homogeneous, separable, locally 

compact metric space is CDH, Theorem 1 and 3 give examples which are strongly 

locally homogeneous, connected and locally connected, compact (or locally 

Euclidean), non-CDH spaces. In this respect, Van Mill [9] got a strongly locally 

homogeneous, connected and locally connected, Baire, non-CDH subspace of R2. 

In Section 4, the CDH number h is discussed. 

2. Proofs for manifolds 

Before proving Theorem 1, some geometric notions and constructions are needed. 

First, let H be a fixed open disk on the plane and S be its boundary. Let us call 

an (open) arc ab a nice arc if 

(i) aES and bEH; 

(ii) there is an isotopy fe: a x [0, l] + Z? such that _&(a, t) = a for all t and 

&(x, 0) =x for x E ab, and {fe(x, 1); XE ab} is an arc on S at the left of a. There is 

an isotopy f* with the similar properties and {f<(x, 1); x E ab} is an arc on S at the 

right of a; and 

(iii) if ab is expressed as the topological image of (0, 1) under the mapping 1, 

then r, < r, if and only if d (a, I( rl)) < d( a, l( r2)). If t E (0, $) and 0 < &I < Ed, then 

the fan-shaped area (‘angle’ area) F,,, (or F_,,) sided by J,_,, = {fa(x, t - 8,); x E ab} 



J. Stepmins, H.X. Zhou / Results on CDH spaces 149 

and JttF, = {A(x, t t E); x E ab} (or by J_,_,, and J_,+F,) is contained in the interior 

of the corresponding fan-shaped area F1,* sided by J,_,, and J,+F2 (or F_,,,). A similar 

requirement is needed in the case of t = 0. 

Now consider Moore’s example B [ 10, p. 3761. We have a new version of B (which 

is a 2-manifold). Instead of straight line rays, we use {ab}={Jo} and {J_,uJ,} 

(0 G t <$ to introduce the new points to H. The topology at x E H remains 

untouched. For the new point y, = {J-[ u J,} (0 < t < $, R,,, will be its neighbourhood, 

where R,,, = {y,,; t’<8}u{xEH;xEJ,~ for It’\ u E and d(a, x)< E} and R,,, = 

{y,,; (t - t’l < E} u {x E H; x E J,, u J_,, for ( t - 1’1~ E and d (a, x) < F}. Clearly, such a 

space is obtained from the discrete union of H and an open disk D = {z; 121 <i} on 

the complex plane C, by identifying a with 0 E C and {J_, u Jr} with the point t E C. 

Of course, the arc ab is also assumed to be included in the image of D and in fact 

it is identified with the open segment on the negative real axis in C. Denote the 

space constructed above by H(ab). If a space X is obtained iterating the above 

procedure, we get a new space X(ab) if the point a did not appear before. It is 

interesting to observe that such a construction (based on Moore’s idea) is almost 

the same as what Rudin and Zenor did [12]. 

Proof of Theorem 1. Take two disjoint countable dense subsets A, B of H. Let all 

homeomorphisms between the spaces A and B be listed as {h,; cy < c}. Now for 

cy <c inductively define spaces X, and points r,, s, on S with the following 

properties: 

(1) Va <c, H is an open dense subset of X,; 

(2) for cy, < (Y~<cX,, c X,, and X,, is open in X,,; 

(3) r,, %, are distinct and ~~<LY{Y,,s,}~~~<~{F~,s~}=~. 

Suppose X,, tp and sp have been defined for all /3 < (Y. Let r, be any point of S 

differing from rp, sp, (/3 < a). Clearly, there is a sequence {a,; n < o} in A converging 

to r, such that the broken line L connecting points a, (n < w) is a nice arc. 

Case 1. The sequence {h, (a,); n < w} in B does not converge in ti = H LJ S. Thus, 

{&(a,); n < w} has at least two distinct cluster points x and y. Pick a subsequence 

{a,,; k < w} such that {h,( a,,); k < w} converges to x. It reduces to the next case. 

Case 2. The sequence {h, (a,); n < w} converges to a point x in a. 

Subcase (a). x E H. Obviously, we are able to find a nice arc (broken line) J and 

the isotopies f; and fV such that J n {a,; n < w} is infinite and if R is the fan-shaped 

area sided by J-,,2 and J1,2, then {a,,; a, & R, n < w} is infinite. Let X = Up<_ X, 

with the obvious topology. Define X, = X(J) and arbitrarily take S, E 

S\U,<, {rp, sp)\{ra). 
Subcase (b). x E S\Upcn { rp, SD}\{ ra}. Let s, = x and take a nice arc M connect- 

ing points {&(a,); n <w}. Define Y = X(J) and X, = Y(M). 

Subcase (c). x E Up_ {rp, so}. If there is no convergent subsequence of 

{h,(a,); n <w} in the space X=Up<, X,, let X, =X(L) and S, E 

S\U,<, {rp, so}\{ ra} arbitrarily. Otherwise, take a convergent subsequence 
{&(a,,); k < w} and a nice arc J connecting infinitely many points of {a,,; k < o} 
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and having infinitely many points outside of I? as in Subcase (a). Let X, =X(J) 

and arbitrarily take S, E S\U,,, {rp, .sp}\{ra}. 

Subcase (d). x = r,. Since {a,,; n < w} n {h, (a,,); n < w} = 0, it is possible to choose 

a nice arc J connecting a,(n < w) and let the fan-shaped area R sided by J-,,2 and 

J,,2 exclude infinitely many points of {h, (a,,); n < w}. Finally, define X, = X(J) 

and arbitrarily pick S, E S\U,,, { rP, sP}\{ ru}. 

The induction is completed. The space Y = IJ,,, X,, provided with the obvious 

topology, is the desired 2-manifold, which does not have any autohomeomorphism 

h such that h(A) = B. The induction steps kill all possible ‘candidates’ by destroying 

their or their inverses’ continuity. 0 

Remark. In [3], Fitzpatrick and Zhou proved that Moore’s example B is CDH. 

Proof of Theorem 2. Let X be a manifold and w(X) < c, dim X = n. Suppose A and 

B are two countable dense subsets of X. It is not hard to find a countable family 

of open subsets U,, such that 

(1) AuN~u,,<w LJ,; 
(2) for n # j, U, n iI, = 0; 

(3) each U, is homeomorphic with R”. For each i, fix a metric d, on fi, compatible 

with its topology. Assume 93 is base for X with /%‘I <c. Let 9 = 

{(G,H); G, HE%, C?C H and G, H*LQ”}. Clearly \6P]=I%‘/<c. Fix a (G, H)E~. 

For any i, find a k < w such that d,(c n fi,, U,\H) > l/k> 0. Define a function 

f& = w + w by f&,(i) = k. Let g E ww satisfy that for any (G, H) E CP’, g 3 f&, (i.e. 

{i; g(i) <f&,(i)} is finite). Al so, for every 0, let us find an hi E H( 0,) such that 

(1) h,(An Ui)=Bn U;; 

(2) for x E U,, di(x, h,(x)) < l/g(i) and 

(3) hi] bdry( U;) = id. The existence of hi is guaranteed in [3]. Let h : X + X be 

defined by h 1 U, = hi and h /X\U,,, I!?, = id. It is easy to verify that h is a homeo- 

morphism from X to X and h(A) = B. 0 

3. Proofs for products 

Proof of Theorem 3. We will prove this for 2”. Let {A,: a E c} be an independent 

family on w. Let {(X,, n,): a E c} enumerate [w 1” x w. Define an increasing sequence 

{&: LY E w} by induction as follows: If there is p such that [a E /3 for each LY E y and 

such that X, E * A, or X,, n A, is finite then let &, = ~3 (otherwise &. is not defined). 

Now redefine A,?, when 5, is defined, so that n, ~5 At, c” AS7 and n, E A,? if X, n AC, 

is finite. The family is still independent and so if we define 

(PI?(a) = 
1 ifnEA,, 

0 ifneA,, 
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then D = (9,: n E w} is dense in 2’ and no sequence from D converges to a point 

in D. To see this suppose that {pi: iE X} converges to (P,,. Let (X,, n,) = (X, n). 

Then either there is some p E c such that IA, n XI = fX\A,I = w, in which case X 

does not converge to any point in 2’, or for every p either X, &” A, or X, n A, is 

finite. In the second case .& is defined and {II, E 2’: (cr(&) = 0} and {IJ E 2’: IJ?(.&) = l} 

are disjoint open sets one of which contains (P,, and the other of which contains all 

but finitely many members of {pi: i E X}. 

Now to see that 2’ is not CDH let S be a sequence converging to (T in 2’ and 

consider D and D u S u {a}. q 

In the next section, we will see that it is consistent with ZFC that K <c and R” 

(or IK, 2”) is not CDH. Before the proof of Theorem 4, we need a useful lemma, 

which says any countable subset of R” can be moved into a set with the general 

position (for any finite K, it can be realized by a rotation in Rx). 

Lemma 3.1. IfD = {d,,; n < W} is a countable subset of [w“ (or I”, 1”) for any infinite 

cardinal K, then there is an autohomeomorphism h such that for any a < K, n, , n2 < w, 

if n, # n2 then vTT, (h( d,,,)) # ra (h (d,,)), where TV is the czth projection. 

Lemma 3.2. If {d,; n CO} is a dense subset of X = fl,,, X,, where X, = [0, l]“, 

then there isfE H(X) such that Va, Vn, nO(f(d,,)) is not on the ‘boundary’ of[O, l]“, 

i.e. ifp, is the ith projection, then 0 <p, 0 ~~(f(d,,)) < 1. 

Proof of Theorem 4. We only prove the theorem for X = I” = n,,, ICE, where I, = I. 

The other two cases are similar. Only one remark is needed for the case (III), i.e. 

X” = C”. We can assume the two countable dense subsets A and B of X” in context 

will have the property: Va, TV and rO( B) are order dense according to the order 

inherited from R. In fact, for any LY, there is h, E H(C,) such that h,(ra(A)) does 

not contain any ‘end’ points of C. Then h =n,,, h, E H(X”) and h(A) is order 

dense. 

By using Lemma 3.1 twice and Lemma 3.2, we can assume the two countable 

dense subsets A = {a,,; n < w} and B = {b,; n < w} have the properties: 

(1) Va, {a,(a); n <w} and {b,(a); n <w} are order dense in (0,l); 

(2) VCY < K, Vn f m, a,(a) # a,(a) and b,(a) # b,(a), i.e. A and B have the 

general position. 

Given A = {a,,: n E w} and B = (6,: n E w} dense in R” and in general position 

define P to consist of all pairs (J; @) where 

(1) f is a partial injection from w to w; 

(2) @ is a finite partial function from K to w; 

(3) (V(Y E dom @)(Vm, n > @(cu))((a,(a) < a,(a) if and only if brC,,< b,(,,)(a)) 

and (b,(a) < b,(a) if and only if a,-lC,,(cu) < qua,,)). 

Define (f; @) s (g, @) if and only if g of and ?P c @. Note that if @ and @’ are 

compatible as functions and (A @) and (f; @‘) are in P then (f, @u @‘) extends 
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both of them. Hence to show that P’ is a-centred it suffices to show that the set of 

finite functions from K to w is cT-centred under inclusion. But this follows from the 

fact that K 4 2”. 

Using the fact that A and B are in general position and dense it can be shown 

that for each n E w 

D(n) = {(f; @) E P: n E dam(f) n range(f)} 

is dense. Also E ( (Y) = {(f; @) E P: LY E dom( @)} is dense. If G is generic for the sets 

o(n) and E(a) let ~=u{f: (f; @)E G} and define H on 2” by 

H(x)(a) = limsup{g,(,,(a): a,,(a) s x(cr)}. 

It is routine to check that H is the desired homeomorphism. 0 

4. The CDH numbers 

If we define the uncountable cardinals b = min{K; 2” is not CDH}, hi = 

min{K; I” is not CDH} and lj2 = min{rc; [w” is not CDH}, the following questions 

would be interesting: 

Problem 2. How big is h (or t)r, h2)? How big is cf(h)? Or particularly, what are 

relationships among lj, $, , b2? For A < K, does 2” CDH imply 2” is CDH? 

Recall the following cardinals. p = min{K; MA, (cr-centred) fails}, q = min{ rc; 2” 

is not sequentially separable, i.e. 2” has no countable dense subset D such that any 

point of 2” can be the limit of a sequence in D} (e.g. see [14]). By a method due 

to Rothberger [ll], one can show that q = min{rc; VX c Iw if 1X( 3 K, there is a non 

G,-set of the subspace X, (i.e. X is not a Q-set). It is well known that q 2 4. To 

the authors’ knowledge, the question whether q s p remains open. We will prove 

p < h c q, hence another question is raised. 

Problem 3. Is it true that b = p? 

Theorem 4.1. p s IJ (or bl, b2) G q. 

Proof. We only prove it for b. p =z IJ has been shown in Theorem 4. We are to prove 

that if K 2 q, then 2” is not CDH. Let X =n,,, X, =@. Assume D ={ri; i<w} is 

a dense subset of @. If we regard the index set K as a subset of p, the irrationals in 

(0, 1). Let I, = (0, l), ZcO) = (0, l/2), Zcl) = (l/2, 1). For any finite sequence s of 0 or 

1, if Z, has been defined, let Zs(0j (or Z,(,,) be the left (or right) ‘half’ of Z,. For any 

function f with domf = “2, ran f~ 0, let TV = r, if (Y E Z, and f(s) = r,. Then 

E = {xf;fc cnz’D} is dense in X. It can be shown that each x,a E is a limit of a 

sequence in E. Since 2” = X is not sequentially separable, there is a y E X such that 
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y cannot be a limit of any sequence in E. Define E’ = E u {y}. Then there is no 

h E H(X) with h(E) = E’. 

Since q could be less than c in some model of ZFC, by combining Theorem 5.1 

with Theorem 4 we get 

Corollary 4.2. It is independent that for all K < c 2” is CDH. 

Remark 4.3. If we define q, = min{lXl; X is not a Q-set in R}, then q, <q and 

actually we have l) s q, . 

We will list another result to end this section. 

Theorem 4.4. Let m = min(l91; 9 is a maximal independent family, where 9~ p(w) 

is called an independent family if for any E,,, . . . , E,, F,, . . . , F,, in 9, n,,, Ei n 

n,,, (w\F,) is infinite}, then ljsm, and it is consistent with ZFC that lj<m. 

Proof. Note that if D ={d,; n < W} is dense in 2”, then {F,; a <K, F, = 

{n; d,(a) = 0}} is an independent family. On the other hand, if 9 = {F,; (Y < K} is 

an independent family, then D = {d,; n < w, where for (Y < K, d,,(a) = 0 iff n G F,} 

is dense in 2”. Besides, 9 is maximal iff for any E c D, if E is dense, then D\E is 

not dense. Now, assume K = m. Let D be the corresponding dense subset given 

from 5 and E be the dense subset consisting of ‘step functions’ in the proof of the 

previous theorem. Clearly, E does not have the property which D has. So D and 

E are not homeomorphic. 

Price [7] showed p s m, but they are not equal, which can be seen in the following 

model. Let M be a model of GCH and N be the $-generic extension, where 

$ = F(q, 2) (see [7]). Let {ra; cy < w2} be the Cohen reals. It is well-known that 

Y={r,; (Y < w2} is a Lusin set (e.g. see [S]). Let 2 = {ra; a <o}. Z is not a Q-set. 

In fact, take a countable dense (in Z) set A c Z. If A is G, in Z, then A = n,, U, n Z, 

where U, is an open dense set of Iw. Then Z = AuUncw (R\U,,) nZc 

(Au IJ,,, lR\ U,,) n I’. But the latter set is countable. Now, we assert that every set 

of size w, in [w is not a Q-set. It would follow that q = w, and f)sq by Theorem 

4.1. But m = wz in N. Suppose S is a Q-set and ISI = w,. By a result due to Rothberger 

[ 111, there is a denumerable base D, i.e. IDI < w and every point x E 2”~ is the limit 

of a sequence in D. But the corresponding base Q(Z) (for notations, see [ll]) is 

not a denumerable base. Hence 2”1 is not CDH. Hence b< w,. 0 
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