SOME RESULTS ON CDH SPACES-I

J. STEPRĀNS and H.X. ZHOU
Department of Mathematics, York University, North York, Ontario, Canada M3J 1P3

Reccived 1 September 1986
Revised 20 December 1986

Abstract

A space is CDH is any two countable dense sets can be mapped one onto the other by an autohomeomorphism of the entire space. The CDH nature of separable manifolds and \mathbb{R}^{κ} is examined.


```
AMS (MOS) Subj. Class.: 04, 54
homogeneous manifold Martin's axiom
```


0. Introduction

A separable space X is said to be a CDH (countable dense homogeneous) space, if for any two countable dense subsets A and B in X, there is an autohomeomorphism h of X such that $h(A)=B$. In this paper, for any space $X, H(X)$ is always the set of all autohomeomorphisms of X. The rationals, the reals, the Cantor set and the closed unit interval are denoted by $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ and I respectively. κ, λ are cardinals and $\alpha, \beta, \gamma, \ldots$ are ordinals. c will be the size of $\mathbb{R} . \mathfrak{b}$ is the least cardinality of an unbounded family in ${ }^{\omega} \omega$. The authors would like to thank A. Dow, S. Watson and the referee for suggesting various improvements, corrections and better proofs.

1. Main results

It is well known that any n-Euclidian space \mathbb{R}^{n} is CDH (see [5]). There are two natural questions.
(A) Is every separable (topological) manifold CDH? A connected space X is called an n-manifold for a non-negative integer n, if for any point $x \in X$ there is a neighbourhood U at x such that U is homeomorphic with \mathbb{R}^{n}. Note that it is true that $w(X) \leqslant c$ for any separable manifold X, where $w(X)$ means the weight of X.
(B) Is every product $\mathbb{R}^{\kappa}(\kappa \leqslant c) C D H$? Similar questions are whether I^{κ} or \mathbb{G}^{κ} are CDH for $\omega \leqslant \kappa \leqslant \mathfrak{c}$. By the Hewitt-Marczewski-Pondiczery Theorem, \mathbb{P}^{κ} is separable if and only if $\kappa \leqslant c$.

When $\kappa=\omega$, the answers to both questions are known, i.e. Bennett [1] (and independently Bessaga and Pelczynski, see [2]) showed if the manifold X has weight $w(X) \leqslant \omega$, then X is CDH and Fort [4] showed that the Hilbert cube I^{ω} (and \mathbb{R}^{ω}) is CDH . The present paper deals with the case that $\kappa>\omega$; the following theorems are established.

Theorem 1. There is a separable, non-CDH manifold with weight c.

Theorem 2. Every separable manifold of weight $<\mathbf{b}$ is $C D H$.

Problem 1. Is it consistent that there is a separable, non-CDH manifold of weight $<\mathrm{c}$?

For products, there are:

Theorem 3. The space $\mathbb{R}^{c}\left(\right.$ or $\left.\mathbb{C}^{c}, I^{c}\right)$ is not $C D H$.

Theorem 4. It is independent with $Z F C$ that $\mathbb{R}^{\omega_{1}}\left(\right.$ or $\left.\mathbb{C}^{\omega_{1}}, I^{\omega_{1}}\right)$ is $C D H$, i.e. $M A_{\kappa}$ implies $\mathbb{R}^{\kappa}\left(\right.$ or $\left.\mathbb{C}^{\kappa}, I^{\kappa}\right)$ is $C D H$.

All these results answer questions raised by B. Fitzpatrick or the second author. Since Bennett [1] proved every strongly locally homogeneous, separable, locally compact metric space is CDH , Theorem 1 and 3 give examples which are strongly locally homogeneous, connected and locally connected, compact (or locally Euclidean), non-CDH spaces. In this respect, Van Mill [9] got a strongly locally homogeneous, connected and locally connected, Baire, non-CDH subspace of \mathbb{R}^{2}.

In Section 4, the CDH number \mathfrak{h} is discussed.

2. Proofs for manifolds

Before proving Theorem 1, some geometric notions and constructions are needed. First, let H be a fixed open disk on the plane and S be its boundary. Let us call an (open) arc $a b$ a nice arc if
(i) $a \in S$ and $b \in H$;
(ii) there is an isotopy $f_{\ell}: \bar{H} \times[0,1] \rightarrow \bar{H}$ such that $f_{\ell}(a, t)=a$ for all t and $f_{\ell}(x, 0)=x$ for $x \in a b$, and $\left\{f_{\ell}(x, 1) ; x \in a b\right\}$ is an arc on S at the left of a. There is an isotopy f_{2} with the similar properties and $\left\{f_{i}(x, 1) ; x \in a b\right\}$ is an arc on S at the right of a; and
(iii) if $a b$ is expressed as the topological image of $(0,1)$ under the mapping l, then $r_{1}<r_{2}$ if and only if $d\left(a, l\left(r_{1}\right)\right)<d\left(a, l\left(r_{2}\right)\right)$. If $t \in\left(0, \frac{1}{2}\right)$ and $0<\varepsilon_{1}<\varepsilon_{2}$, then the fan-shaped area ('angle' area) $F_{t, 1}$ (or $F_{-t, 1}$) sided by $J_{t-\varepsilon_{1}}=\left\{f_{t}\left(x, t-\varepsilon_{1}\right) ; x \in a b\right\}$
and $J_{t+\varepsilon_{1}}=\left\{f_{2}(x, t+\varepsilon) ; x \in a b\right\}$ (or by $J_{-t-\varepsilon_{1}}$ and $J_{-t+\varepsilon_{1}}$) is contained in the interior of the corresponding fan-shaped area $F_{t, 2}$ sided by $J_{t-\varepsilon_{2}}$ and $J_{t+\varepsilon_{2}}$ (or $F_{-t, 2}$). A similar requirement is needed in the case of $t=0$.

Now consider Moore's example $B[10, \mathrm{p} .376]$. We have a new version of B (which is a 2 -manifold). Instead of straight line rays, we use $\{a b\}=\left\{J_{0}\right\}$ and $\left\{J_{-t} \cup J_{,}\right\}$ $\left(0 \leqslant t<\frac{1}{2}\right)$ to introduce the new points to H. The topology at $x \in H$ remains untouched. For the new point $y_{t}=\left\{J_{-t} \cup J_{t}\right\}\left(0 \leqslant t<\frac{1}{2}\right), R_{t, \varepsilon}$ will be its neighbourhood, where $R_{0, \varepsilon}=\left\{y_{t^{\prime}} ; t^{\prime}<\varepsilon\right\} \cup\left\{x \in H ; x \in J_{t^{\prime}}\right.$ for $\left|t^{\prime}\right| \cup \varepsilon$ and $\left.d(a, x)<\varepsilon\right\}$ and $R_{t, \varepsilon}=$ $\left\{y_{t^{\prime}} ;\left|t-t^{\prime}\right|<\varepsilon\right\} \cup\left\{x \in H ; x \in J_{t^{\prime}} \cup J_{-t^{\prime}}\right.$ for $\left|t-t^{\prime}\right|<\varepsilon$ and $\left.d(a, x)<\varepsilon\right\}$. Clearly, such a space is obtained from the discrete union of H and an open disk $D=\left\{z ;|z|<\frac{1}{2}\right\}$ on the complex plane C, by identifying a with $0 \in C$ and $\left\{J_{-,} \cup J_{t}\right\}$ with the point $t \in C$. Of course, the arc $a b$ is also assumed to be included in the image of D and in fact it is identified with the open segment on the negative real axis in C. Denote the space constructed above by $H(a b)$. If a space X is obtained iterating the above procedure, we get a new space $X(a b)$ if the point a did not appear before. It is interesting to observe that such a construction (based on Moore's idea) is almost the same as what Rudin and Zenor did [12].

Proof of Theorem 1. Take two disjoint countable dense subsets A, B of H. Let all homeomorphisms between the spaces A and B be listed as $\left\{h_{\alpha} ; \alpha<c\right\}$. Now for $\alpha<\mathfrak{c}$ inductively define spaces X_{α} and points r_{α}, s_{α} on S with the following properties:
(1) $\forall \alpha<\mathfrak{c}, H$ is an open dense subset of X_{α};
(2) for $\alpha_{1}<\alpha_{2}<\mathrm{c} X_{\alpha_{1}} \subset X_{\alpha_{1}}$ and $X_{\alpha_{1}}$ is open in $X_{\alpha_{2}}$;
(3) r_{α}, s_{α}, are distinct and $\forall \beta<\alpha\left\{r_{\alpha}, s_{\alpha}\right\} \cap \bigcup_{\beta<\alpha}\left\{r_{\beta}, s_{\beta}\right\}=\emptyset$.

Suppose X_{β}, t_{β} and s_{β} have been defined for all $\beta<\alpha$. Let r_{α} be any point of S differing from $r_{\beta}, s_{\beta},(\beta<\alpha)$. Clearly, there is a sequence $\left\{a_{n} ; n<\omega\right\}$ in A converging to r_{α} such that the broken line L connecting points $a_{n}(n<\omega)$ is a nice arc.

Case 1. The sequence $\left\{h_{\alpha}\left(a_{n}\right) ; n<\omega\right\}$ in B does not converge in $\bar{H}=H \cup S$. Thus, $\left\{h_{\alpha}\left(a_{n}\right) ; n<\omega\right\}$ has at least two distinct cluster points x and y. Pick a subsequence $\left\{a_{n_{k}} ; k<\omega\right\}$ such that $\left\{h_{\alpha}\left(a_{n_{k}}\right) ; k<\omega\right\}$ converges to x. It reduces to the next case.

Case 2. The sequence $\left\{h_{\alpha}\left(a_{n}\right) ; n<\omega\right\}$ converges to a point x in \bar{H}.
Subcase (a). $x \in H$. Obviously, we are able to find a nice arc (broken line) J and the isotopies f_{l} and f_{r} such that $J \cap\left\{a_{n} ; n<\omega\right\}$ is infinite and if R is the fan-shaped area sided by $J_{-1 / 2}$ and $J_{1 / 2}$, then $\left\{a_{n} ; a_{n} \notin \bar{R}, n<\omega\right\}$ is infinite. Let $X=\bigcup_{\beta<\alpha} X_{\beta}$ with the obvious topology. Define $X_{\alpha}=X(J)$ and arbitrarily take $S_{\alpha} \in$ $S \backslash \bigcup_{\beta<\alpha}\left\{r_{\beta}, s_{\beta}\right\} \backslash\left\{r_{\alpha}\right\}$.

Subcase (b). $x \in S \backslash \bigcup_{\beta<\alpha}\left\{r_{\beta}, s_{\beta}\right\} \backslash\left\{r_{\alpha}\right\}$. Let $s_{\alpha}=x$ and take a nice arc M connecting points $\left\{h_{\alpha}\left(a_{n}\right) ; n<\omega\right\}$. Define $Y=X(J)$ and $X_{\alpha}=Y(M)$.

Subcase (c). $x \in \bigcup_{\beta<\alpha}\left\{r_{\beta}, s_{\beta}\right\}$. If there is no convergent subsequence of $\left\{h_{\alpha}\left(a_{n}\right) ; n<\omega\right\}$ in the space $X=\bigcup_{\beta<\alpha} X_{\beta}$, let $X_{\alpha}=X(L)$ and $S_{\alpha} \in$ $S \backslash \bigcup_{\beta<\alpha}\left\{r_{\beta}, s_{\beta}\right\} \backslash\left\{r_{\alpha}\right\}$ arbitrarily. Otherwise, take a convergent subsequence $\left\{h_{\alpha}\left(a_{n_{k}}\right) ; k<\omega\right\}$ and a nice arc J connecting infinitely many points of $\left\{a_{n_{k}} ; k<\omega\right\}$
and having infinitely many points outside of \bar{R} as in Subcase (a). Let $X_{\alpha}=X(J)$ and arbitrarily take $S_{\alpha} \in S \backslash \bigcup_{\beta<\alpha}\left\{r_{\beta}, s_{\beta}\right\} \backslash\left\{r_{\alpha}\right\}$.

Subcase (d). $x=r_{\alpha}$. Since $\left\{a_{n} ; n<\omega\right\} \cap\left\{h_{\alpha}\left(a_{n}\right) ; n<\omega\right\}=\emptyset$, it is possible to choose a nice arc J connecting $a_{n}(n<\omega)$ and let the fan-shaped area R sided by $J_{-1 / 2}$ and $J_{1 / 2}$ exclude infinitely many points of $\left\{h_{\alpha}\left(a_{n}\right) ; n<\omega\right\}$. Finally, define $X_{\alpha}=X(J)$ and arbitrarily pick $S_{\alpha} \in S \backslash \bigcup_{\beta<\alpha}\left\{r_{\beta}, s_{\beta}\right\} \backslash\left\{r_{\alpha}\right\}$.

The induction is completed. The space $Y=\bigcup_{\alpha<\varepsilon} X_{\alpha}$, provided with the obvious topology, is the desired 2-manifold, which does not have any autohomeomorphism h such that $h(A)=B$. The induction steps kill all possible 'candidates' by destroying their or their inverses' continuity.

Remark. In [3], Fitzpatrick and Zhou proved that Moore's example B is CDH.

Proof of Theorem 2. Let X be a manifold and $w(X)<\mathfrak{c}, \operatorname{dim} X=n$. Suppose A and B are two countable dense subsets of X. It is not hard to find a countable family of open subsets U_{n} such that
(1) $A \cup N \subseteq \bigcup_{n<\omega} U_{n}$;
(2) for $n \neq j, \bar{U}_{n} \cap \bar{U}_{j}=\emptyset$;
(3) each U_{j} is homeomorphic with \mathbb{R}^{n}. For each i, fix a metric d_{i} on \bar{U}_{i} compatible with its topology. Assume \mathscr{B} is base for X with $|\mathscr{B}|<\mathbf{c}$. Let $\mathscr{P}=$ $\left\{\langle G, H\rangle ; G, H \in \mathscr{B}, \bar{G} \subset H\right.$ and $\left.G, H \approx \mathbb{R}^{n}\right\}$. Clearly $|\mathscr{P}|=|\mathscr{B}|<\mathfrak{c}$. Fix a $\langle G, H\rangle \in \mathscr{P}$. For any i, find a $k<\omega$ such that $d_{i}\left(\bar{G} \cap \bar{U}_{i}, \bar{U}_{i} \backslash H\right)>1 / k>0$. Define a function $f_{\mathrm{G}, H}=\omega \rightarrow \omega$ by $f_{\mathrm{G}, H}(i)=k$. Let $g \in{ }^{\omega} \omega$ satisfy that for any $\langle G, H\rangle \in \mathscr{P}, g \geqslant f_{\mathrm{G}, H}$ (i.e. $\left\{i ; g(i)<f_{G, H}(i)\right\}$ is finite $)$. Also, for every \bar{U}_{i} let us find an $h_{i} \in H\left(\bar{U}_{i}\right)$ such that
(1) $h_{i}\left(A \cap U_{i}\right)=B \cap U_{i}$;
(2) for $x \in U_{i}, d_{i}\left(x, h_{i}(x)\right)<1 / g(i)$ and
(3) $h_{i} \upharpoonright \operatorname{bdry}\left(U_{i}\right)=\mathrm{id}$. The existence of h_{i} is guaranteed in [3]. Let $h: X \rightarrow X$ be defined by $h \uparrow \bar{U}_{i}=h_{i}$ and $h \upharpoonright X \backslash \bigcup_{i<\omega} \bar{U}_{i}=$ id. It is easy to verify that h is a homeomorphism from X to X and $h(A)=B$.

3. Proofs for products

Proof of Theorem 3. We will prove this for 2^{c}. Let $\left\{A_{\alpha}: \alpha \in c\right\}$ be an independent family on ω. Let $\left\{\left(X_{\alpha}, n_{\alpha}\right): \alpha \in c\right\}$ enumerate $[\omega]^{\omega} \times \omega$. Define an increasing sequence $\left\{\xi_{\alpha}: \alpha \in \omega\right\}$ by induction as follows: If there is β such that $\xi_{\alpha} \in \beta$ for each $\alpha \in \gamma$ and such that $X_{\gamma} \subseteq^{*} A_{\beta}$ or $X_{\gamma} \cap A_{\beta}$ is finite then let $\xi_{\gamma}=\beta$ (otherwise ξ_{γ} is not defined). Now redefine $A_{\xi_{\gamma}}$, when ξ_{γ} is defined, so that $n_{\gamma} \notin A_{\xi_{\gamma}} \subseteq^{*} A_{\xi_{\gamma}}$ and $n_{\gamma} \in A_{\xi_{\gamma}}$ if $X_{\gamma} \cap A_{\xi_{\gamma}}$ is finite. The family is still independent and so if we define

$$
\varphi_{n}(\alpha)= \begin{cases}1 & \text { if } n \in A_{\alpha} \\ 0 & \text { if } n \notin A_{\alpha}\end{cases}
$$

then $D=\left\{\varphi_{n}: n \in \omega\right\}$ is dense in 2^{c} and no sequence from D converges to a point in D. To see this suppose that $\left\{\varphi_{i}: i \in X\right\}$ converges to φ_{n}. Let $\left(X_{\alpha}, n_{a}\right)=(X, n)$. Then either there is some $\beta \in c$ such that $\left|A_{\beta} \cap X\right|=\left|X \backslash A_{\beta}\right|=\omega$, in which case X does not converge to any point in 2^{c}, or for every β either $X_{\alpha} \subseteq^{*} A_{\beta}$ or $X_{\alpha} \cap A_{\beta}$ is finite. In the second case ξ_{α} is defined and $\left\{\psi \in 2^{c}: \psi\left(\xi_{\alpha}\right)=0\right\}$ and $\left\{\psi \in 2^{c}: \psi\left(\xi_{\alpha}\right)=1\right\}$ are disjoint open sets one of which contains φ_{n} and the other of which contains all but finitely many members of $\left\{\varphi_{i}: i \in X\right\}$.

Now to see that 2^{c} is not CDH let S be a sequence converging to σ in 2^{c} and consider D and $D \cup S \cup\{\sigma\}$.

In the next section, we will see that it is consistent with ZFC that $\kappa<\mathfrak{c}$ and \mathbb{R}^{κ} (or $I^{\kappa}, 2^{\kappa}$) is not CDH. Before the proof of Theorem 4, we need a useful lemma, which says any countable subset of \mathbb{R}^{κ} can be moved into a set with the general position (for any finite κ, it can be realized by a rotation in \mathbb{R}^{κ}).

Lemma 3.1. If $D=\left\{d_{n} ; n<\omega\right\}$ is a countable subset of \mathbb{R}^{κ} (or $I^{\kappa}, 1^{\kappa}$) for any infinite cardinal κ, then there is an autohomeomorphism h such that for any $\alpha<\kappa, n_{1}, n_{2}<\omega$, if $n_{1} \neq n_{2}$ then $\pi_{\alpha}\left(h\left(d_{n_{1}}\right)\right) \neq \pi_{\alpha}\left(h\left(d_{n_{2}}\right)\right.$, where π_{α} is the α th projection.

Lemma 3.2. If $\left\{d_{n} ; n<\omega\right\}$ is a dense subset of $X=\prod_{\alpha<\kappa} X_{\alpha}$, where $X_{\alpha}=[0,1]^{\omega}$, then there is $f \in H(X)$ such that $\forall \alpha, \forall n, \pi_{\alpha}\left(f\left(d_{n}\right)\right)$ is not on the 'boundary' of $[0,1]^{\omega}$, i.e. if p_{i} is the i th projection, then $0<p_{i} \circ \pi_{\alpha}\left(f\left(d_{n}\right)\right)<1$.

Proof of Theorem 4. We only prove the theorem for $X=I^{\kappa}=\prod_{\alpha<\kappa} I_{\alpha}$, where $I_{\alpha}=I$. The other two cases are similar. Only one remark is needed for the case (III), i.e. $X^{\prime \prime}=\mathbb{C}^{\kappa}$. We can assume the two countable dense subsets A and B of $X^{\prime \prime}$ in context will have the property: $\forall \alpha, \pi_{\alpha}(A)$ and $\pi_{\alpha}(B)$ are order dense according to the order inherited from R. In fact, for any α, there is $h_{\alpha} \in H\left(\mathbb{C}_{\alpha}\right)$ such that $h_{\alpha}\left(\pi_{\alpha}(A)\right)$ does not contain any 'end' points of \mathbb{C}. Then $h=\prod_{\alpha<\kappa} h_{\alpha} \in H\left(X^{\prime \prime}\right)$ and $h(A)$ is order dense.

By using Lemma 3.1 twice and Lemma 3.2, we can assume the two countable dense subsets $A=\left\{a_{n} ; n<\omega\right\}$ and $B=\left\{b_{n} ; n<\omega\right\}$ have the properties:
(1) $\forall \alpha,\left\{a_{n}(\alpha) ; n<\omega\right\}$ and $\left\{b_{n}(\alpha) ; n<\omega\right\}$ are order dense in $(0,1)$;
(2) $\forall \alpha<\kappa, \forall n \neq m, a_{n}(\alpha) \neq a_{m}(\alpha)$ and $b_{n}(\alpha) \neq b_{m}(\alpha)$, i.e. A and B have the general position.

Given $A=\left\{a_{n}: n \subset \omega\right\}$ and $B=\left\{b_{n}: n \in \omega\right\}$ dense in \mathbb{B}^{κ} and in general position define \mathbb{P} to consist of all pairs (f, Φ) where
(1) f is a partial injection from ω to ω;
(2) Φ is a finite partial function from κ to ω;
(3) $(\forall \alpha \in \operatorname{dom} \Phi)(\forall m, n>\Phi(\alpha))\left(\left(a_{m}(\alpha)<a_{n}(\alpha)\right.\right.$ if and only if $\left.b_{f(m)}<b_{f(n)}(\alpha)\right)$ and $\left(b_{m}(\alpha)<h_{n}(\alpha)\right.$ if and only if $\left.a_{f^{-1}(m)}(\alpha)<a_{f^{-1}(n)}(\alpha)\right)$).
Define $(f, \Phi) \leqslant(g, \Phi)$ if and only if $g \subseteq f$ and $\Psi \subseteq \Phi$. Note that if Φ and Φ^{\prime} are compatible as functions and (f, Φ) and (f, Φ^{\prime}) are in \mathbb{P} then ($f, \Phi \cup \Phi^{\prime}$) extends
both of them. Hence to show that \mathbb{P} is σ-centred it suffices to show that the set of finite functions from κ to ω is σ-centred under inclusion. But this follows from the fact that $\kappa \leqslant 2^{\omega}$.

Using the fact that A and B are in general position and dense it can be shown that for each $n \in \omega$

$$
D(n)=\{(f, \Phi) \in \mathbb{P}: n \in \operatorname{dom}(f) \cap \operatorname{range}(f)\}
$$

is dense. Also $E(\alpha)=\{(f, \Phi) \in \mathbb{P}: \alpha \in \operatorname{dom}(\Phi)\}$ is dense. If G is generic for the sets $D(n)$ and $E(\alpha)$ let $F=\bigcup\{f:(f, \Phi) \in G\}$ and define H on 2^{κ} by

$$
H(x)(\alpha)=\limsup \left\{g_{F(n)}(\alpha): a_{n}(\alpha) \leqslant x(\alpha)\right\} .
$$

It is routine to check that H is the desired homeomorphism.

4. The CDH numbers

If we define the uncountable cardinals $\mathfrak{h}=\min \left\{\kappa ; 2^{\kappa}\right.$ is not CDH$\}, \mathfrak{h}_{1}=$ $\min \left\{\kappa ; I^{\kappa}\right.$ is not CDH$\}$ and $\mathfrak{h}_{2}=\min \left\{\kappa ; \mathbb{R}^{\kappa}\right.$ is not CDH$\}$, the following questions would be interesting:

Problem 2. How big is \mathfrak{h} (or $\mathfrak{h}_{1}, \mathfrak{h}_{2}$) ? How big is $\operatorname{cf}(\mathfrak{h})$? Or particularly, what are relationships among $\mathfrak{h}, \mathfrak{h}_{1}, \mathfrak{h}_{2}$? For $\lambda<\kappa$, does 2^{κ} CDH imply 2^{λ} is CDH?

Recall the following cardinals. $\mathfrak{p}=\min \left\{\kappa ; \mathbf{M A}_{\kappa}\right.$ (σ-centred) fails $\}, q=\min \left\{\kappa ; 2^{\kappa}\right.$ is not sequentially separable, i.e. 2^{κ} has no countable dense subset D such that any point of 2^{κ} can be the limit of a sequence in $\left.D\right\}$ (e.g. see [14]). By a method due to Rothberger [11], one can show that $\mathfrak{q}=\min \{\kappa ; \forall X \subseteq \mathbb{R}$ if $|X| \geqslant \kappa$, there is a non G_{δ}-set of the subspace X, (i.e. X is not a Q-set). It is well known that $\mathfrak{q} \geqslant \mathfrak{p}$. To the authors' knowledge, the question whether $\mathfrak{q} \leqslant p$ remains open. We will prove $\mathfrak{p} \leqslant \mathfrak{h} \leqslant \mathfrak{q}$, hence another question is raised.

Problem 3. Is it true that $\mathfrak{h}=\mathfrak{p}$?

Theorem 4.1. $\mathfrak{p} \leqslant \mathfrak{h}\left(\right.$ or $\left.\mathfrak{h}_{1}, \mathfrak{h}_{2}\right) \leqslant \mathfrak{q}$.
Proof. We only prove it for \mathfrak{b}. $\mathfrak{p} \leqslant \mathfrak{h}$ has been shown in Theorem 4. We are to prove that if $\kappa \geqslant \mathfrak{q}$, then 2^{κ} is not CDH . Let $X=\prod_{\alpha<\kappa} X_{\alpha}=\mathbb{C}$. Assume $D=\left\{r_{i} ; i<\omega\right\}$ is a dense subset of \mathbb{C}. If we regard the index set κ as a subset of p, the irrationals in $(0,1)$. Let $I_{0}=(0,1), I_{(0)}=(0,1 / 2), I_{(1)}=(1 / 2,1)$. For any finite sequence s of 0 or 1, if I_{s} has been defined, let $I_{s(0)}$ (or $I_{s(1)}$) be the left (or right) 'half' of I_{s}. For any function f with $\operatorname{dom} f={ }^{n} 2$, ran $f \subset D$, let $x_{f}(\alpha)=r_{i}$ if $\alpha \in I_{s}$ and $f(s)=r_{i}$. Then $E=\left\{x_{f} ; f \in^{\left(n_{2}\right)} D\right\}$ is dense in X. It can be shown that each $x_{f} \notin E$ is a limit of a sequence in E. Since $2^{\kappa}=X$ is not sequentially separable, there is a $y \in X$ such that
y cannot be a limit of any sequence in E. Define $E^{\prime}=E \cup\{y\}$. Then there is no $h \in H(X)$ with $h(E)=E^{\prime}$.

Since q could be less than c in some model of ZFC, by combining Theorem 5.1 with Theorem 4 we get

Corollary 4.2. It is independent that for all $\kappa<\mathrm{c} 2^{\kappa}$ is $C D H$.

Remark 4.3. If we define $\mathfrak{q}_{1}=\min \{|X| ; X$ is not a Q-set in $\mathbb{R}\}$, then $\mathfrak{q}_{1} \leqslant \mathfrak{q}$ and actually we have $\mathfrak{h} \leqslant \mathfrak{q}_{1}$.

We will list another result to end this section.

Theorem 4.4. Let $m=\min \{|\mathscr{F}| ; \mathscr{F}$ is a maximal independent family, where $\mathscr{F} \subset p(\omega)$ is called an independent family if for any $E_{0}, \ldots, E_{m}, F_{0}, \ldots, F_{n}$ in $\mathscr{F}, \bigcap_{i \leqslant m} E_{i} \cap$ $\bigcap_{j \leqslant n}\left(\omega \backslash F_{j}\right)$ is infinite $\}$, then $\mathfrak{h} \leqslant \boldsymbol{m}$, and it is consistent with ZFC that $\mathfrak{h}<\boldsymbol{m}$.

Proof. Note that if $D=\left\{d_{n} ; n<\omega\right\}$ is dense in 2^{κ}, then $\left\{F_{\alpha} ; \alpha<\kappa, F_{\alpha}=\right.$ $\left.\left\{n ; d_{n}(\alpha)=0\right\}\right\}$ is an independent family. On the other hand, if $\mathscr{F}=\left\{F_{\alpha} ; \alpha<\kappa\right\}$ is an independent family, then $D=\left\{d_{n} ; n<\omega\right.$, where for $\alpha<\kappa, d_{n}(\alpha)=0$ iff $\left.n \in F_{\alpha}\right\}$ is dense in 2^{κ}. Besides, \mathscr{F} is maximal iff for any $E \subset D$, if E is dense, then $D \backslash E$ is not dense. Now, assume $\kappa=\mathfrak{m}$. Let D be the corresponding dense subset given from \mathscr{F} and E be the dense subset consisting of 'step functions' in the proof of the previous theorem. Clearly, E does not have the property which D has. So D and E are not homeomorphic.

Price [7] showed $\mathfrak{p} \leqslant \boldsymbol{m}$, but they are not equal, which can be seen in the following model. Let M be a model of GCH and N be the \mathbb{P}-generic extension, where $\mathbb{P}=F\left(\omega_{2}, 2\right)$ (see [7]). Let $\left\{r_{\alpha} ; \alpha<\omega_{2}\right\}$ be the Cohen reals. It is well-known that $Y=\left\{r_{\alpha} ; \alpha<\omega_{2}\right\}$ is a Lusin set (e.g. see [8]). Let $Z=\left\{r_{\alpha} ; \alpha<\omega\right\} . Z$ is not a Q-set. In fact, take a countable dense (in Z) set $A \subset Z$. If A is G_{δ} in Z, then $A=\bigcap_{n} U_{n} \cap Z$, where U_{n} is an open dense set of \mathbb{R}. Then $Z=A \cup \bigcup_{n<\omega}\left(\mathbb{R} \backslash U_{n}\right) \cap Z \subseteq$ $\left(A \cup \bigcup_{n<\omega} \mathbb{R} \backslash U_{n}\right) \cap Y$. But the latter set is countable. Now, we assert that every set of size ω_{1} in \mathbb{R} is not a Q-set. It would follow that $\mathfrak{q}=\omega_{1}$ and $\mathfrak{b} \leqslant \mathfrak{q}$ by Theorem 4.1. But $\mathfrak{m}=\omega_{2}$ in N. Suppose S is a Q-set and $|S|=\omega_{1}$. By a result due to Rothberger [11], there is a denumerable base D, i.e. $|D| \leqslant \omega$ and every point $x \in 2^{\omega_{1}}$ is the limit of a sequence in D. But the corresponding base $\Phi(Z)$ (for notations, see [11]) is not a denumerable base. Hence $2^{\omega_{1}}$ is not $C D H$. Hence $\mathfrak{h} \leqslant \omega_{1}$.

References

[1] R. Rennett, Countable dense homogeneous spaces, Fund. Math. 74 (1972) 189-194.
[2] C. Bessaga and A. Pelczynski, Selected Topics in Infinite-Dimensional Topology (PWN. Warszawa, 1975).
[3] B. Fitzpatric and Zhou Hao-xuan, On densely homogeneous spaces II, Houston J. Math., to appear.
[4] M. Fort, Homogeneity of infinite products of manifolds with boundary, Pacific J. Math. 12 (1962) 879-884.
[5] W. Hurewicz and H. Wallman, Dimension Theory (Princeton, 1948).
[6] J. Kennedy, dissertation, Auburn University.
[7] K. Kunen, Set theory (North-Holland, Amsterdam, 1980).
[8] K. Kunen, Random and Cohen reals, in: K. Kunen and J. Vaughan, Eds., Handbook of Set-Theoretic Topology (North-Holland, Amsterdam, 1984) 887-911.
[9] J. van Mill, Strong local homogeneity does not imply countable dense homogeneity, Proc. AMS 84 (1982) 143-148.
[10] R. Moore, Foundations of Point Set Theory (AMS, Providence, RI, 1962).
[11] F. Rothberger, On some problems of Hausdorff and of Sierpinski, Fund. Math. 35 (1948) 29-46.
[12] M. Rudin and P. Zenor, A perfectly normal nonmetrizable manifold, Houston J. Math. 2 (1976) 129-134.
[13] J. Steprāns and W.S. Watson, Homeomorphisms of manifolds with prescribed behaviour on large dense sets, preprint, 1986.
[14] F. Tall, p-points in $\beta N-N$, normal non-metrizable Moore spaces, and other problems of Hausdorff, in: Topo-72—General Topology and its Applications (Springer, New York, 1972) 501-512.

