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Generalised Sierpiński carpets are planar sets that generalise the well-known Sierpiński
carpet and are defined by means of sequences of patterns. We present necessary and
sufficient conditions, under which generalised Sierpiński carpets are connected, with
respect to Euclidean topology.
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1. Introduction

The Sierpiński carpet and the Sierpiński gasket are well-known fractals, which were originally studied by Sierpiński [6].
In this article, we take a look at generalised Sierpinski carpets and analyse under which conditions they are connected with
respect to the topology induced by the Euclidean metric. We give conditions that are sufficient and conditions that are
necessary and sufficient.

Sierpiński carpets are self-similar fractals in the plane that originate from the Sierpiński carpet [2,5,6]. They are con-
structed as follows. The unit square is divided into n × n congruent smaller subsquares of which m squares, corresponding
to a given n × n pattern (called the generator of the Sierpiński carpet), are cut out together with their boundary, and then
the closure (with respect to the topology induced by the Euclidean metric in the plane) is taken. At each step of the iterative
construction this procedure is applied to all remaining squares, and, repeating this construction ad infinitum, the resulting
object is a fractal of Hausdorff and box-counting dimension log(n2 − m)/ log(n), called a Sierpiński carpet [3]. Sierpiński car-
pets have been used, e.g., as models for porous materials [3,7]. The Vicsek fractal [8], which is also called Vicsek snowflake,
and the Cantor dust [5] are further examples of Sierpiński carpets.

In the present paper, we study sets that generalise the Sierpiński carpets mentioned before, i.e., generalised Sierpiński
carpets, which differ from a Sierpiński carpet defined as above slightly in the construction and in the following aspects. At
step k of the construction, for any k � 1, we apply an mk × mk pattern, where mk � 2, for all k � 1, and, at any two steps
k1 �= k2 we may have distinct patterns, with mk1 �= mk2 . Thus, generalised Sierpiński carpets need not be self-similar.
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In a recent paper, Cristea [1] studied connectedness properties of fractals, that are, under certain conditions, a special
case of the generalised Sierpiński carpets analysed in the present paper, and Hata [4] studied connectedness properties of
self-similar fractals.

The construction of generalised Sierpiński carpets is discussed in Section 2. For technical reasons, we introduce in Sec-
tion 3 the notion of exit pairs. Our main results are situated in Sections 4 and 5, where we present necessary and sufficient
conditions, under which generalised Sierpiński carpets are connected. We deal with the case where the limit set arises from
sequences of finitely many different subsets of the unit square in Section 5, while in Section 4 the sequences are allowed to
attain infinitely many distinct values. An example, where we apply one of our results, is given in Section 5.

2. Construction

Let m � 1. Sm
i, j = {(x, y) | i

m � x � i+1
m and j

m � y � j+1
m } and Sm = {Sm

i, j | 0 � i � m − 1 and 0 � j � m − 1}. We call the
elements of Sm squares and any nonempty A ⊆ Sm an m-pattern.

Let x, y,q ∈ [0,1] such that Q = [x, x + q] × [y, y + q] ⊆ [0,1] × [0,1]. Then for any point (zx, zy) ∈ [0,1] × [0,1] we
define the function

P Q (zx, zy) = (qzx + x,qzy + y).

Let {Ak}∞k=1 be a sequence of patterns such that for all k � 1 there is an mk � 1 such that Ak ⊆ Smk . We let W1 = A1, and
call it the set of squares of order 1. For n � 2 we denote the set of squares of order n by

Wn =
⋃

W ∈An, Wn−1∈Wn−1

{
P Wn−1(W )

}
.

For a sequence of patterns {Ak}∞k=1 we introduce the notation m(i) := ∏i
k=1 mk . We note that Wn ⊂ Sm(n) . For n � 1, we

define Ln = ⋃
W ∈Wn

W . Therefore, {Ln}∞n=1 is a monotonically decreasing sequence of compact sets. We write L∞ = ⋂∞
n=1 Ln

for the limit set of the pattern sequence {Ak}∞k=1.

3. Exit pairs

A graph G is a pair (V , E), where V = V (G) is a finite set of vertices, and the set of edges E = E(G) is a subset of
{{u, v} | u, v ∈ V , u �= v}. We write u ∼ v if {u, v} ∈ E(G) and sometimes we say u is a neighbour of v . The sequence of
vertices {ui}n

i=0 is a path between u0 and un in a graph G ≡ (V , E), if u0, u1, . . . , un ∈ V , ui−1 ∼ ui for 1 � i � n, and ui �= u j
for 0 � i < j � n. A connected component is an equivalence class of the relation, where two vertices are related if there is a
path between them.

Let W ⊆ Sm . We define G(W ) ≡ (V (G(W )), E(G(W ))) to be the graph of W , i.e., the graph whose vertices V (G(W )) are
the squares in W , and whose edges E(G(W )) are the unordered pairs of distinct squares, that have a nonempty intersection.
Let Sm(n)

x0,y0 and Sm(n)
x1,y1 be squares of order n. If e = {Sm(n)

x0,y0 , Sm(n)
x1,y1 } ∈ E(G(Wn)) then e can be of four different types. If

|x0 − x1| = 1 and y0 = y1 then we say e is . If |y0 − y1| = 1 and x0 = x1 then we say e is . If (x0 − x1)(y0 − y1) = −1
then we say e is . If (x0 − x1)(y0 − y1) = 1 then we say e is .

Let W ⊆ Sm . If {Sm
0,0, Sm

m−1,m−1} ⊆ W then we call {Sm
0,0, Sm

m−1,m−1} an exit-pair of W and denote it by . If

{Sm
0,m−1, Sm

m−1,0} ⊆ W then we call {Sm
0,m−1, Sm

m−1,0} an exit-pair of W and denote it by . Let 0 � y0, y1 � m − 1 and
E = {Sm

0,y0
, Sm

m−1,y1
} ⊆ W . If |y0 − y1| � 1 then we call E an exit pair and denote it by

• if y0 = y1,

• if y0 = y1 + 1, and

• if y0 = y1 − 1.

Let 0 � x0, x1 � m − 1 and E = {Sm
x0,0, Sm

x1,m−1} ⊆ W . If |x0 − x1| � 1 then we call E an exit pair and denote it by

• if x0 = x1,

• if x0 = x1 + 1, and

• if x0 = x1 − 1.

4. Results for general sequences

Proposition 1. L∞ is connected if and only if Ln is connected for all n � 1.
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Proof. 1. Let L∞ be connected. We indirectly assume that Ln is not connected for some n � 1. Thus, there are disjoint
nonempty open sets U and V , such that U ∪ V contains Ln . As L∞ is a subset of Ln , U ∪ V contains L∞ , which is a
contradiction to the fact that L∞ is connected.

2. If Ln is connected for all n � 1 then L∞ is connected because it is a decreasing intersection of compact connected
sets. �
Proposition 2. For n � 1, Ln is connected if and only if G(Wn) is connected.

Proof. We note that in G(Wn) two distinct squares S1 and S2 are connected by an edge if and only if S1 and S2 are
connected in the Euclidean plane.

1. Let Ln be connected. We indirectly assume that G(Wn) is not connected. This means that there are squares S1 and S2
such that there is no path between S1 and S2 in G(Wn). Let C1 be the set of all squares S such that there is a path from S1
to S and let C2 be V (G(Wn)) \ S1. Thus, there is no edge between a square in C1 and a square in C2. Therefore, we can find
open sets U1 ⊇ S1 and U2 ⊇ S2 such that U1 and U2 are disjoint, which is a contradiction to the fact that L∞ is connected.

2. Let G(Wn) be connected. It follows that Ln is path-connected, which implies that Ln is connected. �
Let G◦(Wn) be the graph whose vertex set V (G◦(Wn)) = Wn and whose edge set E(G◦(Wn)) consists of all edges

e ∈ E(G(Wn)) that satisfy

Property 1.

(a) If e is , then Ak contains a for all k � n + 1.

(b) If e is , then Ak contains a for all k � n + 1.
(c) If e is , then at least one of the following statements holds.

(1) There is a in Ak for all k � n + 1.

(2) There is a K � n + 1 such that Ak contains a for n + 1 � k � K − 1, A K contains a , and Ak contains a for
k � K + 1.

(3) There is a K � n + 1 such that Ak contains a for n + 1 � k � K − 1, A K contains a , and Ak contains a for
k � K + 1.

(d) If e is , then at least one of the following statements holds.

(1) There is a in Ak for all k � n + 1.

(2) There is a K � n + 1 such that Ak contains a for n + 1 � k � K − 1, A K contains a , and Ak contains a for
k � K + 1.

(3) There is a K � n + 1 such that Ak contains a for n + 1 � k � K − 1, A K contains a , and Ak contains a for
k � K + 1.

Theorem 1. L∞ is connected if and only if G◦(Wn) is connected for all n � 1.

Proof. 1. Let L∞ be connected. We indirectly assume that G◦(Wn) is not connected, for some n � 1. Let C be a connected
component of G◦(Wn). Let S be an arbitrary square in C and S0 be an arbitrary square in Wn \ C . We will show that there
is a k = k(S, S0) � n such that the Euclidean distance between S ∩ Lk and S0 ∩ Lk is at least 1/m(k), i.e.,

min
x∈S∩Lk

y∈S0∩Lk

|x − y| � 1

m(k)
.

In the first case, where S and S0 are not neighboured in G(Wn), the Euclidean distance between S and S0 is at least 1/m(n).
In the second case, we assume that S and S0 are neighboured in G(Wn). If S and S0 share only a corner, then we

assume without loss of generality, that the edge between S and S0 in G(Wn) is . Since there is no edge between S and

S0 in G◦(Wn), we obtain from (a) that there is a k � n + 1, such that Ak contains no . Thus, the Euclidean distance
between S ∩ Lk and S0 ∩ Lk is at least 1/m(k). If S and S0 share a side, then we assume without loss of generality that S
and S0 are horizontal neighbours. Since there is no edge between S and S0 in G◦(Wn), none of the statements (1)–(3) in

Property 1(c) holds. By Property 1(c)(1), there is a minimal K � n + 1 such that there is no in A K . If A K contains no ,

then we set k1 = K . If A K contains a , then we conclude with Property 1(c)(2) that there is some k � K + 1 such that Ak

contains no , and we set k1 = k. If A K contains no , then we set k2 = K . If A K contains a , then we conclude with

Property 1(c)(3) that there is a k � K + 1 such that Ak contains no , and we set k2 = k. Therefore, the Euclidean distance
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between S ∩ Lk and S0 ∩ Lk is at least 1/m(k), where k = k(S, S0) = max{k1,k2}. Let

k0 = max
{
k(S, S0)

∣∣ S ∈ C, S0 ∈ Wn \ C
}
.

Furthermore, let A = Lk0 ∩ ⋃
S∈C S and B = Lk0 ∩ ⋃

S0∈Wn\C S0. We have

min
x∈A
y∈B

|x − y| � 1

m(k0)
> 0.

Thus, on the one hand, LK = A ∪ B , and, on the other hand, it is possible to find an open set U A that contains A and an
open set U B that contains B , such that U A and U B are disjoint. As U A ∪ U B contains L∞ , we have a contradiction to the
fact that L∞ is connected.

2. Let G◦(Wn) be connected, for n � 1. Therefore, G(Wn) is connected, for n � 1, which implies that L∞ is connected, by
Propositions 1 and 2. �

As a summary, we now have the subsequent theorem.

Theorem 2. The following conditions are equivalent.

(a) L∞ is connected.
(b) Ln is connected for all n � 1.
(c) G(Wn) is connected for all n � 1.
(d) G◦(Wn) is connected for all n � 1.

We define G◦(An) to be the graph whose vertex set V (G◦(An)) = An and whose edge set E(G◦(An)) consists of all
unordered pairs e of different squares in An , that have a nonempty intersection and satisfy Property 1.

Theorem 3. If G◦(An) is connected for all n � 1 then G◦(Wn) is connected for all n � 1.

Proof. We show by induction that G◦(Wn) is connected for n � 1. Since G◦(W1) is equal to G◦(A1), G◦(W1) is connected.
We assume for n � 2 that G◦(Wn−1) is connected. The set Wn is constructed by “substitution” of An for each square
of Wn−1. Let S1 and S2 be distinct squares of V (G◦(Wn)). We show that there is a path in G◦(Wn) between S1 and S2. For
k � 1, let {U1, . . . , Uk} be a path in G◦(Wn−1), where U1 contains S1 and Uk contains S2 as a subset, respectively. If k = 1
then there is a path in G◦(Wn) between S1 and S2, because G◦(An) is connected. Let k � 2 and e = {Ui, Ui+1} for some i

with 1 � i � k − 1. The edge e can have four types. If e is , then An contains a , by Property 1(a). Thus, the copy of An

that is substituted for Ui is connected with the copy of An that is substituted for Ui+1 via an exit pair E . The two exits of
the exit pair E are connected by an edge in G◦(Wn), since Property 1(a) holds. If e is then we use analogue arguments. If
e is then Property 1(c)(1), Property 1(c)(2), or Property 1(c)(3) holds. If Property 1(c)(1) holds we use similar arguments

as before. If Property 1(c)(2) holds, then there is a K � n such that Ak contains a for n � k � K − 1, A K contains a ,

and Ak contains a for k � K + 1. If K � n + 1 then An contains a . Thus, the copy of An that is substituted for
Ui is connected with the copy of An that is substituted for Ui+1 via an exit pair E . The two exits of the exit pair E are

connected by an edge in G◦(Wn), since Property 1(c)(2) holds for G◦(Wn), also. If K = n then An contains a . Thus, the
copy of An that is substituted for Ui is connected with the copy of An that is substituted for Ui+1 via an exit pair E . The

two exits of the exit pair E are connected by a or a edge in G◦(Wn), since Ak contains a for k � K + 1 = n + 1.
If Property 1(c)(3) holds, the same arguments work and if e is we also may use the previous methods. Thus, we obtain a
path in G◦(Wn) between S1 and S2 and, therefore, G◦(Wn) is connected. �
Example. The reverse direction of Theorem 3 is not valid, as the sequence {Ak}∞k=1 provides a counter-example, with
A1 = B1, A2 = B2, and Ai = B1 for i � 3, where B1 and B2 are defined by the set of white squares in Fig. 1.

5. Sequences with finitely many values

Let r � 1 and A : N → {B1, . . . , Br} be surjective, where for all 1 � k � r there is an mk � 1 such that Bk ⊆ Smk . Further-
more, let 1 � n � r and G∗(Bn) be the graph whose vertex set V (G∗(Bn)) = Bn and whose edge set E(G∗(Bn)) consists of
all edges e ∈ E(G(Bn)) that satisfy
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Fig. 1. B1 and B2.

Fig. 2. B1 and B2.

Property 2.

(a) If e is , then Bk contains a for all 1 � k � r.

(b) If e is , then Bk contains a for all 1 � k � r.
(c) If e is , then for each k, where 1 � k � r, at least one of the following statements holds.

(1) There is a in Bk.

(2) There is a in Bk and Bi contains a for all 1 � i � r.

(3) There is a in Bk and Bi contains a for all 1 � i � r.
(d) If e is , then for each k, where 1 � k � r, at least one of the following statements holds.

(1) There is a in Bk.

(2) There is a in Bk and Bi contains a for all 1 � i � r.

(3) There is a in Bk and Bi contains a for all 1 � i � r.

Theorem 4. If G∗(Bn) is connected for 1 � n � r then G◦(Ak) is connected for all k � 1.

Proof. Let n � 1 and An = BN , where 1 � N � r. We will show that G∗(BN ) is a subgraph of G◦(An) with the same vertex

set, which implies that G◦(An) is connected. Let e be an edge in E(G∗(BN )). If e is , then Bk contains a for all

1 � k � r. Thus, Ak contains a for all k � n + 1, such that e ∈ E(G◦(An)), by Property 1(a). If e is , then we obtain

in the same way that e ∈ E(G◦(An)). Let e be . If there is a in Bk for all k with 1 � k � r then there is a in
Ak for all k � n + 1, such that e ∈ E(G◦(An)), by Property 1(c)(1). Otherwise, we assume, without loss of generality, that

Property 2(c)(2) holds such that Bi contains a for all 1 � i � r. Furthermore, for all 1 � k � r, there is either a , a ,

or a in Bk . Thus, Property 1(c)(2) or Property 1(c)(3) of the definition of G◦(An) holds and therefore e ∈ E(G◦(An)). If e
is then we use the same arguments and so we conclude that G∗(BN ) is a subgraph of G◦(An). �

The reciprocal of Theorem 4 does not hold, as the sequence {Ak}∞k=1 provides a counter-example, with A2i−1 = B1 and
A2i = B2, for i � 1, where B1 and B2 are as in Fig. 2. An application of Theorem 4 is the following example.

Example. Let B1, B2, and B3 be as in Fig. 3 and A : N → {B1, B2, B3}. Since G∗(Bn) is connected for 1 � n � 3, Theorem 4
yields that G◦(An) is connected for all n � 1. By Theorem 3, G◦(Wn) is connected for all n � 1. With Theorem 1 we obtain
that L∞ is connected.
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Fig. 3. B1, B2, and B3 together with G∗(B1), G∗(B2), and G∗(B3).
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