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Protein-Induced Membrane Curvature Alters Local Membrane Tension
Padmini Rangamani,1 Kranthi K. Mandadap,1,2 and George Oster1,*
1Department of Molecular and Cell Biology and 2Department of Chemistry, University of California at Berkeley, Berkeley, California
ABSTRACT Adsorption of proteins onto membranes can alter the local membrane curvature. This phenomenon has been
observed in biological processes such as endocytosis, tubulation, and vesiculation. However, it is not clear how the local surface
properties of the membrane, such as membrane tension, change in response to protein adsorption. In this article, we show that
the partial differential equations arising from classical elastic model of lipid membranes, which account for simultaneous
changes in shape and membrane tension due to protein adsorption in a local region, cannot be solved for nonaxisymmetric
geometries using straightforward numerical techniques; instead, a viscous-elastic formulation is necessary to fully describe
the system. Therefore, we develop a viscous-elastic model for inhomogeneous membranes of the Helfrich type. Using the newly
available viscous-elastic model, we find that the lipids flow to accommodate changes in membrane curvature during protein
adsorption. We show that, at the end of protein adsorption process, the system sustains a residual local tension to balance
the difference between the actual mean curvature and the imposed spontaneous curvature. We also show that this change
in membrane tension can have a functional impact such as altered response to pulling forces in the presence of proteins.
INTRODUCTION
Interaction of proteins with membranes is a fundamental bio-
logical process. Adsorption of proteins onto a membrane sur-
face can induce curvature of the bilayer (1). There are many
examples where this process is necessary for cellular func-
tions: i.e., the binding of coat proteins that initiate endocytosis
(2,3), scaffoldingof themembrane by protein complexes such
as eisosomes (4,5), and curvature sensing and modulation by
theBARdomain family of proteins (1,2,6,7). Inmanyof these
instances, the proteins bind cooperatively to form complexes
large enough that protein-complex diffusions are negligible,
and so these complexes are essentially stationary (4,7,8).
The intrinsic structure of these proteins induces the lipid
bilayer to curve in such a way as to accommodate the shape
of the protein (2,3,7,9). Changes in the membrane shape in
response to protein binding have been documented in several
ultrastructure studies (3,10). These experiments employ pro-
teins to drive changes in the membrane curvature in order to
mimic biological phenomena.
Global binding of proteins

Membrane surface properties change in response to protein
binding. This has been studied using Langmuir troughs (11)
and giant vesicles (12) where proteins covered the entire
membrane. Binding of influenza virus fusion peptide with
lipid monolayers produced a decrease in surface tension
(11). Experiments using giant vesicles and video micro-
scopy have shown that activity of bacteriorhodopsin pumps
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can reduce global membrane tension in the vesicles (12,13).
In giant vesicles, this drop in tension was quantified using
measurements of the fluctuation spectrum before and after
the proteins were activated. This observation opens the
question: what happens to the membrane tension when cur-
vature-inducing proteins such as BAR domain proteins bind
to the membrane?

The change in global membrane tension due to curvature-
inducing proteins can be explained by a simple example.
Consider a spherical vesicle of effective radius R, and
membrane tension l, as shown in Fig. 1 A. The relationship
between R and l is given by the capillarity equation Dp �
2l/R ¼ 0, where Dp is the osmotic pressure difference
between the inside and outside of the vesicle. Note that these
vesicles are not taut and have an area fraction that is micro-
scopically unresolvable, but serves as a lipid reservoir. The
value of the unresolvable area fraction depends on the
bending modulus of the membrane and has been estimated
to be 1.5% (14). This area fraction is sufficient to allow
the change in the effective vesicle radius when proteins
bind to it. If this vesicle is now coated everywhere with
proteins with spontaneous curvature C, then the new vesicle
radius changes to Rnew. If the osmotic pressure difference
remains unchanged, we can write Dp � 2lnew/Rnew ¼ 0.
Therefore, the membrane tension of the vesicle changes
due to the spontaneous curvature of the proteins binding
everywhere to the vesicular membrane.
Local binding of proteins

In cells, proteins are known to bind to membranes locally,
usually to initiate or regulate a biological function (2–5).
http://dx.doi.org/10.1016/j.bpj.2014.06.010

https://core.ac.uk/display/82815217?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:goster@berkeley.edu
http://dx.doi.org/10.1016/j.bpj.2014.06.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2014.06.010&domain=pdf
http://dx.doi.org/10.1016/j.bpj.2014.06.010
http://dx.doi.org/10.1016/j.bpj.2014.06.010
http://dx.doi.org/10.1016/j.bpj.2014.06.010
http://dx.doi.org/10.1016/j.bpj.2014.06.010


A

B

FIGURE 1 Proteins can bind to membranes

globally or locally. (A) When proteins bind to the

membrane globally, the capillarity equation can

be used to explain the change in membrane tension.

In this simplified schematic, we are not showing

the microscopically unresolvable area fraction of

the lipids that is absorbed by undulations. How-

ever, we assume that this area fraction serves as a

lipid reservoir. (B) When proteins bind only to a

specific region in the vesicle, how can we explain

the changes in l? To see this figure in color, go

online.
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These processes can be understood using lipid vesicles
with lipid domains that can bind specific proteins (Fig. 1
B). Using these systems, several groups have shown that pro-
tein adsorption on lipid domains can alter the lateral pressure
profile on the bilayer and induce tubulation (6,15). In Stacho-
wiak et al. (6) and Zhao et al. (16), the authors use GFP-
tagged proteins that adsorbed onto the bilayer. These proteins
raised the lateral surface pressure and induced tubules to
sprout from lipid vesicles. The formation of buds can also
be studied using this experimental setup (17). This raises
the question of how the membrane properties are altered
when proteins bind to specific local domains rather than glob-
ally. Recently, theHelfrich potential energywas used to show
that adsorbed proteins give rise to spontaneous surface ten-
sion (15). It is not clear, however, how adsorption of proteins
to small regions on the membrane surface alters the proper-
ties of the lipid bilayer, nor how the lipids flow to accom-
modate the shape change of the membrane. In this study,
we present a continuum mathematical model, along with
numerical simulations, of a lipid bilayer under the influence
of a patch of curvature-inducing proteins.
Continuum modeling of biological membranes

Biological membranes have unique mechanical properties.
In an aqueous medium, lipids aggregate into quasi-two-
Biophysical Journal 107(3) 751–762
dimensional bilayer sheets and adopt a configuration that
minimizes the exposure of their hydrophobic parts. Even a
plain lipid bilayer displays strange mechanical behaviors.
In the plane of the membrane, it resembles a nearly incom-
pressible viscous fluid, although in bending it behaves
somewhat like an elastic solid. In-plane lipid flow has
been observed in experimental systems such as tether
formation and micropipette aspiration of membranes (18).
In cellular processes, the plasma membrane is thought to
have a membrane reservoir that can act as a source of lipids
(19). This reservoir allows for lipid flow during dynamic
events such as spreading, motility, and endocytosis (19).
Although the idea of lipid flow on the surface of membranes
has been explored previously (20,21), most of these models
focused only on lipid flow in a cell or a vesicle of fixed
shape.

Hydrodynamics in membrane systems, in general, must
include the viscosity of the surrounding bulk fluid (22,23),
the in-plane flow of lipids (22,24–26), and intermonolayer
friction (22–24,26). As shown in Seifert and Langer (22),
Rahimi and Arroyo (26), and Sens (27), each of these vis-
cosities sets a different timescale for the membrane dy-
namics. In particular, for relaxation from fluctuations, the
timescale set by bulk viscosity and intermonolayer friction
is important (22). Here, we study the lipid flow on the mem-
brane surface required to accommodate shape changes and
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surface area due to curvature induced by protein adsorption.
For this, the relevant timescale for shape change and curva-
ture is set by the surface viscosity of the membrane (26).
TABLE 1 Notation used in developing the viscous elastic

model
Motivation

Simultaneous lipid flow and membrane shape change is
a complex phenomenon. The coupling between the change
in membrane shape induced by protein adsorption and the
corresponding change in membrane surface properties is
not yet fully understood. This calls for a model that can
describe such coupling. Furthermore, because asymmetry
is one of the hallmarks of biological structures, it is impor-
tant that such a model not be restricted to axisymmetric
geometries. Here, we develop a two-dimensional model
that can capture local inhomogeneities in the membrane
properties in response to protein-adsorption. Using this
two-dimensional model, we show how the local tension of
the membrane changes in response to protein adsorption
and how this drives surface flow of the membrane’s constit-
uent lipids. We also show that the Helfrich elastic model
results in a complicated integro-differential equation that
captures the change in local membrane tension in two-
dimensional geometries (see Section S2 in the Supporting
Material). This equation is difficult to solve both analyti-
cally and numerically; it can be solved easily for axisym-
metric calculations, as shown in Lipowsky (15).

The article is organized as follows: In Viscous Elastic
Model, we propose a two-dimensional viscous-elastic
formulation of lipid membrane dynamics that accounts for
local spontaneous curvature due to protein adsorption. In
Results, using numerical simulations, we show that changes
in the local spontaneous curvature due to protein adsorption
alters the local tension. Moreover, lipids flow from the
boundaries to accommodate the changes in membrane cur-
vature. We also study the effects of protein adsorption on
the response of the membrane to a pulling force. In Discus-
sion and Conclusions, we elaborate on the results from the
simulations and their relevance to protein-adsorption phe-
nomena and biological function.
Notation Description Units

W Local energy per unit area pN/nm

r Position vector —

n Normal to the membrane surface unit vector

aa Basis vectors describing the tangent plane,

a ˛ {1,2}

—

g Lagrange multiplier for the incompressibility

constraint

pN/nm

l �(W þ g) pN/nm

w Normal component of the velocity vector —

V Tangential velocity vector —

p Pressure difference across the membrane pN/nm2

H Mean curvature of the membrane nm�1

K Gaussian curvature of the membrane nm�2

k Bending modulus pN,nm
k Gaussian modulus pN,nm
n Intrasurface viscosity pN,s/nm
Viscous Elastic Model

Assumptions

1. The lipid bilayer is modeled as a two-dimensional differ-
entiable manifold endowed with the appropriate mechan-
ical and material properties. Helfrich proposed a model
that treats the manifold as an elastic shell whose bending
behavior is captured by an energy density functional that
depends only on the manifold’s local curvatures (28).
Models of this sort proved sufficient for radii of curva-
tures much larger than the membrane thickness, and
rich geometric behavior could be obtained by mini-
mizing the elastic bending energy.
2. The lipid bilayer is assumed to be incompressible, based
on the large stretch modulus (29). This constraint is
introduced using a Lagrange multiplier g (see Table 1
for notation).

3. Lipid flow is modeled using an intrasurface viscosity
(25). (Note that although interleaflet friction and external
fluid viscosity are both important for modeling the hy-
drodynamics, we do not include them in this model.)

4. Protein adsorption on the membrane is captured using a
spontaneous curvature (C). A lipid bilayer has two sepa-
rate interfaces, whereas the simple manifold model has
but one. Still, one can introduce the notion of an intrinsic
curvature due to, say, different lipids or proteins on each
leaflet, and thus rescue the Helfrich model by including
this built-in curvature (15,28).

We revisit these assumptions in Discussion and Con-
clusions, and relate the strengths and shortcomings of our
model.

Kinematics

We use a Monge parameterization to describe the manifold
representing the membrane (also see Table 1). The position
of a point on the membrane is given by

r ¼ xaea þ zðx1; x2; tÞe3;
a˛f1; 2g; (1)

where e1, e2, and e3 are the orthonormal coordinate axes (see

Fig. 2). The natural tangent bases on the membrane are aa ¼
r,a ¼ ea þ z,ae3, where ( ),a represents the partial derivative
with respect to xa. The components of the induced metric
and curvature tensors in this parameterization are given by

aab ¼ aa , ab ¼ dab þ z;az;b; (2)

bab ¼ n , r;ab ¼ z;ab
� ffiffiffi

a
p

; (3)
Biophysical Journal 107(3) 751–762



FIGURE 2 The tangent basis a1 and a2 can be constructed at any point on

the membrane as aa ¼ r,a, where r is the position given by Eq. 1 and a ˛
{1,2}. The surface normal n is then a1 � a2=ja1 � a2j. The tangential com-

ponents of the stress vectors T1 and T2 lie on the surface whereas the

normal components S1 and S2 are along the surface normal. The total stress

vectors are given by s1 ¼ T1 þ S1n and s2 ¼ T1 þ S2n. The definitions of

Ta and Sa are given in the Supporting Material and by Rangamani et al.

(25). To see this figure in color, go online.
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respectively (30). Here, a ¼ det(aab), and

n ¼ e3 � z;aeaffiffiffi
a

p

is the membrane normal. The dual metric and dual curvature
components are given by

aab ¼ ðaabÞ�1
and

bab ¼ aalabmblm;
respectively.
The velocity of any point r on the membrane may be

decomposed into tangent and normal components as

v ¼ _r ¼ vaaa þ wn; (4)

where va are the intramembrane flow velocities and
w ¼ z;t=

ffiffiffi
a

p
is the normal velocity of the membrane.

Free energy of membranes with protein adsorption

Protein adsorption onto the membrane induces a change in
the local curvature of the membrane. This can be modeled
by using a modified local form of the Helfrich energy den-
sity per unit area given by (28)

W ¼ kðH � CÞ2 þ kK; (5)

where

H ¼ 1=2aabbab and
Biophysical Journal 107(3) 751–762
K ¼ 1=2εabεlmbalbbm
are the mean and Gaussian curvatures, respectively; εab is
the permutation tensor; and k and k are the corresponding
bending moduli. C(x1,x2) is the spontaneous curvature
induced by the proteins. The difference between our form
of the energy and the Helfrich energy is a factor of one-
half, which is just a constant carried through all the
calculations.

Equations of motion

With this machinery, we now develop a model for lipid bi-
layers with surface flow in the presence of protein-induced
spontaneous curvature. The equations of motion in the
absence of inertia are simply the equations of mechanical
equilibrium. The force balance on the membrane, subjected
to a net lateral pressure p in the direction of the local surface
unit normal n, can be summarized in the compact form (31)
(see also Section S1 in the Supporting Material)

sa
;a þ pn ¼ 0; (6)

sa ¼ Ta þ San;

a˛f1; 2g; (7)

where ( )a;a is the covariant divergence; sa values are the
stress vectors; and Ta values are tangential stress vector
fields that are constitutively determined, and depend on
the energy per unit mass of the membrane. Sa is a contravar-
iant vector field that contains the normal component of the
stress vector (25,31). We use a balance law formulation
(see Rangamani et al. (25)) to derive the equations of motion
for a membrane with intrasurface flow in the presence of
curvature inducing proteins. This approach has two distinct
advantages over the commonly used global energy minimi-
zation approach:

1. The local stress balance approach allows us to account
for local inhomogeneities in the membrane (see Steig-
mann (31) for a detailed explanation).

2. The local force balance allows us to include dissipation
arising from intramembrane viscosity; the viscous stress
contributes to Ta only, i.e., including in-plane flow of
lipids affects only the tangential stress terms (25,26).

The membrane is assumed to be incompressible, which
results in the following constraint (25):

div v� 2wH ¼ 0: (8)

The incompressibility constraint is implemented using a
Lagrange multiplier g (25,32).

Following the procedure in Rangamani et al. (25) and as
shown in the Supporting Material, the equation of motion in
the normal direction is
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k
�
DðH � CÞ þ 2ðH � CÞ�H2 þ HC� K

��� 2lH|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Elastic contribution

þ 2n
�
babdab � w

�
4H2 � 2K

��
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Viscous contribution

¼ p:
(9)

The equations of motion in the tangent plane are

l;g � 4nwH;g þ 2n
	
aamdgm;a � w;ab

a
g



¼ 2kðH � CÞ vC

vxg
:

(10)

Here, D(,) ¼ (,),aba
ab is the surface Laplacian, n is the

membrane viscosity, l ¼ �(W þ g), and

dab ¼ 1=2ðva;b þ vb;mÞ; (11)

va;b ¼ va;b � vfG
f
ab: (12)
Here, va are the covariant components of the velocity vector,
( )a; is the covariant derivative, and Gf

ab ¼ zfz,ab/a indi-
cates the Christoffel symbols (30) (see Section S1 in the
Supporting Material for a complete derivation of the above
equations). Moreover, g is a Lagrange multiplier required to
implement the area incompressibility constraint (Eq. 8, and
see Eq. S15 in the Supporting Material), and is defined as
the surface pressure of the membrane (25). This interpreta-
tion is consistent with the notation used in Jenkins (32).

Changes in the membrane shape in response to protein
adsorption are obtained by solving Eqs. 8–10 along with
appropriate boundary conditions (25).

Reduction to an elastic model

When the membrane viscosity, n, is zero, the above model
reduces to the elastic model of bilayer membranes. There-
fore, Eq. 9 reduces to the well-known shape equation for
the Helfrich energy (31)

k
�
DðH � CÞ þ 2ðH � CÞ�H2 þ HC� K

��� 2lH ¼ p:

(13)

The spatial variation of l (10) in the elastic model is
given by

l;g ¼ �vW

vxg

���
exp

¼ 2kðH � CÞ vC
vxg

; (14)

where exp denotes the explicit derivative of W with respect
to the coordinates. In the absence of bending and sponta-
neous curvature, the force normal to any curve is given by
fv ¼ l ¼ �g (see Rangamani et al. (25)), and therefore l

can be understood as the tension in a flat membrane.
Furthermore, in the special case of zero spontaneous curva-
ture and nonzero mean curvature, l ¼ constant, everywhere
(see Eq. 14). This constant value of l must be provided as
an input parameter to solve the system of equations (31),
and is widely interpreted to be surface tension in Derényi
et al. (33).

An intuitive explanation

The main outcome of the model is summarized in Eq. 14.
Underneath the mathematical structure of the model is a
simple, intuitive explanation for why membranes are able
to sustain a surface tension gradient. Compare a lipid vesicle
to a soap film: the main difference between the soap bubble
and the membrane vesicle, at the continuum level, is the
ability of lipid membranes to resist bending. That is, lipid
bilayers have a finite bending modulus, whereas soap bub-
bles have zero bending modulus. If there was a gradient in
tension between two different regions in a soap bubble, it
would dissipate by virtue of Marangoni flow. However, in
the case of bilayers, their ability to bend sustains the surface
tension gradient, even after flow is dissipated (see Eq. 14).
Therefore, lipid membranes are able to sustain the change
in tension in the protein patch simply due to their ability
to resist bending.

Interpretation of membrane tension

Membrane tension can be estimated from studying vesicles
in vitro using several different approaches, as follows:

1. Capillary methods,
2. Fluctuation spectra of vesicles, and
3. Membrane tethering experiments.

In capillary methods, the vesicle diameter and the osmotic
pressure difference between the exterior and the interior of
the vesicle can be controlled. Because the vesicle is a sphere
with constant mean and Gaussian curvatures, we can use the
Young-Laplace equation resulting from the simplifications
of Eq. 13 to obtain l (see Phillips et al. (34) for a detailed
explanation). Estimates of membrane tension can also be
obtained from analysis of the fluctuation spectra of giant
unilamellar vesicles using high-resolution contour detection
techniques (35). Alternatively, in membrane tethering
experiments, one can pull out tubes and measure the force
versus length curves to obtain surface tension as parameter
fits to the theory in Derényi et al. (33). Instead of using l,
one can use the surface pressure, g, as a dependent variable.
This introduces the Gaussian modulus into Eqs. 9 and 10.
However, Gaussian moduli measurements vary widely in
experiments (36,37), and can only be calculated accurately
from simulations (38). Using l is useful because it can be
inferred from experiments on large spherical vesicles where
the force normal to a boundary is

fn ¼ l ¼ p

2H
;

and where p is the pressure difference and H is the mean

curvature. Hence, this value of l can be used as a boundary
condition to solve Eq. 10. In general, however, l is not a uni-
form field and must be solved for simultaneously with the
Biophysical Journal 107(3) 751–762
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shape of the membrane using the above model. Because
l is nonhomogeneous and depends on the local inhomoge-
neities, herein we refer to it as the local tension in the
membrane.

Spontaneous tension as a special case

Here, we compare our work to the notion of spontaneous
tension introduced in Eq. 15 to model proteins or solute
particles that adsorb onto the lipid membrane and show
that it is a special case of the elastic model presented in
Reduction to an Elastic Model. In Eq. 15, the effect of
adsorbed proteins is modeled by means of a spontaneous
curvature, as in this work, where the total energy is given
by (28)

W ¼
Z

W dA ¼
Z �

kðH � CÞ2 þ kK
�
dA: (15)

In Eq. 15, the author considers a case when the resultant

mean and Gaussian curvatures are significantly smaller
than the applied spontaneous curvature in a certain area Ac:

H � C;
K � C2:

(16)

Therefore, the total energy in the area Ac is given by
Wz

Z
Ac

kC2 dA ¼ kC2Ac: (17)

Thus, the effect of spontaneous curvature can be understood

as an apparent constant tension lsp over the area Ac given by

lsp ¼ dW
dAc

¼ kC2: (18)

Equation 18 is the central result in Eq. 15. In the elastic

model limit presented in our work, specializing to the case
where Eq. 16 is true, we have from Eq. 14 that

l;gz2kð�CÞ vC
vxg

¼ ��
kC2

�
;g
: (19)

Integrating Eq. 19 gives
l
�
x1; x2

�� l
�
x10; x

2
0

� ¼ �kC2; (20)

where (x0
1, x0

2) is any point outside the protein patch. This
TABLE 2 Parameters used in the model

Parameter Value Reference

l0 5 � 10�4 pN/nm (12,15,35)

k 82 pN,nm (49)

n 1 � 10�4 pN,s/nm (50,51)
tells us that the local tension differs between the protein
patch and the rest of the membrane. This value is the spon-
taneous tension kC2 as in Eq. 18. Hence, the result in Eq. 15
is a special case of the theory under the assumptions of Eq.
16. Finally, from the general viscous-elastic model, we find
that the conditions imposed in Eq. 16 do not hold in general.
For example, in the case where C ¼ 0.008 nm�1, the spatial
values of the spontaneous and mean curvature are shown in
Fig. S1, A and B, in the Supporting Material.
Biophysical Journal 107(3) 751–762
RESULTS

Effects of protein-induced spontaneous
curvature

There are many protein complexes that bind to the mem-
brane at specific sites and do not disperse (2,4–6). There-
fore, we shall assume that proteins adsorb onto a small
patch on the membrane and do not diffuse (39). The total
system we study is 1000-nm square, with a preferred pro-
tein-binding patch of 50 nm in the center. The spontaneous
curvature C(x1, x2, t) generated by the proteins is assumed
to be approximately uniform in the square patch and
modeled as

C
�
x1; x2; t

� ¼ 1=4C0ðtÞ
�
tanh

�
x1 � 25

�� tanh
�
x1 þ 25

��
� �

tanh
�
x2 � 25

�� tanh
�
x2 þ 25

��
;

(21)

where C0(t) is the magnitude of the spontaneous curvature,

which depends on the protein density (6) (see Fig. S1 A).
The kinematic boundary conditions for the membrane posi-
tion along the edges of the square patch are

z ¼ 0;
n ¼ e3:

(22)

We model the square patch as two closed boundaries (top

and bottom) with no-slip boundary conditions on the
tangential velocity field. The left and right boundaries are
open to allow for lipid flow based on the following traction
boundary conditions, which are themselves based on the
general expressions for the edge forces (25):

1=4kz2;11 ¼ nv1;1;
v2;1 þ v1;2 ¼ 0:

(23)

Additionally, the value of l is specified on the open bound-
�4
aries as l0 ¼ 5 � 10 pN/nm (12,15,35). The other param-

eters used in the model are given in Table 2.
Proteins adsorb in the center of the patch. Therefore,

we model C0(t) as a linear function of time as shown in
Fig. 3 A. This function captures the increasing density of pro-
teins that are absorbed onto the membrane over time. In this
work, we only consider the dilute limit of proteins where
the spontaneous curvature generated by the protein may be
linearly proportional to the density of proteins. The nonlinear
effects can be modeled by using the procedure shown in
Zhu et al. (40). The partial differential equations are solved
using finite-element methods (41–44) in the software
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FIGURE 3 The time-dependent change in mem-

brane shape due to protein adsorption. (A) Protein-

induced spontaneous curvature C and height of the

membrane z in the center of the domain as a func-

tion of time. (B) Shape of the membrane corre-

sponding to line x2 ¼ 0 at three different times.

(C) An electron micrograph showing an early en-

docytic invagination (3). To see this figure in color,

go online.
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COMSOL MULTIPHYSICS (COMSOL, Burlington, MA).
Note that all variables appear as second derivatives in space,
except for l, which appears as a first derivative. In order to
achieve numerical convergence, we use a linear shape func-
tion for l and quadratic shape functions for the other variables
(42–44).

In response to protein adsorption, the shape of the mem-
brane changes with time as shown in Fig. 3 B. The height of
the deformed membrane in the center is shown in Fig. 3 A.
Increasing the spontaneous curvature increases the surface
area. To accommodate this change, lipids flow in from the
open boundaries. As expected, once the spontaneous curva-
ture attains a steady value, the height of the membrane also
attains a steady value. The shape of themembrane in response
to protein adsorption (Fig. 3 B) resembles the early endocytic
invagination due to coat protein adsorption (Fig. 3 C) (3).

Note that l is a nonlinear function of the spontaneous cur-
vature C (see Figs. 4 A and 3 A). Analysis of the local ten-
sion profile along the membrane shows that for small values
of spontaneous curvature, there is no measurable inhomoge-
neity in the value of the local tension, l. As the spontaneous
curvature increases, the value of lambda decreases only in
the protein patch (Fig. 4 B).

The change in l at the end of protein adsorption process
remains a localized effect in the protein patch (Fig. 4). This
effect can be explained in part by studying Eq. 14, where the
change in l is given by the first-order partial differential
equation. In the region where there are no proteins, vC/vxa
Biophysical Journal 107(3) 751–762



FIGURE 4 Local tension variation on the mem-

brane in response to protein adsorption. (A) The

value l versus time in the center of the domain in

response to protein adsorption. (B) Surface profile

of l at 11 s. To see this figure in color, go online.
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goes to zero, and l is given by the value at the boundary l0.
At the boundary of the protein adsorption region, the actual
mean curvature is less than the applied spontaneous curva-
ture and therefore H – C s 0. Also,

vC

vxa
s0:

This implies that the gradient in the tension l is not zero us-

ing Eq. 14. Therefore, there is a jump in the local tension l

at the boundary of the protein patch. In the region containing
the proteins, the spontaneous curvature is again uniform and
therefore there is no gradient in l. However, the value of l is
equal to the tension outside the protein patch plus the jump
in tension at the boundary, thereby making the change in
tension an effect confined to the protein patch.
Effect of protein adsorption area

Because C0 represents the areal density of proteins on the
membrane, increasing the size of the protein patch is tanta-
mount to increasing the total number of proteins on the
membrane, while keeping the protein concentration dilute.
We studied the effect of increasing the area over which
the proteins can adsorb on the membrane for different values
of C0 (Fig. 5). For a given area of protein adsorption,
increasing C0 increases the displacement in the center of
the membrane (Fig. 5 A) and reduces the value of the mem-
brane tension, l, in the region (Fig. 5 B). Increasing the area
over which the proteins can adsorb had a stronger effect
on membrane displacement and l. Note that because l is a
Lagrange multiplier, its value is not restricted to positive
values—it can be positive or negative such that the areal
incompressibility constraint is satisfied (Eq. 8).
Interaction between two protein patches

As seen in Figs. 3 and 4, protein adsorption leads to a global
change in membrane shape and a local change in l. If
one patch of adsorbed proteins causes a local change in l,
then how do two separate regions of proteins interact with
one another? In other words, does the change in l remain
Biophysical Journal 107(3) 751–762
confined to regions with adsorbed proteins, or does it prop-
agate across regions with no proteins? To understand this
interaction, we performed simulations with two patches of
membranes that are placed at different distances apart
from one another and studied the evolution of shape and
local tension in these systems. The effect of protein binding
on to two patches is explained in Figs. S9 and S10. In this
case, we explicitly show that although the curvature effects
are nonlocal, changes in l remain localized to the protein
patches. Another important result from our work is that
when proteins can bind to two patches on the membrane,
there is characteristic decay length,ffiffiffiffiffi

k

2l

r
;

given by the ratio of out-of-plane bending to the in-plane
tension. When the two patches are located at less than or

of the same order of magnitude as the decay length, the re-
gion between the two patches experiences the curvature
changes even though local tension changes are always
limited to the patch (see Figs. S9 and S10). When the two
patches are much further away, then the curvature between
the two patches relaxes to zero in the region between them.
Thus, even though the local tension changes remain
confined to the patch, the curvature effects are dependent
on the characteristic decay length.
Pulling on protein-coated patches

During endocytosis, the first stage is initiation of the endo-
cytic patch by the binding of coat proteins to the membrane,
inducing a change in the membrane curvature. Further
changes in the membrane shape are generated by localized
pulling forces acting on the membrane due to actin polymer-
ization. The effect of protein adsorption shown in Figs. 3, 4,
and 5 can be understood as a phenomenological model of
coat proteins binding the membranes and reducing the mem-
brane tension.

What is the effect of reducing the membrane tension (i.e.,
changing l) on membrane response to forces? We tested the
effect of a pulling force localized to the protein-adsorbed



A

B

FIGURE 5 Local tension variation on the mem-

brane in response to changing area of protein

adsorption. (A) The value z versus time in the cen-

ter of the domain in response to protein adsorption

shows that the displacement depends on the area in

which proteins can adsorb. (B) The value l also de-

pends on the area of the region in which proteins

can adsorb. To see this figure in color, go online.
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region for different values of C0 and for two different areas
of protein adsorption (Fig. 6 and see Fig. S7). The pulling
force was applied uniformly normal to the protein patch
and was held in place after the protein adsorption was com-
plete. In both cases, each value of C0 shows a different
force-displacement relationship, consistent with each sys-
tem having a different value of l. Increasing values of C0

decreased l in the protein adsorbed region. As the value
of l decreases, less force is required to displace the mem-
brane by a desired amount. This plot can be used to interpret
combinations of protein concentrations and forces required
to pull the membrane to a desired geometry. For example, to
obtain a 200 nm displacement at the center of the membrane
(similar to endocytic invaginations in yeast (1)), less force
per unit area is required when C0 is increased. Thus, adsorp-
tion of proteins reduces membrane tension and eases further
deformation caused by pulling forces.
DISCUSSION AND CONCLUSIONS

Inhomogeneous membranes are the norm rather than the
exception in cellular systems. However, contemporary theo-
retical approaches focus more on the understanding of how
homogeneous membranes behave in response to different
driving forces such as protein adsorption and pulling forces.
Here, we have focused on understanding how inhomoge-
neous membranes evolve both in shape and surface proper-
ties in response to protein adsorption.

We have developed a viscous-elastic model that allows us
to simultaneously capture the change in membrane shape
and tension in response to protein adsorption. We also
show that in two dimensions, the Helfrich model results in
an integro-differential equation that is hard to solve when
the membrane is inhomogeneous. Introduction of mem-
brane surface viscosity allows us to solve for the change
in shape and local tension simultaneously in the case of an
inhomogeneous membrane. This situation is of particular
biological relevance: there are many cases where protein
binding or membrane crowding is localized (2–5).

The adsorption of proteins to specific membrane micro-
domains is often the first step in a biological process like
endocytosis. In many of these processes, the local regions
where proteins bind are also regions where further shape
changes take place. For example, in endocytosis, the early
Biophysical Journal 107(3) 751–762



FIGURE 6 Effect of a pulling force localized to

the region where the proteins are adsorbed. The

displacement of the membrane depends on the

area and density of proteins (C0). Increasing C0

decreases the membrane tension l and the force-

displacement curve is shifted such that when

l decreases, less force is required to achieve a

given displacement. Protein and pulling region

are 200 � 200 nm2. To see this figure in color, go

online.
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invagination is followed by tubulation and subsequent scis-
sion of the vesicle. In Fig. 3, we show how the spontaneous
curvature of the proteins adsorbing on the membrane leads
to a change in the shape of the membrane that is similar
in size and shape to that of an early endocytic invagination.
Our model and simulations also show that the change in
shape is accompanied by a change in the local tension of
the membrane in the local region where proteins are bound
(Fig. 4). The change in local tension depends on the area
over which the proteins are adsorbed (Fig. 5), suggesting
that protein curvature and area of coverage regulates not
only membrane curvature but also local tension.

It is possible that the lowering of local tension of the
membrane will have a functional impact on downstream ef-
fects of protein binding. In fact, one experimentally testable
prediction from our work is that protein adsorption on the
membrane can lower the local tension and the energy barrier
for subsequent events in that region. If this is the case, then
the protein-coated membrane will deform more for the same
applied force when compared to the uncoated bare mem-
brane. Our simulations show that the force response
behavior of the protein-coated membrane depends on the
change in local tension induced by protein-adsorption. In or-
der to obtain a given displacement, less force is needed
when the membrane tension is lowered by protein adsorp-
tion (Fig. 6).
Experiment design

The cellular milieu is crowded, with peripheral and
transmembrane proteins, and cytoskeleton and intracellular
organelles. Thus, one of the experimental challenges is
deciphering the separate roles of the membrane and its resi-
dent proteins. However, the results of our work can be tested
experimentally in giant unilamellar vesicles, as shown in
Fig. 1 for both homogeneous and inhomogeneous vesicles.

Pipette aspiration, in conjunction with bead pulling ex-
periments, can be used to test the predictions of our model.
Specifically, by following the experimental procedure out-
Biophysical Journal 107(3) 751–762
lined in Heinrich et al. (45), pipette aspiration can be used
to control the initial membrane tension and our model can
be used to quantify the changes in the local tension due to
bead pulling. Separately, in Singh et al. (46), it has been sug-
gested that increase in protein concentration needs less force
in stabilizing the tether, once it is formed. This is similar to
the observations made in Fig. 6. These experimental studies
are along the lines of our modeling efforts.

One proposed experiment is to coat an entire vesicle with
a curvature-inducing protein of known properties and study
the change in size. The change in the radius of the vesicle
can be used to estimate the change in membrane tension
assuming Laplace’s equation. Another proposed experiment
is to localize tether pulling to a phase-separated domain on
the membrane and estimate change in the membrane tension
locally. In both these cases, pulling tethers out of the pro-
tein-coated region (also see Interpretation of Membrane
Tension) will allow us to estimate the change in tension
and these results can be compared against the force response
curves shown in Fig. 6.

While these experiments are easy enough to design
theoretically, we are aware that there might be technical
challenges in performing them. One challenge is purifying
sufficiently large quantities of protein to coat an entire giant
unilamellar vesicle and obtaining high coverage of the
vesicle surface with proteins. Another is the difficulty in
measuring the radius of the vesicle before and after protein
adsorption with high resolution. Discussion with our exper-
imental colleagues indicated that pulling tethers locally in a
confined region may be fairly challenging. Nonetheless, we
have described these experiments in the hope that as more
sophisticated technologies emerge, it is but a matter of
time before these experiments can be conducted.
Open questions for the future

We have developed our model based on certain assumptions,
as outlined above. Here, we identify some of the limitations
of the model and open questions for future study, while
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noting that none of our assumptions have prevented us from
obtaining the results we sought. Our model is based on a
single manifold to represent a bilayer. This model can be
extended to included two manifolds, one for each mono-
layer. Then, in addition to lipid flow on each monolayer,
we would need to include interleaflet friction. Including
intermonolayer friction and bulk liquid viscosity (22,23)
along with membrane surface viscosity may also be neces-
sary to accurately model membrane behavior in response
to local inhomogeneities.

It is likely that, in addition to lipid flow, inclusion of lipid
and protein diffusion will further impact the surface proper-
ties of the membrane. It should also be noted that proteins
can induce both spontaneous mean and Gaussian curvature.
Even if we were to include a spontaneous Gaussian
curvature (similar to Seguin and Fried (47) and Kim et al.
(48)) in the energy (Eq. 17), a viscous-elastic formulation
would still be necessary to describe the system uniquely.
These issues will be addressed in a future study.
SUPPORTING MATERIAL

Supporting Materials and Methods, 26 equations, and 10 figures are avail-

able at http://www.biophysj.org/biophysj/supplemental/S0006-3495(14)

00616-X.
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